展望大数据时代的地球空间信息学_李德仁
- 格式:pdf
- 大小:732.22 KB
- 文档页数:6
建立互联网+天基信息实施服务系统——李德仁院士谈航天与互联网+的融合+在考虑卫星定位技术应用的时候,人们往往讨论导航、定位、授时(PNT)的概念,但是在互联网+的时代中,如何考虑传统航天与互联网的大融合大集成?在最近举行的第四届中国卫星导航与位置服务年会上,中国科学院院士、中国工程院院士、武汉大学遥感信息工程学院教授李德仁院士发表了具有前瞻性的主旨演讲,不但让人们进一步认识到航天技术的能力与潜力,也站在更高的高度,提出了航天如何主动拥抱互联网+,以改变传统的航天服务模式这个话题。
他提到:航天与互 联网的大融合大集成,需要引入遥感(RS)和通信(Communication),成为PNTRC。
而能否构建一种互联网+PNTRC信息的实时服务,关系到建设我国军民深度融合的天基信息实时服务系统的成败。
一、互联网+天基信息实时服务系统的背景互联网金融、互联网在线影院、互联网导航定位服务、在线房产、在线医疗、在线旅游等概念接连出现。
那么,航天和互联网怎么加在一起?互联网+的概念是2015年两会期间,腾讯创始人马化腾提出的议案。
互联网+是基于互联网、云计算、大数据提出的,要实现互联网和传统行业的深度融合,创造一个新的经济发展的模式、一个发展经济的生态。
我们已经看到,互联网+已经推动了很多行业的发展,淘宝网、阿里巴巴就取得了很大经济效益,为国家和社会做出了贡献。
互联网金融、互联网在线影院、互联网导航定位服务、在线房产、在线医疗、在线旅游等概念接连出现。
那么,航天和互联网怎么加在一起?在2015年的两会上,李克强总理已经提出,要搞互联网+的行动计划。
7月4日,国务院批发了《关于积极推动互联网+的行动的指导意见》。
其中有两点直接涉及航天:增强北斗卫星全球服务能力,构建天地一体化的互联网络;充分利用多维地理信息系统、智慧地图等技术,构建资源环境承载能力立体监控系统。
7月27日,李克强总理主持了一个国家科技战略座谈会,也就是中科院学部成立60周年活动。
论天地一体化对地观测网与新地理信息时代_李德仁论天地一体化对地观测网与新地理信息时代李德仁邵振峰武汉大学测绘遥感信息工程国家重点实验室湖北省武汉市洪山区珞瑜路 129 号,430079摘要:本文回顾我国测绘学科50年的发展历程,阐述了天地一体化大测绘的组成及其特性,剖析了天地一体化对地观测网环境下测绘面临的挑战,阐述了天地一体化对地观测网需要解决的关键问题,并对新地理信息时代进行了展望。
关键词:信息化测绘,空天地一体化,对地观测,传感器网络,新地理信息时代。
1. 引言测绘科学50 年的发展经历了模拟法、解析法和数字化测绘的三个阶段,已经进入信息化测绘时代,测绘科学也从几何科学发展成为地球空间信息科学。
进入21 世纪以来,伴随着航天技术、通信技术、传感器技术和信息技术的飞速发展,人们将可以从各种航天、近空间、航空和地面平台上,用紫外、可见光、红外、微波、合成孔径雷达、激光雷达、太赫兹等多种传感器获取目标的多种分辨率影像和非影像数据,其空间分辨率、光谱分辨率和时间分辨率得到了极大的提高。
基于天地一体化观测网的测绘是大测绘,即从最初的几何、角度量测的科学发展成采用各种电磁波探测与传感技术、摄影测量与遥感对地观测技术、卫星导航定位技术、卫星通信技术和地理信息系统等为主要手段,研究地球空间目标与环境参数信息的获取、分析、管理、存贮、传输、显示和应用的一门综合和集成的信息科学和技术。
随之而来的是信息处理的手段从人工的、分布式的多工序的发展成自动/半自动的、分布式的网络化实时处理系统。
天地一体化对地观测网是执行地球观测任务的(地理)空间观测网,利用观测网这种新型数据采集、查询、处理方法和系统来进行基于科学目的与应用的环境事件的地球感知,从而促进空间数据获取、处理、分发和应用。
人类不仅可以基于天地一体化对地观测网生产4D 产品,而且可以提供定制化、实时的灵性服12务。
例如,NASA 使用观测网耦合 MODIS、EO-1、UAV 进行了森林野火突变监测与快速反应实验,并成功应用于2008 年南加州森林火灾的监测,使观测规划、处理、评估从以前的30 天提高到目前的 7 天;欧盟的 SANY(Sensor Anywhere) 使用观测网耦合地面传感器,进行了地质灾害、水资源安全的监测与预警;国际对地观测组织GEOSS 把基于观测网的卫星星座观测作为未来 10 年的核心计划,并已成功应用于 2007 年的非洲洪水监测及 2008 年的缅甸洪灾监测。
读书报告:地球空间信息学与数字地球引言:最近有幸拜读了中国科学院院士、中国工程院院士李德仁的文章《地球空间信息学与数字地球》,感觉颇受教益。
李德仁教授,中国科学院院士,中国工程院院士,主要从事地理信息系统、摄影测量与遥感等领域的教学和科学研究工作。
代表成果:高精度摄影测量定位理论与方法;GPS辅助空中三角测量;SPOT卫星像片解析处理;数学形态学及其在测量数据库中的应用;面向对象的GIS理论与技术;影像理解及像片自动解译以及多媒体通信等。
地球空间信息科学(Geo-Spatial Information Science——Geomatics)是以全球定位系统(GPS)、地理信息系统(GIS)、遥感(RS)等空间信息技术为主要内容,并以计算机技术和通讯技术为主要技术支撑,用于采集、量测、分析、存储、管理、显示、传播和应用与地球和空间分布有关的数据的一门综合和集成的信息科学和技术。
地球空间信息科学是以“3S”技术为代表,包括通讯技术、计算机技术的新兴学科。
它是地球科学的一个前沿领域,是地球信息科学的重要组成部分,是数字地球的基础。
美国副总统戈尔在《数字地球——认识21世纪我们这颗星球》的报告中阐述了数字地球的概念。
所谓“数字地球”,可以理解为对真实地球及其相关现象统一的数字化重现和认识。
其核心思想是用数字化的手段来处理整个地球的自然和社会活动诸方面的问题,最大限度地利用资源,并使普通百姓能够通过一定方式方便地获得他们想要了解的有关地球的信息,其特点是嵌入海量地理数据,实现对地球的多分辨率、三维描述,通俗地说就是虚拟地球。
内容概述:叙述了地球空间信息学和数字地球的基本概念。
讨论了地球空间信息学的形成、理论基础和技术体系,以及数字地球的关键技术和应用。
分析了两者的相互关系,提出空间数据基础设施是数字地球的基本建设,发展数字地球为传统测绘行业带来了一个极好的发展机遇和一系列的挑战。
1 地球空间信息学1.1 地球空间信息学的形成空间定位技术、航空和航天遥感、地理信息系统和互联网等现代信息技术的发展及其相互间的渗透,逐渐形成了地球空间信息的集成化技术系统。
李德仁数字地球加上物联网将走向智慧地球随着科技的不断发展,数字地球和物联网的融合让我们逐渐迈向智慧地球的新时代。
数字地球作为一种信息可视化的技术和工具,通过将地球上的各种数据整合在一个虚拟平台上,为我们提供了方便快捷的信息查询和分析方式。
而物联网则是指利用传感器或其他方式将各种设备、物品与互联网相连,实现智能化的互联和交互。
数字地球与物联网的融合使得我们能够更好地利用信息资源,推动社会各个领域的发展。
首先,数字地球的出现为城市规划和管理带来了革命性的变化。
通过数字地球平台,城市规划者可以实时了解城市的各种数据和信息,如人口流动、交通拥堵等,从而制定更为精确和科学的规划方案,提高城市的整体运行效率和居民的生活质量。
同时,数字地球加上物联网的发展使得我们的交通系统变得更加智能化。
通过物联网技术,交通设施和交通工具可以实现互联和智能管理。
例如,交通信号灯可以根据实时交通情况进行智能调节,使得交通拥堵减少、交通效率提高;车辆之间可以实现实时通信,避免交通事故的发生。
这些智能化的交通系统使得我们的出行更加便利、安全和舒适。
除了城市规划和交通系统,数字地球和物联网的结合也给环境保护和资源管理带来了巨大的改变。
通过数字地球平台,我们可以实时监测各地的空气质量、水质、土壤质量等环境指标,及时采取措施保护环境和资源。
而物联网技术可以将各种环境监测设备与互联网相连,实现实时数据采集和共享,提高环境监测的精确度和效率。
智慧农业也是数字地球和物联网融合应用的一个重要领域。
通过数字地球平台,农民可以获取到土壤、气象、水源等各种农业信息,科学种植、施肥和灌溉。
而物联网技术可以将农业设备、温室和农田中的传感器与互联网相连,实现实时监测和智能控制。
这样,农业生产将更加精确、高效,农产品的质量和产量也将得到提升。
值得一提的是,数字地球和物联网的结合对于教育和科研也具有重要意义。
通过数字地球平台,学生和研究人员可以进行虚拟实验和模拟研究,更好地理解和探索自然现象。
地球空间信息学与数字地球李德仁 李清泉 (武汉测绘科技大学)[摘要] 介绍了地球空间信息学和数字地球的概念及它们之间的有机联系,两者的结合给测绘行业所带来的一个极好发展机遇和一系列的挑战。
关键词: 地球空间信息学 空间数据基础设施 空间信息框架1 地球空间信息学地球空信息科学是以全球定位系统(GPS )、地理信息系统(GIS )、遥感(RS )等空间信息技术为主要内容,并以计算机技术和通讯技术为主要技术支撑,用于采集、量测、分析、存贮、管理、显示、传播和应用与地球和空间分布有关数据的一门综合和集成的信息科学和技术。
地球空间信息科学是地球科学的一个前沿领域,是以“3S ”技术为其代表,包括通讯技术、计算机技术的新兴学科,是地球信息科学的重要组成部分,是数字地球的基础。
111 地球空间信息学的理论基础地球空间信息科学的理论框架的核心是地球空间信息机理。
地球空间信息机理作为形成地球空间信息科学的重要理论支撑,通过对地球圈层间信息传输过程与物理机制的研究,揭示地球几何形态和空间分布及变化的规律,主要内容包括:地球空间信息的基准、标准、时空变化、认知、不确定性、解译与反演、表达与可视化等基础理论问题。
(1)地球空间信息基准地球空间信息基准包括几何基准、物理基准和时间基准,是确定一切地球空间信息几何形态和时空分布的基础。
而地球参考坐标系轴向对地球体的定向是基于地球自转运动定义的,地球动力过程使地球自转矢量以各种周期不断变化;另一方面,作为参考框架的地面基准站又受到全球板块和区域地壳运动的影响。
区域定位参考框架与全球框架的连接和区域地球动力学效应问题,是地球空间信息科学和地球动力学交叉研究的基本问题。
(2)地球空间信息标准地球空间信息具有定位特征、定性特征、关系特征和时间特征,它的获取主要依赖于航空、航天遥感等手段。
各种遥感仪器所感受的信号,取决于错综复杂的地球表面和大气层在不同电磁波段的辐射与反射率。
地球空间信息前提是信息的标准化,它作为一种把地球空间信息的最新成果迅速地、强制性地转化为生产力的重要手段,其标准化程度将决定以地球空间信息为基础的信息产业的经济效益和社会效益。
读书报告:地球空间信息学与数字地球引言:最近有幸拜读了中国科学院院士、中国工程院院士李德仁的文章《地球空间信息学与数字地球》,感觉颇受教益。
李德仁教授,中国科学院院士,中国工程院院士,主要从事地理信息系统、摄影测量与遥感等领域的教学和科学研究工作。
代表成果:高精度摄影测量定位理论与方法;GPS辅助空中三角测量;SPOT卫星像片解析处理;数学形态学及其在测量数据库中的应用;面向对象的GIS理论与技术;影像理解及像片自动解译以及多媒体通信等。
地球空间信息科学(Geo-Spatial Information Science——Geomatics)是以全球定位系统(GPS)、地理信息系统(GIS)、遥感(RS)等空间信息技术为主要内容,并以计算机技术和通讯技术为主要技术支撑,用于采集、量测、分析、存储、管理、显示、传播和应用与地球和空间分布有关的数据的一门综合和集成的信息科学和技术。
地球空间信息科学是以“3S”技术为代表,包括通讯技术、计算机技术的新兴学科。
它是地球科学的一个前沿领域,是地球信息科学的重要组成部分,是数字地球的基础。
美国副总统戈尔在《数字地球——认识21世纪我们这颗星球》的报告中阐述了数字地球的概念。
所谓“数字地球”,可以理解为对真实地球及其相关现象统一的数字化重现和认识。
其核心思想是用数字化的手段来处理整个地球的自然和社会活动诸方面的问题,最大限度地利用资源,并使普通百姓能够通过一定方式方便地获得他们想要了解的有关地球的信息,其特点是嵌入海量地理数据,实现对地球的多分辨率、三维描述,通俗地说就是虚拟地球。
内容概述:叙述了地球空间信息学和数字地球的基本概念。
讨论了地球空间信息学的形成、理论基础和技术体系,以及数字地球的关键技术和应用。
分析了两者的相互关系,提出空间数据基础设施是数字地球的基本建设,发展数字地球为传统测绘行业带来了一个极好的发展机遇和一系列的挑战。
1 地球空间信息学1.1 地球空间信息学的形成空间定位技术、航空和航天遥感、地理信息系统和互联网等现代信息技术的发展及其相互间的渗透,逐渐形成了地球空间信息的集成化技术系统。
我们的学科叫摄影测量与遥感,一直是国家的重点学科,在党员先进性教育中,我们必须思考这样一个问题:国家重点学科如何保持先进性,即如何使我们的摄影测量与遥感学科,包括我们的国家重点实验室保持国内第一,国际先进。
我今天的报告分为五个方面。
一、形势大好,任务艰巨二、我上大学是从1957年到1963年,一共6年,是比较长的。
那时的大学主要是做教学工作,科研工作很少。
我们当时的系主任是王之卓院士,他在当主任期间,整个学校的项目就很少,一年就没几个课题,没多少钱。
发展到今天,我们这个学科是国家的重点学科,我们以这个学科为基础,将大地测量、地图与地理信息工程,还有计算机通讯结合在一起,1989年向国家申请了一个国家重点实验室,就是测绘遥感信息工程国家重点实验室。
现任实验室主任是我,第一任主任是张祖勋院士,是他将接力棒传给了我。
所以这个重点学科和国家重点实验室是我们大家的,这个学科从1956年到武汉来,再加上以前在同济大学的24年,算起来,有70多年的历史,是多少人劳动创造的结晶,是个宝贝,是国家的宝贝。
1992年,国际上相关专业的学者权威纷纷到我们学校来参观,来交流,之后写了个报告,说武汉测绘科技大学摄影测量与遥感这个学科可以与世界上美国的加州大学、德国的斯图加特大学、荷兰的德耳夫特大学媲美。
其后的国际大会上的学者专家形成了一个共识:美国,德国,中国是世界上航测遥感的三个最重要的强国。
但是我们的任务也很艰巨。
学科发展是在整个社会的进步的发展基础之上向前推进的。
50年代的航空测量靠的是光学机械仪器,我们称之为模拟法;70年代,电脑用起来了,我们称之为解析法;90年代,全数字化用起来,叫数字摄影测量。
摄影测量走了这么一条路,称之为摄影测量的三步曲。
所以这样的三步曲走过来以后,使遥感,航空航天遥感发展起来了。
上一个世纪50年代,俄罗斯苏联人先上天,60年代美国人获得了气象卫星的图像,到70年代获得了陆地卫星的图像。
现在我们的图像发展得很快,现在遥感图像的发展,从看清楚地面目标大小的单元,即象素在地面的大小,叫做空间分辨率,美国军方达到了0.1米到0.15米,,我们国家从改革开发以后不断的发卫星,美国和俄罗斯总共发了8000多颗卫星,美国人在天上有180多颗卫星。
论新地理信息时代-李德仁随着科技的不断进步和信息时代的来临,新地理信息时代已经到来。
在这个新时代,地理信息成为人们获取各种信息的重要途径之一。
本文将从发展趋势、应用现状和未来发展等方面分析新地理信息时代。
一、发展趋势1.智能化未来地理信息技术将更加智能化,可以自动化生成大量高精度的数据,同时能够自动处理与分析这些数据,大幅提升地理信息的智能水平,提供更加高效的决策支持。
2.空间感知地理信息技术将更加注重空间感知能力,即在处理地理信息的过程中,更加注重空间联系的关系,以提供更为独特的空间分析,打造更加人性化的智慧城市和无人驾驶等领域的应用。
3.数据融合未来地理信息技术将注重数据融合的能力,将各种不同来源的数据进行融合,以便提供更为全面、准确、可读性的地理信息,这将成为未来地理信息技术发展的一个重要趋势。
二、应用现状1.智慧城市随着经济的不断发展和城市人口的迅速增加,智慧城市建设成为了许多城市的重要战略规划。
应用地理信息技术可以大大提升智慧城市的管理能力,实现城市规划、城管效率的优化,为人们提供更加便捷的城市生活。
2.环境监测地理信息技术在环境监测方面的应用也日益广泛。
通过地理信息系统可以收集地表覆盖类型、空气污染等数据,从而更加全面、便捷地进行环境监测,提高环境保护效率。
3.农业生产地理信息技术在农业生产方面也有大量的应用,例如进行精准农业、制定精细化农业规划等。
同时,地理信息还可以帮助农民更好地了解农业生产的背景,从而更好地进行农业管理和决策,提升农业生产效益。
三、未来发展1.地理大数据未来地理信息技术发展还有一个重要趋势是地理大数据。
通过对地理信息进行异构的融合和处理,可以收集到更多的地理大数据,从而提升地理信息的质量和应用价值,推动地理信息技术的快速发展。
2.虚实融合未来地理信息技术还将更加注重虚实融合的能力。
通过虚拟现实技术与地理信息技术的有机结合,可以将地理信息表达更为真实、直观地呈现给观众,表达更为精确的地理信息数据。