山东大学工科研究生数学物理方法class4第1节(数学物理方程的导出)汇总
- 格式:ppt
- 大小:616.50 KB
- 文档页数:25
数学物理方程(一学期课程, 基地班、计算数学与应用软件班周课时4,师范班选修周课时3)一、方程的导出和定解条件:(10课时)1、弦振动方程、热传导方程、**连续性方程、位势方程的导出。
(8课时)2、定解问题的适定性。
(2课时)二、波动方程:(22课时)1、一阶线性方程解法。
(2课时)2、一维初值问题(问题简化、解表示、能量不等式、半无界问题)。
(8课时)3、**高维初值问题(解表示、特征锥与Huygens原理)。
(4课时)4、混合问题(分离变量法、驻波与共振、能量不等式、*广义解)。
(8课时)三、热传导方程:(22课时)1、初值问题(Fourier变换、Poisson公式、广义函数、基本解、半无界问题)。
(12课时)2、混合问题。
(2课时)3、*极值原理(弱极值原理、热导方程各定解问题最大模估计)。
(8课时)四、位势方程:(12课时)1、解与Green函数,圆上的Poisson公式。
(6课时)2、*弱极值原理,*最大模估计。
(6课时)五、二阶线性偏微分方程分类:(6课时)1、分类。
(2课时)2、二个变量方程的化简。
(4课时)教材或参考书:1数学物理方程讲义(第二版),姜礼尚等,高等教学出版社,1996 2数学物理方程方法导引,陈恕行、秦铁虎,复旦大学出版社,2004附注:1、仅对基地班所讲内容用“**”表示,仅对基地班及应用班讲述内容用“*”表示。
2、计应专业:第二章:高维初值问题解表示只作介绍。
师范专业选修:第三、四章:极值原理、最大模估只作介绍。
样稿:抽象代数(一学期课程, 周课时4)一.群论(32课时)1.群的定义,单位元和逆元的性质,变换群和置换群,Klein四元群。
(5课时) 2.子群及判别条件,子集生成的子群,群的中心。
(5课时)3.循环群,循环群的子群,Ζ和Ζn。
(6课时)4.元素的阶,有限循环群的元素的阶。
(4课时)5.等价关系与集合分类,陪集。
(4课时)6.正规子群,商群。
(3课时)7.群的同构,Cayley定理。
数学物理方程知识点归纳
数学和物理是紧密相关的学科,数学物理方程是两个学科的交叉点。
下面将对数学物理方程的知识点进行归纳。
1. 微积分
微积分是数学物理方程中最基础的知识点之一。
微积分包括微分和积分两个部分。
微分是研究函数变化率的工具,积分是研究曲线下面积的工具。
微积分在物理学中有着广泛的应用,例如牛顿第二定律、万有引力定律等。
2. 偏微分方程
偏微分方程是数学物理方程中的重要知识点。
偏微分方程是描述物理现象的数学模型,例如热传导方程、波动方程等。
偏微分方程的求解需要使用到数学分析和数值计算等方法。
3. 矩阵和线性代数
矩阵和线性代数是数学物理方程中的另一个重要知识点。
矩阵是一种数学工具,可以用来表示线性方程组。
线性代数是研究向量空间和线性变换的学科。
矩阵和线性代数在物理学中有着广泛的应用,例如量子力学中的哈密顿算符等。
4. 微分方程
微分方程是数学物理方程中的重要知识点。
微分方程是描述物理现象的数学模型,例如运动方程、电路方程等。
微分方程的求解需要使用到微积分和数值计算等方法。
5. 概率论和统计学
概率论和统计学是数学物理方程中的另一个重要知识点。
概率论是研究随机事件的学科,统计学是研究数据分析和推断的学科。
概率论和统计学在物理学中有着广泛的应用,例如热力学中的熵等。
以上是数学物理方程的知识点归纳,这些知识点是物理学家和数学家研究物理现象和数学问题的基础。
数学物理方法总结第一章 复变函数复数的代数式:z=x+iy复数的三角式和指数式:(cos sin )z ρϕϕ=+和i z e ϕρ=欧拉公式:{1sin ()21cos ()2iz iz iz izz e e iz e e --=-=+柯西-黎曼方程(或称为柯西-黎曼条件):{u u x yv v x y∂∂=∂∂∂∂=-∂∂ (其中f(z)=u+iv)函数f(z)=u+iv 在点0z 及其领域上处处可导,则称f(z)在0z 点解析.在区域B 上每一点都解析,则称f(z)是在区域B 上的解析函数.解析函数的性质:1.若函数f(z)=u+iv 在区域B 上解析,则12(,),(,)u x y C v x y C ==(12,C C 为常数)是B 上的两组正交曲线族.2.若函数在区域B 上解析,则u,v 均为B 上的调和函数,即22220u vx y ∂∂+=∂∂ 例题: 已知某解析函数f(z)的实部22(,)u x y x y =-,求虚部和这个解析函数.解答: 由于22ux∂∂=2;22v y ∂∂=-2;则22220u v x y ∂∂+=∂∂曲线积分法u x ∂∂=2x;u y ∂∂=-2y.根据C-R 条件有:v x∂∂=2y;v y ∂∂=2x.于是 22dv ydx xdy =+;(,0)(,)(0,0)(,0)(,)(,)(,0)(22)(22)(22)22x x y x x y x y x v ydx xdy C ydx xdy ydx xdy Cxdy C xy C=++=++++=+=+⎰⎰⎰⎰凑全微分显式法 由上式可知 22dv ydx xdy =+则易得 (2)dv d xy = 则显然 2v xy C =+不定积分法 上面已有v x∂∂=2y;v y ∂∂=2x则第一式对y 积分,x 视为参数,有 2()2()v xy x xy x ϕϕ=+=+⎰. 上式对x 求导有 2'()vy x xϕ∂=+∂,而由C-R 条件可知 '()0x ϕ=, 从而()x C ϕ=.故 v=2xy+C.222()(2)f z x y i xy C z iC =-++=+第二章 复变函数的积分单连通区域柯西定理 如果函数f(z)在闭单连通区域B 上解析,则沿B 上任意一分段光滑闭合闭合曲线l(也可以是B 的边界),有()0lf z dz =⎰.复连通区域柯西定理 如果f(z)是闭复连通区域上的单值解析函数,则1()()0inll i f z dz f z dz =+=∑⎰⎰.式中l 为区域外边界线,诸i l 为区域内边界线,积分均沿边界线的正方向进行.即1()()inll i f z dz f z dz ==∑⎰⎰.柯西公式 1()()2l f z f dz i z απα=-⎰n 次求导后的柯西公式 ()1!()()2()n n l n f fz d i z ζζπζ+=-⎰第三章 幂级数展开幂级数200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-++-+∑其中0a ,1a ,2a ,3a ,……都是复常数. 比值判别法(达朗贝尔判别法) 1.若有110100limlim1k k k kk k kk a z z a z z a a z z +++→∞→∞-=-<- 则 2010200............kk a a z z a z z a z z +-+-++-+收敛,200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.若极限1lim /k k k a a +→∞存在,则可引入记号R,1limkk k a R a →∞+=,于是,若0z z R -<,则 200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.2.若0z z R ->,则后项与前项的模之比的极限1101l i m l i m 1k k k k k k kk a z z a R a a z z +++→∞→∞->=-,即说明200102000()()()......()k k k k k a z za a z z a z z a z z ∞=-=+-+-+-+∑发散.例题: 求幂级数2461.....z z z -+-+的收敛圆,z 为复变数. 解答: 由题意可得 1lim1kk k a R a →∞+== 故 246211......1z z z z -+-+=+ (1z <). 泰勒级数展开 设f(z)在以0z 为圆心的圆R C 内解析,则对圆内的任意z 点,f(z)可展为幂级数,0()()kkk f z a z z ∞==-∑,其中1()010()1()2()!R n k k C f z f a d iz k ζζπζ+==-⎰,1R C 为圆R C 内包含z 且与R C 同心的圆.例题: 在00z =的领域上将()zf z e =展开 解答: 函数()zf z e =的各阶导数()()n z fz e =,而()()0()(0)1k k f z f ==.则ze 在00z =的领域上的泰勒展开23401............1!2!3!4!!!k kzk z z z z z z e k k ∞==++++++=∑.双边幂级数212010010220......()()()()......a z z a z z a a z z a z z ----+-+-++-+-+洛朗级数展开 设f(z)在环形区域201R z z R <-<的内部单值解析,则对环域上的任一点z,f(z)可展为幂级数0()()kkk f z a z z ∞=-∞=-∑.其中101()2()k k Cf a d iz ζζπζ+=-⎰, 积分路径C 为位于环域内按逆时针方向绕内圆一周的任一闭合曲线.例题1: 在1z <<∞的环域上将2()1/(1)f z z =-展为洛朗级数.解答: 22222460211111111......111kk z z zz z z z z ∞=⎛⎫===+++ ⎪-⎝⎭-∑ 例题2: 在01z =的领域上将2()1/(1)f z z =-展为洛朗级数. 解答: 由题意得21111()()1211f z z z z ==---+ 则有z-1的-1次项,而0111111(1)()111222212kk k z z z z ∞=-===--+-++∑ (12z -<) 故 01111()(1)()2142k kk z f z z ∞=-=---∑.第四章 留数定理留数定理 设函数f(z)在回路l 所围区域B 上除有限个孤立奇点1b ,2b ,……,n b 解析,在闭区域B 上除1b ,2b ,……, n b 外连续,则11()2R e ()2nj lj f z d z i s f b i aππ-===∑⎰. 其中,1111Re ()lim {[()()]}(1)!j m m j j m z b d a sf b z b f z m dz---→==--.推论1: 单极点的留数为000Re ()lim[()()]z z sf z z z f z →=-.推论2: 若f(z)可以表示为P(z)/Q(z)的特殊形式,其中P(z)和Q(z)都在0z 点解析,0z 是Q(z)的一阶零点(0()0Q z =).0()0P z ≠,则000000()()'()()()Re ()lim()lim ()'()'()z z z z P z z z P z P z P z sf z z z Q z Q z Q z →→+-=-==. 上式最后一步应用了罗毕达法则.留数定理的应用 类型一20(cos ,sin )R x x dx π⎰.作自变量代换 ix z e =.则式子变为111(,)22z z z z z dzI R iz--=+-=⎰.例题: 计算 202cos dxI xπ=+⎰.解答: 21201122cos 41(2)2z z dxdz dzI i i z z xzz z π-====-=-+++++⎰⎰⎰,Z的单极点为1,2422z -+==- 则221Re(22241z s i z z z π→--=+-=++, 由于2-1z =内.故 I =. 类型二()f x dx ∞-∞⎰.积分区间是(,)-∞∞;复变函数f(z)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,zf(z)一致地0→.则式子可以变为()2I f x d x i π∞-∞==⎰{f(z)在上半平面所有奇点的留数之和}.例题: 计算21dx x ∞-∞+⎰. 解答: 21dzI z ∞-∞=+⎰的单极点为1,2z i =±.21Re ()2lim()1z i sf i i z i z ππ→=-=+,故21dxx π∞-∞=+⎰.类型三()cos F x mxdx ∞⎰,0()sin G x mxdx ∞⎰,积分区间是[0,]+∞;偶函数F(x)和奇函数G(x)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面或实轴上→∞,F(z)及G(z)一致地0→.则式子可以变为0()c o s {()i m xF x m x d x i F x e π∞=⎰在上半平面所有奇点的留数之和;()s i n {()i m xG x m x d x G x eπ∞=⎰在上半平面所有奇点的留数之和. 若类型二,类型三的实轴上有有限个奇点,则有()2Re ()Re ()f x dx isf z isf z ππ∞-∞=+∑∑⎰在上平面实轴上.其中,在类型三中f(x)应理解为()imzF x e或()imxG x e.第五章 Fourier 变换傅里叶级数 周期为2l 的函数f(x)可以展开为级数01()(c o s s i n k kk k x k x f x a a b llππ∞==++∑. 其中,{1()cos1()sin lk lk lk l k a f d l lk b f d l lπξξξδπξξξ--==⎰⎰,k δ={2(0)1(0)k k =≠.注: 积分上下限只要满足 上-下=2l 即可. 复数形式的傅里叶级数 ()k xilkk f x c eπ∞=-∞=∑其中 *1()[]2k x i ll k l c f e d lπξξ-=⎰. 傅里叶积分 0()()cos ()sin f x A xd B xd ωωωωωω∞∞=+⎰⎰傅里叶变换式 {1()()cos 1()()sin A f d B f d ωξωξξπωξωξξπ∞-∞∞-∞==⎰⎰复数形式的傅里叶积分{*()()()()[]i xi x f x F e d F f x e dx ωωωωω∞-∞∞-∞==傅里叶变换的性质(1) 导数定理 F [f ’(x)]=iwF(w)(2) 积分定理 F [()()x f d ξξ⎰]=1()F w iw(3) 相似性定理 F [f(ax)]=1()wF a a(4) 延迟定理 F [0()f x x -]=0()iwx e F w -(5) 位移定理 F [0()iw xef x ]=0()f w w -(6) 卷积定理 若F [1()f x ]=1()F w ,F [2()f x ]=2()F w ,则 F [1()f x *2()f x ]=122()()F w F w π. 其中1212()*()()()f x f x f f x d ξξξ∞-∞=-⎰称为1()f x 和2()f x 的卷积.δ函数()x δ={0(0)(0)x x ≠∞=.()bax dx δ=⎰{0(,0,0)1(a<0<b)a b <>都或都.δ函数的一些性质1.()x δ是偶函数.()()'()'()x x x x δδδδ-=-=-2. ()()xH x t dt δ-∞==⎰{0(0)1(0)x x <>.3.00()()()f t d f t τδττ∞-∞-=⎰.第六章 Laplace 变换拉普拉斯变换 0()()pt f p f t e dt ∞-=⎰拉普拉斯变换的一些性质 (1) 线性定理 若11()()f t f p ,22()()f t f p ,则 1121122()()()(c f t c f t c f pc f++. (2) 导数定理 '()()(0)f t p f p f -.(3) 积分定理1()td p ϕττ⎰L [()p ϕ]. (4) 相似性定理 1()()p f at f p a. (5) 位移定理 ()()tef t f p λλ-+.(6) 延迟定理 00()()pt f t t e f p --. (7) 卷积定理 若11()()f t f p ,22()()f t f p ,则1212()*()()(f t f t f p f p, 其中12120()*()()()tf t f t f f t d τττ=-⎰称为1()f t 和2()f t 的卷积.第七章 数学物理定解问题(1) 均匀弦的微小振动,均匀杆的纵振动,传输线方程,均匀薄膜的微小横振动,流体力学与声学方程,电磁波方程的形式为20tt xx u a u -=或220tt u a u -∆=或230tt u a u -∆=.(2) 扩散方程,热传导方程的形式为20t xx u a u -=或20t u a u -∆=.(3) 稳定浓度分布,稳定温度分布,静电场,稳定电流场方程的形式为(拉普拉斯方程)0u ∆=.(4) 以上方程中x u 意为u x∂∂,xx u 意为22ux ∂∂.若以上各方程均为有源,则方程为 各方程=f(x,y,z,t).定解条件初始条件 初始”位移” 0(,,,)(,,)t u x y z t x y z ϕ==, 初始”速度” 0(,,,)(,,)t t u x y z t x y z ψ==. 边界条件 第一类边界条件 (,)(,)u r t f M t ∑=第二类边界条件(,)uf M t n ∑∂=∂ 第三类边界条件 ()(,)uu Hf M t n ∑∂+=∂ 衔接条件 00(0,)(0,)u x t u x t -=+00(0,)(0,)()x x Tu x t Tu x t F t +--=-.(T 为张力) 达朗贝尔公式 定界问题 达朗贝尔公式 11(,)[()()]()22x at x at u x t x at x at d aϕϕψξξ+-=++-+⎰. 其中0()t u x ϕ==,0()tt u x ψ==.()x -∞<<∞第八章 分离变数法泛定方程 20tt xx u a u -=(若该方程可以使用分离变量法,则可以化成2''()''()()()T t X x a T t X x λ==-). ''()()0X x X x λ+=在不同的边界条件下解不同.边界条件(1) {(0)0()0X X l == , X(x)的解为 {2()()sin n n n ln X x C x lπλπ== 其中 n=1,2,3……(2) {'(0)0()0X X l ==, X(x)的解为 {21()2[]1()2()cosn n k lk X x C x lπλπ+=+= 其中 k=0,1,2……(3) {(0)0'()0X X l ==, X(x)的解为 {21()2[]1()2()sinn n k lk X x C x lπλπ+=+= 其中 k=0,1,2……(4) {'(0)0'()0X X l ==, X(x)的解为 {2()()cosn n n ln X x C x lπλπ== 其中 n=0,1,2……T(t)的方程在有n 且n=0时的解为 ()T t At B =+; 在0n ≠时的解为()sincos n a n aT t A t B t l lππ=+; 在有k 的情况下为(21)(21)()sincos 22k a k aT t A t B t l lππ++=+.初始条件 将u(x,t)=T(t)X(x)带入初始条件,确定u(x,t)中的常数项.欧拉型常微分方程 22220d R dRm R d d ρρρρ+-=. 解法为做代换t e ρ=.第九章 二阶常微分方程级数解法 本征值问题拉普拉斯方程 0u ∆=(1) 球坐标系下 2222222111()(sin )0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂++=∂∂∂∂∂. 分解为 2222(1)0R R r r l l R r r ∂∂+-+=∂∂ 其解为 11()ll R r Cr D r+=+. 和22211(sin )(1)0sin sin Y Y l l θθθθθϕ∂∂∂+++=∂∂∂(球方程,(,)()()Y θϕθϕ=ΘΦ) 球方程又可以分离为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为 {2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2……和 22222(1)2[(1)]01d d m x x l l dx dx x ΘΘ--++-Θ=- (连带勒让德方程).(2) 柱坐标系下 2222211()0u u u z ρρρρρϕ∂∂∂∂++=∂∂∂∂.分解为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为{2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2…… 和 ''0Z Z μ-=和 22221()0d R dR m R d d μρρρρ++-=. 当0μ=时,Z=C+Dz,()R ρ={ln (0)/(1,2,3......)m m E F m E F m ρρρ+=+=; 当0μ>时,()Z z De =+,方程R 转换为 22222()0d R dR x x x m R dx dx++-=(x =,m 阶贝塞尔方程). 当0μ<时,()Z z C D =+,方程R 转换为22222()0d R dR x x x m R dx dx +-+=(x =,m 阶虚宗量贝塞尔方程). 亥姆霍兹方程 20v k v ∆+=.在00x =的领域上l 阶勒让德方程的解为 0011()y x a y a y =+ 其中 2402()(1)(2)()(1)(3)1...2!4!(22)(24)...()(1)(3)...(21)......(2)!k l l l l l l y x x k l k l l l l l k x k -+--++=+++-----+++-++ 35121(1)(2)(3)(1)(2)(4)...3!5!(21)(23)...(1)(2)(4)...(2)......(21)!k l l l l l l y x x x k l k l l l l l k x k +-+--++=+++-----++++++第十章 球函数高次项l x 的系数 2(2)!2(!)l l l a l = (在乘以适当的常数之后),用递推公式改写后为2(2)(1)()(1)k k k k a a k l k l +++=-++,则 22(22)!(1)!2()!(2)!l n l l n a n l n l n --=---.则勒让德多项式为 [/2]20(22)!()(1)!2()!(2)!l kl k l l k l k P x x k l k l k -=-=---∑.[/2]l ={/2()(1)/2()l l l l -为偶数为奇数. ()1o P x =1()cos P x x θ==2211()(31)(3cos 21)24P x x θ=-=+ 3311()(53)(5cos33cos )28P x x x θθ=-=+ 42411()(35303)(35cos 420cos 29)864P x x x θθ=-+=++…… 勒让德多项式是正交的例题1: 以勒让德多项式为基,在区间[-1,1]上把f(x)=3234x x ++展开为广义傅里叶级数.解答: 3234x x ++=00112233()()()()f P x f P x f P x f P x +++ = 23012311(31)(53)22f f x f x f x x ++-+- 则有 02142f f -=, 13332f f -=, 2302f =, 3522f =. 故有3234x x ++=0132144()()()55P x P x P x ++. 例题2: 在半径0r r =的球的内部求解拉普拉斯方程使满足边界条件02cos r r u θ==. 解答: 边界条件与ϕ无关,故选择球坐标,则有10(,)()(cos )l l l l l l B u r A r P r θθ∞+==+∑. 又有自然边界条件 0r u =有限故0l B =.则有(,)(cos )ll ll u r A r P θθ∞==∑. 而02202012cos (cos )()()33l l l r r l u A r P x P x P x θθ∞======+∑,则22200121(,)(cos )(cos )33l l l l u r A r P r P r θθθ∞===+∑.。
数学物理方程的导出过程主要介绍数学物理方程的建立方法.具体通过五种物理模型详细介绍数学物理方程的建立方法.其中弦的横振动、杆的纵振动以及传输线方程的建立是需要掌握的基本内容.为了描述定解问题的系统完整性,我们在对波动方程的定解条件也进行了讨论.(一)弦的横振动方程(均匀弦的微小横振动)弦的横振动问题是数理方程中的典型问题.它模型简单,且具有代表性.演奏弦乐用(二胡,提琴)的人用弓在弦上来回拉动,弓所接触的是弦的很小的一段,似乎只能引起这个小段的振动,实际上振动总是传播到整个弦,弦的各处都振动起来。
振动如何传播呢?1. 物理模型实际问题:设有一根细长而柔软的弦,紧绷于A,B两点之间,在平衡位置附近产生振幅极为微小的横振动(以某种方式激发,在同一个平面内,弦上各点的振动方向相互平行,且与波的传播方向(弦的长度方向)垂直),求弦上各点的运动规律。
2.分析:弦是柔软的,即在放松的条件下,把弦弯成任意的形状,它都保持静止。
绷紧后,相邻小段之间有拉力,这种拉力称为弦中的张力,张力沿线的切线方向。
由于张力的作用,一个小段的振动必带动它的邻段,邻段又带动它自己的邻段…,这样一个小段的振动必然传播到整个弦,这种振动传播现象叫作波。
我们考察一根长为且两端固定、水平拉紧的弦.讨论如何将这一物理问题转化为数学上的定解问题.要确定弦的运动方程,需要明确:(1) 要研究的物理量是什么?对于本模型是讨论弦的运动规律,并研究弦沿垂直方向的位移.(2)被研究的物理量遵循哪些物理定理?本模型所研究的物理量遵循牛顿第二定律.(3)按物理定理写出数学物理方程(即建立泛定方程)注意:由于物理问题涉及因素较多,往往还需要引入适当假设才能使方程简化.数学物理方程必须反映弦上任一位置上的垂直位移所遵循的普遍规律,所以考察点不能取在端点上,但可以取除端点之外的任何位置作为考察点.开始建立模型:① 模型实际上就是:柔软轻质细弦(“没有质量”的弦);弦是轻质弦(其质量只有张力的几万分之一)。
数学物理方法总结数学物理方法在物理学领域中扮演着非常重要的角色,它不仅仅是物理学家的工具,更是一种思维方式和解决问题的方法。
数学物理方法的应用涉及到了许多领域,包括经典力学、电磁学、热力学、量子力学等。
本文将对数学物理方法进行总结,以便对这些方法有一个全面的了解。
首先,我们来谈谈在经典力学中的数学物理方法。
在经典力学中,微积分和微分方程是非常重要的工具。
微积分通过对函数的积分和导数运算,可以描述物体的运动和力学系统的行为。
而微分方程则可以用来描述物体的运动规律,比如牛顿第二定律就可以用微分方程来描述。
此外,拉格朗日力学和哈密顿力学也是经典力学中重要的数学物理方法,它们可以通过变分原理和哈密顿原理来描述物体的运动。
其次,我们来看看在电磁学中的数学物理方法。
在电磁学中,矢量分析和电磁场方程是非常重要的数学工具。
矢量分析可以用来描述电场和磁场的分布和性质,而电磁场方程则可以用来描述电磁场的行为,比如麦克斯韦方程组可以描述电磁波的传播。
此外,复数和调和函数也是电磁学中常用的数学工具,它们可以简化电磁场的计算过程。
再者,我们来讨论一下在热力学中的数学物理方法。
在热力学中,统计物理和热力学定律是非常重要的数学物理方法。
统计物理可以用来描述大量粒子系统的性质,比如玻尔兹曼分布和费米-狄拉克分布可以用来描述气体中粒子的分布。
而热力学定律则可以用来描述热量和功的转化,比如热力学第一定律可以用来描述热力学系统的能量守恒。
最后,我们来看看在量子力学中的数学物理方法。
在量子力学中,线性代数和波动方程是非常重要的数学工具。
线性代数可以用来描述量子态的性质,比如态矢量和算符可以用来描述量子系统的性质。
而波动方程则可以用来描述波函数的行为,比如薛定谔方程可以用来描述量子系统的演化。
综上所述,数学物理方法在物理学中扮演着非常重要的角色,它们不仅仅是工具,更是一种思维方式和解决问题的方法。
通过对数学物理方法的总结,我们可以更好地理解物理学中的各种现象和规律,为我们的科研工作提供更加丰富的思路和方法。
第一章. 波动方程§1 方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程()⎪⎭⎫⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x u E x t u x t ρ其中ρ为杆的密度,E 为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ∆。
现在计算这段杆在时刻t 的相对伸长。
在时刻t 这段杆两端的坐标分别为:),();,(t x x u x x t x u x ∆++∆++其相对伸长等于 ),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆-+-∆++∆+θ令0→∆x ,取极限得在点x 的相对伸长为x u ),(t x 。
由虎克定律,张力),(t x T 等于),()(),(t x u x E t x T x =其中)(x E 是在点x 的杨氏模量。
设杆的横截面面积为),(x S 则作用在杆段),(x x x ∆+两端的力分别为x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-∆+∆+利用微分中值定理,消去x ∆,再令0→∆x 得tt u x s x )()(ρx∂∂=x ESu () 若=)(x s 常量,则得22)(tu x ∂∂ρ=))((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 .0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力x ux E t l T ∂∂=)(),(|lx =等于零,因此相应的边界条件为x u∂∂|lx ==0 同理,若0=x 为自由端,则相应的边界条件为xu∂∂∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。