直线的方向向量与法向量
- 格式:ppt
- 大小:672.50 KB
- 文档页数:10
法向量和方向向量公式法向量和方向向量是在数学和物理学中经常用到的概念。
下面我将分别解释这两个概念,并提供对应的公式。
1. 法向量:法向量是指与给定曲线、曲面或图形上某一点的切线垂直的向量。
它的方向垂直于曲线、曲面或图形的切线方向。
法向量在几何学、物理学和计算机图形学中都有广泛的应用。
在二维平面中,法向量可以用二维向量表示,通常记作n = (n₁, n₂)。
对于一条曲线或者一个曲面上的点P,可以通过求取该点的切线的斜率的负倒数来得到法向量。
如果曲线或曲面的方程已知,可以通过求取参数化方程的导数来得到法向量。
在三维空间中,法向量可以用三维向量表示,通常记作n = (n₁, n₂, n₃)。
对于一个曲面上的点P,可以通过求取该点处曲面方程的偏导数来得到法向量。
具体的求法需要根据曲面方程的形式来确定。
2. 方向向量:方向向量是指描述一个物体或者一个点移动方向的向量。
它表示从一个点到另一个点的位移向量,它的大小和方向描述了物体或者点的运动轨迹。
方向向量可以用起点和终点的坐标差表示,通常记作d = (d₁, d₂)或者d = (d₁, d ₂, d₃)。
如果两个点的坐标分别为A(x₁, y₁)和B(x₂, y₂),那么方向向量可以表示为d = (x₂- x₁, y₂- y₁)。
类似地,在三维空间中,方向向量可以表示为d = (x ₂- x₁, y₂- y₁, z₂- z₁)。
需要注意的是,方向向量只描述了移动的方向和距离,并没有说明起点和终点的具体位置。
因此,方向向量可以通过缩放来表示不同的位移长度。
希望以上解释和公式能够对你有所帮助。
直线的方向向量、平面的法向量及其应用一、直线的方向向量及其应用1、直线的方向向量: 直线的方向向量就是指和这条直线所对应向量平行(或共线)的向量,显然一条直线的方向向量可以有无数个.2、直线方向向量的应用: 利用直线的方向向量,可以确定空间中的直线和平面.(1)若有直线l , 点A 是直线l 上一点,向量a 是l 的方向向量,在直线l 上取AB a =,则对于直线l 上任意一点P ,一定存在实数t ,使得AP t AB =,这样,点A 和向量a 不仅可以确定l 的位置,还可具体表示出l 上的任意点.(2)空间中平面α的位置可以由α上两条相交直线确定,若设这两条直线交于点O,它们的方向向量分别是a 和b ,P 为平面α上任意一点,由平面向量基本定理可知,存在有序实数对(x ,y ),使得OP =xa yb +,这样,点O 与方向向量a 、b 不仅可以确定平面α的位置,还可以具体表示出α上的任意点.二、平面的法向量1、所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量也有无数个,它们是共线向量.2、在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一确定的.三、直线方向向量与平面法向量在确定直线、平面位置关系中的应用1、若两直线l 1、l 2的方向向量分别是1u 、2u ,则有l 1// l 2⇔1u //2u ,l 1⊥l 2⇔1u ⊥2u .2、若两平面α、β的法向量分别是1v 、2v ,则有α//β⇔1v //2v ,α⊥β⇔1v ⊥2v .若直线l 的方向向量是u ,平面的法向量是v ,则有l //α⇔u ⊥v ,l ⊥α⇔u //v四、平面法向量的求法若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,然后用待定系数法求解,一般步骤如下:1、设出平面的法向量为(,,)n x y z =.2、找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c ==3、根据法向量的定义建立关于x ,y ,z 的方程组00n a n b ⎧⋅=⎪⎨⋅=⎪⎩4、解方程组,取其中一个解,即得法向量五、用向量方法证明空间中的平行关系和垂直关系(一)用向量方法证明空间中的平行关系空间中的平行关系主要是指:线线平行、线面平行、面面平行.1、线线平行:设直线l 1、l 2的方向向量分别是a 、b ,则要证明l 1// l 2,只需证明a //b ,即()a kb k R =∈2、线面平行:(1)设直线l 的方向向量是a ,平面α的法向量是n ,则要证明//l α,只需证明⊥a n ,即0⋅=a n .(2)根据线面平行的判定定理:“如果直线(平面外)与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.3、面面平行(1)由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.(2)若能求出平面α、β的法向量u 、v ,则要证明α//β,只需证明u // v(二)用向量方法证明空间中的垂直关系空间中的垂直关系主要是指:线线垂直、线面垂直、面面垂直.1、线线垂直:设直线l 1、l 2的方向向量分别是a 、b ,则要证明l 1⊥ l 2,只需证明a ⊥b ,即0a b ⋅=2、线面垂直:(1)设直线l 的方向向量是a ,平面α的法向量是u ,则要证l ⊥α,只需证明a // u(2)根据线面垂直的判定定理,转化为直线与平面内的两条相交直线垂直.3、面面垂直:(1)根据面面垂直的判定定理转化为证相应的线面垂直、线线垂直.(2)证明两个平面的法向量互相垂直.六、用向量方法求空间的角(一)两条异面直线所成的角1、定义:设a 、b 是两条异面直线,过空间任一点O 作直线////,//a a b b ,则/a 与/b 所夹的锐角或直角叫做a 与b 所成的角.2、范围:两异面直线所成角θ的取值范围是02πθ<≤3、向量求法:设直线a 、b 的方向向量为a 、b ,其夹角为ϕ,则有cos |cos |a ba b θϕ⋅==⋅4、注意:两异面直线所成的角可以通过这两条直线的方向向量的夹角来求得,但两者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角.(二)直线与平面所成的角1、定义:直线和平面所成的角,是指直线与它在这个平面内的射影所成的角.2、范围:直线和平面所成角θ的取值范围是02πθ≤≤3、向量求法:设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ,则有sin |cos |cos sin a u a u θϕθϕ⋅===⋅或 (三)二面角1、二面角的取值范围:[0,]π2、二面角的向量求法(1)若AB 、CD 分别是二面角l αβ--的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB 与CD 的夹角(如图(a )所示).(2)设1n 、2n 是二面角l αβ--的两个角α、β的法向量,则向量1n 与2n 的夹角(或其补角)就是二面角的平面角的大小(如图(b )所示).七、用向量的方法求空间的距离(一)点面距离的求法如图(a )所示,BO ⊥平面α,垂足为O ,则点B 到平面α的距离就是线段BO 的长度.若AB 是平面α的任一条斜线段,则在Rt △BOA 中,BO BA =cos ∠ABO= cos cos BA BO ABOABO BO ⋅⋅∠∠=。
精品文档
直线的方向向量与法向量的求法
如图所示,当直线l :Ax By C =0的斜率存在时,直线与坐标轴分
别交于M N 两点,过点N 作直线l 的垂线NP,交横轴于点P,则,向 量m'是直线的方向向量,向量n 是直线的法向量,那么,如何求这两 个向量呢?
又••• k NP 二 B ,•••直线 NP 的方程为 y 二"Bx- C ,
A
A B 易知p 當0,故NP 珂晋,B)罟(诗罟(1厂或号(AB),
—■ 1 —■
所以,直线的法向量 n =(1,)或n 二(A, B) • k
说明:当直线的斜率不存在时,就分别用其后一个公式即可.
例、求下列直线的方向向量与法向量:
(1) 2x -3y 5 = 0 ; (2) 3x 7 = 0 .
解:(1)直线的方向向量为m' = (-3,-2)或m = (1,2),
3 直线的法向量为n 、
所以,直线的方向向量 m = (1,k)或m=(B,-A);
C C
「(1,k)或二 ABg ,
(2,-3)或n = (1^|);
(2)直线的方向向量为m〔(0,-3)或(0,1)或(0,-1),
直线的法向量为二(3,0)或(1,0)或(-1,0).
精品文档
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。
直线的方向向量与法向量的求法
如图所示,当直线0:=++C By Ax l 的斜率存在时,直线与坐标轴分别交于M 、N 两点,过点N 作直线l 的垂线NP ,交横轴于点P,则,向量→m 是直线的方向向量,向量→
n 是直线的法向量,那么,如何求这两个向量呢?
【解析】易知),0(),0,(B C N A C M --,故),(),1(),(A B AB C k A C B C A C MN -==-=→
或, 所以,直线的方向向量),1(k m =→或),(A B m -=→; 又∵A B k NP =
,∴直线NP 的方程为B
C x A B y -=, 易知)0,(2B AC P ,故),()1,1(),1(),(2222B A B
C k B AC A B B AC B C B AC NP 或-===→, 所以,直线的法向量),()1,1(B A n k n =-=→→或. 说明:当直线的斜率不存在时,就分别用其后一个公式即可.
例、求下列直线的方向向量与法向量:
(1)0532=+-y x ; (2)073=+x .
解:(1)直线的方向向量为)2,3(--=→m 或)32,1(=→m , 直线的法向量为)23,1()3,2(-=-=→→n n 或;
(2)直线的方向向量为)1,0(1,0)3,0(--=→)或或(m ,
直线的法向量为)0,1()0,1()0,3(-==→→或或n n .。
专题09直线方向向量和法向量的应用[新教材的新增内容]背景分析:在旧教材中直线方程只涉及了斜率和倾斜角的概念与向量知识缺少联系,而在新教材中引入了直线的方向向量和法向量的概念,让向量与直线联系到一起,为解决直线方程问题提供了向量工具. 1、点方向式方程(1)直线的方向向量:把与直线平行的向量叫着直线的方向向量,记着(,)d u v = (2)点方向式方程:如果直线的方向向量的坐标都不为零,即0u ≠,0v ≠时,直线通过某个点00(,)x y ,把方程00x x y y u v--=叫做直线的点方向式方程. 2、直线的点法向式方程(1)直线的法向量:把与直线垂直的向量叫着直线的法向量,记着(,)n a b =(2)点法向式方程:如果直线通过某个点00(,)x y ,且与向量(,)n a b =垂直的 直线方程00()()0a x x b y y -+-=,叫做直线的点法向式方程. 3.理解方程中各字母及其系数的几何意义by c[新增内容的考查分析]1.直线方向向量的应用(应用主要体现在,会求直线的方向向量,应用直线的方向向量解决直线中的相关问题.)【考法示例1】过,两点的直线的一个方向向量为则()A. B. C. D.1【答案】C【分析】解法一:根据AB坐标求得向量,根据与直线的方向向量共线即可求得结果.解法二:根据直线的方向向量求得直线的斜率,结合两点的斜率公式即可求得结果.【详解】解法一:由直线上的两点,,得,又直线的一个方向向量为,因此,∴,解得,故选:C.解法二:由直线的方向向量为得,直线的斜率为,所以,解得.故选:C.【考法示例2】已知过定点的直线的一个方向向量是,则直线的点方向式方程可以为()A. B.C. D.【答案】B【详解】因为直线的方向向量为且经过点,故直线的点向式方程为.故选:B.【考法示例3】设两条不重合的直线的方向向量分别为,则“存在正实数,使得是“两条直线平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】A 【详解】依题意为两条不重合的直线的方向向量,若存在正实数,使得,则,即可得到这两条直线平行,即充分性成立;若两直线平行,即,则存在实数,使得,不一定为正,当与同向时,当与反向时,,故必要性不成立;故“存在正实数,使得”是“两条直线平行”的的充分不必要条件,故选:2.直线法向量的应用(直线的法向量应用主要在两方面,1.会求直线的方向向量;2.应用直线的法向量解决直线中的相关问题.)【考法示例4】已知直线的方向向量为(1,5),则直线的法向量为( ) A.B.C.D.【答案】C【分析】根据直线的方向向量与法向量的数量积等于零即可求解. 【详解】因为直线的方向向量为,所以直线的法向量可以是或.故选:C.【考法示例5】已知两条直线,,若的一个法向量恰为的一个方向向量,则________.【答案】【分析】根据题意可得,利用两直线垂直的等价条件即可求解.【详解】因为直线的一个法向量恰为的一个方向向量,所以,所以,解得:.[新增内容的针对训练]1. 设()()111222,,,P x y P x y 为直线l 上的两点,则()122121,PP x x y y =--,我们把向量12PP 以及与它平行的向量都称为直线l 的方向向量,把与直线l 的方向向量垂直的向量称为直线l 的法向量.若直线l 经过点(1,4),(3,2)A B -,则直线的一个法向量n 为( ) A. ()1,2n =- B. ()4,2n =- C. ()4,2n = D. ()1,2n =【答案】D 【解析】【分析】先计算出直线l 的方向向量AB ,然后通过数量积逐项判断n 与AB 是否垂直.【详解】因为()4,2AB =-,A .当()1,2n =-,则4480AB n ⋅=+=≠,不满足, B .当()4,2n =-,则164200AB n ⋅=+=≠,不满足,C .当()4,2n =,则164120AB n ⋅=-=≠,不满足,D .当()1,2n =,则440AB n ⋅=-=,满足, 故选:D.2. 下列命题正确的有( ).∴直线的方向向量是唯一的;∴经过点()00,P x y 且与向量(,)d u v =平行的直线l 的点方向式方程为00x x y y u v--=;∴直线10y =的一个方向向量是(1,0). A. 0个 B. 1个 C. 2个 D. 3个【答案】B 【解析】【分析】由于直线的方向向量是不唯一的,可判定∴不正确;由直线的点方向式方程,可判定∴不正确;由直线10y =的斜率为0,可判定∴是正确的. 【详解】对于∴中,由于直线的方向向量是不唯一的,所以∴不正确;对于∴中,只有等0,0u v ≠≠时,经过点()00,P x y 且与向量(,)d u v =平行的直线l的点方向式方程为00x x y y u v--=,所以∴不正确; 对于∴中,直线10y =的斜率为0,所以直线10y =的一个方向向量可以是(1,0),所以∴是正确的. 故选:B.【点睛】本题主要考查了直线的方向向量的概念与辨析,以及直线的点方向式方程的应用,着重考查概念的辨析能力,属于基础题.3. 若过点(3,2)P m 和点(,2)Q m -的直线与方向向量为(5,5)a =-的直线平行,则实数m 的值是( ) A.13 B. 13-C. 2D. 2-【答案】B 【解析】【分析】求出PQ 坐标,由向量共线可得关于m 的方程,进而可求出m 的值. 【详解】由题意得,(3,22)PQ m m =---与(5,5)a =-共线,所以5(3)(5)(22)0m m ----⋅-=,解得13m =-.经检验知,13m =-符合题意,故选:B .【点睛】本题考查了由向量平行求参数,属于基础题.4. 已知直线l 经过点(1,2)P 和点(2,2)Q --,则直线l 的单位方向向量为 A. (3,4)-- B. 34,55⎛⎫-- ⎪⎝⎭C. 34,55⎛⎫±± ⎪⎝⎭D. 34,55⎛⎫± ⎪⎝⎭【答案】D 【解析】【分析】求出直线l 的一个方向向量为(3,4)PQ =--,再求出向量的模,根据单位向量||PQPQ ±即可求解. 【详解】由题意得,直线l 的一个方向向量为(21,22)(3,4)PQ =----=--,则||(5PQ =-=,因此直线l 的单位方向向量为134(3,4),555||PQ PQ ⎛⎫±=±--=± ⎪⎝⎭,故选:D .【点睛】本题考查了直线的方向向量以及单位向量的求法,考查了基本运算,属于基础题.5. 设直线:tan α=+l y x b ,其中,2k k πα≠π+∈Z 且0,≠∈R b b .给出下列结论其中真命题有( ) A. l 的斜率是tan α B. l 的倾斜角是αC. l 的方向向量与向量(sin ,cos )a αα=平行D. l 的法向量与向量(sin ,cos )b αα=-平行. 【答案】AD 【解析】【分析】由直线方程得斜率,由斜率得倾斜角,注意倾斜角的范围判断AB ,由直线的方向向量与法向量定义及向量共线的坐标表示判断CD . 【详解】因为直线:tan α=+l y x b ,其中,2k k πα≠π+∈Z ,所以l 的斜率是tan α;所以A 对;l 的倾斜角θ满足tan tan θα=,但不一定有θα=,所以B 错;l 的方向向量为(1,tan )α,因为1cos sin tan ααα⨯≠,所以C 错; l 的法向量为(tan ,1)α-,因为1sin cos tan ααα-⨯=-,所以D 对;故选:AD.6. 直线l 经过点(2,3)P ,且一个方向向量是(3,1)d =,则直线的点法向式方程是( )A. 3(2)(3)0x y -+-=B. (2)3(3)0x y --+-=C.2331x y --= D.2313x y --=- 【答案】BC【解析】【分析】直接利用直线的点法向式方程求解.【详解】因为直线l 经过点(2,3)P ,且一个方向向量是(3,1)d =, 所以直线的点法向式方程是(2)3(3)0x y --+-=或2331x y --= 故选:BC【点睛】本题主要考查直线的点法向式方程的求法,还考查了运算求解的能力,属于基础题.7. 若一条直线的斜率为k ,则它的一个方向向量是___________,一个法向量是________.【答案】 ∴. (1,)k ∴. (,1)k - 【解析】【分析】根据直线方向向量与直线斜率关系,在直线上任取两点坐标相减得到的向量即为方向向量,再由法向量和方向向量的数量积为0,即可求得法向量. 【详解】因为直线的斜率为k ,所以它的一个方向向量为(1,)k ,设一个法向量为(),x y ,则()(),1,0x y k x ky ⋅=+=,不妨取,1x k y ==-,则它的一个法向量是(),1k -, 故答案为:(1,)k ;(,1)k -.【点睛】本题考查直线方向向量以及法向量,掌握直线斜率和方向向量以及法向量的关系是关键,考查了分析求解能力,属基础题.8. 直线1:2330l x y -+=,那么直线1l 的一个方向向量1d 为_____________;2l 过点(2,1),并且2l 的一个方向向量2d 满足120d d ⋅=,则2l 的点方向式方程是_____________.【答案】 ∴. ()3,2(与该项量共线的非零向量均可) ∴. 2123x y --=- 【解析】【分析】由题意结合直线方向向量的知识可得直线1l 的一个方向向量;求得一个满足要求的向量2d 后,利用直线的点方向式即可得2l 的点方向式方程.【详解】由题意可得直线1:2330l x y -+=的一个方向向量为()3,2, 所以1d 可为()3,2(与该项量共线的非零向量均可); 设向量()2,n d m =,由120d d ⋅=可得320m n +=, 令2m =则3n =-,所以直线2l 的一个方向向量为()2,3-,又直线2l 过点(2,1),所以该直线的点方向式方程为2123x y --=-. 故答案为:()3,2(与该项量共线的非零向量均可);2123x y --=-. 【点睛】本题考查了直线方向向量的求解及直线点方向式方程的应用,考查了运算求解能力,属于基础题.9. 已知平面上直线l 的方向向量43,55e ⎛⎫=- ⎪⎝⎭,点(0,0)O 和(1,2)A -在l 上的射影分别为1O 和1A ,则11O A e λ=,其中λ=________. 【答案】2- 【解析】【分析】由题意结合平面向量的坐标运算、模的坐标运算可得(1,2)OA =-、1e =,进而可得λ即为OA 在e 方向上的投影,再由e OAeλ⋅=即可得解. 【详解】43,55e ⎛⎫=- ⎪⎝⎭,(0,0)O ,(1,2)A -;∴415e ⎛⎫=-= ⎪⎝⎭,(1,2)OA =-, ∴λ即为OA 在e 方向上的投影,∴465521e OA e λ--===-⋅.故答案为:2-.【点睛】本题考查了平面向量的坐标表示、模的坐标表示,考查了平面向量数量积的应用,属于基础题.10. 如图,射线OA ,OB 所在直线的方向向量分别为()11,d k =,()()21,0d k k =->,点P 在AOB ∠内,PM OA ⊥于M ,PN OB ⊥于N .(1)若1k =,31,22P ⎡⎤⎢⎥⎣⎦,求OM 的值; (2)若()2,1P ,OMP 的面积是65,求k 的值; (3)已知k 为常数,M ,N 的中点为T ,且1MON S k=△,当P 变化时,求OT 的取值范围.【答案】(1(2)112或2;(3)1,k ⎡⎫+∞⎪⎢⎣⎭【解析】 【分析】(1)求出||OP ,点P 到直线的距离,利用勾股定理,求||OM 的值; (2)直线OA 的方程为0kx y ,求出(2,1)P 到直线的距离,利用勾股定理求出||OM ,利用OMP 的面积为65,求k 的值; (3)设直线OA 的倾斜角为α,求出||OM ,||ON ,利用1MON S k=△,可得P 变化时,动点T 轨迹方程,求出||OT ,即可求||OT 的取值范围.【详解】(1)31,22P ⎡⎤⎢⎥⎣⎦,||OP ∴=, 若1k =,则()11,1d =,OA ∴的方程为y x =,即0x y -=,则点P 到直线OA2=,||OM ∴== (2)直线OA 的方程为0kx y ,(2,1)P到直线的距离为d =||OM ∴=, OMP ∴的面积为1625=, 112k ∴=或2; (3)设()11,M x kx ,()22,N x kx -,(,)T x y ,1>0x ,20x >,0k >, 设直线OA 的倾斜角为α,则tan k α=,22sin 21kk α=+, 根据题意得()121222x x x k x x y OM x ON x +⎧=⎪⎪-⎪⎪=⎨⎪=⎪⎪=⎪⎩,解得12y x x ky x x k ⎧=+⎪⎪⎨⎪=-⎪⎩, 代入11||||sin 22MONSOM ON kα==, 化简得动点T 轨迹方程为22211k x y x k ⎛⎫-=≥ ⎪⎝⎭.1||OT k∴====, 当且仅当11,,0x T k k ⎛⎫=⎪⎝⎭时,||OT 取得最小值1k.||OT∴的取值范围是1,k⎡⎫+∞⎪⎢⎣⎭.【点睛】本题考查三角形面积,考查轨迹方程,解题的关键是正确利用图形关系,得出三角形面积的表达式.。