安徽省黄山市2018_2019学年七年级数学上学期期末质量监测试卷
- 格式:pdf
- 大小:573.20 KB
- 文档页数:5
2018-2019学年七年级(上)期末数学试卷一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是,﹣的倒数是.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为平方千米.10.计算:15°37′+42°51′=.11.根据图提供的信息,可知一个杯子的价格是元.12.用6根火柴最多组成个一样大的三角形,所得几何体的名称是.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=cm.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.52018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【考点】数轴.【分析】根据数轴的相关概念解题.【解答】解:因为a是一个负数,则﹣a是一个正数,二者互为相反数,﹣a在原点的右边.故选B.【点评】解答此题要用到以下概念:数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴;(1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零.(2)在数轴上表示的两个数,正方向的数大于负方向的数.(3)正数都大于0,负数都小于0,正数大于一切负数.(4)若从点A向右移动|a|个单位,得到B,则B点坐标为A的坐标加|a|,反之B点坐标为A的坐标减|a|.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据所看位置,找出此几何体的三视图即可.【解答】解:从上面看得到的平面图形是两个同心圆,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是要把所看到的棱都表示到图中.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.【考点】点、线、面、体.【专题】常规题型.【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【解答】解:A、是直角梯形绕底边旋转形成的圆台,故A错误;B、是直角梯形绕垂直于底的腰旋转形成的圆台,故B正确;C、是梯形底边在上形成的圆台,故C错误;D、是梯形绕斜边形成的圆台,故D错误.故选:B.【点评】本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29【考点】一元一次方程的应用.【分析】设该商品的标价为x,则商品的售价为0.9x元,根据售价﹣进价=利润为等量关系建立方程求出其解即可.【解答】解:设该商品的标价为x,则商品的售价为0.9x元,由题意,得0.9x﹣21=21×20%,解得:x=28故选C.【点评】本题考查了销售问题的数量关系在生活实际问题的中的运用,一元一次方程的解法的运用,解答时运用售价﹣进价=进价×利润率建立方程是关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是5,﹣的倒数是﹣2.【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的相反数是5,﹣的倒数是﹣2,故答案为:5,﹣2.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=1.【考点】同类项.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得答案.【解答】解:a3﹣2n b2与5a3n﹣2b2是同类项,3﹣2n=3n﹣2,n=1,故答案为:1.【点评】本题考查了同类项,相同的字母的指数也相同是解题关键.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为 2.5×106平方千米.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:2 500 000=2.5×106平方千米.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.10.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.11.根据图提供的信息,可知一个杯子的价格是8元.【考点】二元一次方程组的应用.【分析】仔细观察图形,可知本题存在两个等量关系,即一个水壶的价格+一个杯子的价格=43,两个水壶的价格+三个杯子的价格=94.根据这两个等量关系可列出方程组.【解答】解:设水壶单价为x元,杯子单价为y元,则有,解得.答:一个杯子的价格是8元.故答案为:8.【点评】解题关键是弄清题意,找到合适的等量关系,列出方程组.12.用6根火柴最多组成4个一样大的三角形,所得几何体的名称是三棱锥或四面体.【考点】认识立体图形.【分析】用6根火柴,要使搭的个数最多,就要搭成立体图形,即三棱锥.【解答】解:要使搭的个数最多,就要搭成三棱锥,这时最多可以搭4个一样的三角形.图形如下:故答案为:4,三棱锥或四面体.【点评】此题主要考查了认识立体图形,本题要打破思维定势,不要只从平面去考虑,要考虑到立体图形的拼组.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=11或5cm.【考点】比较线段的长短.【专题】分类讨论.【分析】分点B在点A、C之间和点C在点A、B之间两种情况讨论.【解答】解:(1)点B在点A、C之间时,AC=AB+BC=8+3=11cm;(2)点C在点A、B之间时,AC=AB﹣BC=8﹣3﹣5cm.∴AC的长度为11cm或5cm.【点评】分两种情况讨论是解本题的难点,也是解本题的关键.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是158.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是14.【解答】解:分析可得图中阴影部分的两个数分别是左下是12,右上是14,则m=12×14﹣10=158.故答案为:158.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).【考点】有理数的加法;整式的加减.【分析】(1)根据有理数的加法法则,即可解答.(2)先去括号,再合并同类项,即可解答.【解答】解:(1)(﹣76)+(+26)+(﹣31)+(+17)=﹣76﹣31+26+17=﹣107+43=﹣64.(2)2(2b﹣3a)﹣3(2a﹣3b)=4b﹣6a﹣6a+9b=13b﹣12a.【点评】本题考查了有理数的加法法则,解决本题的关键是熟记有理数的加法法则.16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:x﹣7=10﹣4x﹣2,移项合并得:5x=15,解得:x=3;(2)去分母得:3x﹣3﹣6﹣4x=6,移项合并得:x=﹣15.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).【考点】作图—应用与设计作图.【分析】连接AB,与l的交点就是P点.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握两点之间线段最短.18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.【考点】余角和补角.【分析】设这个角的度数为x,根据互余的两角的和等于90°表示出它的余角,然后列出方程求解即可.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),由题意得:x﹣(90°﹣x)=30°,解得:x=80°.答:这个角的度数是80°.【点评】本题考查了余角的定义,熟记概念并列出方程是解题的关键.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.【考点】整式的加减—化简求值;合并同类项;去括号与添括号.【专题】计算题.【分析】本题先将括号去掉,进行同类项合并,然后化简后,将值代入,即可求得结果.【解答】解:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.当x=1,y=2,z=﹣3时,原式=﹣3×1×2×(﹣3)=18.…(10分)【点评】本题考查整式的加减及化简求值,将式子进行同类项合并后,然后化简后即可求得结果.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.【考点】角平分线的定义.【专题】计算题.【分析】由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.【点评】解决本题的关键利用角平分线定义得到所求角的两边的角的度数.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为|m﹣n|.【考点】比较线段的长短.【专题】计算题.【分析】(1)点M是线段AC中点,则MC=AC,点N的线段BC中点,所以CN=CB,AC+BC=AB,AB已知,从而可求出MN长度.(2)根据以上分析可得MN=AB,线段MN的长度是线段AB的一半.(3)当点C在线段AB的延长线上时,MN等于MC减去BC=n,而MC=AC=m,从而可求出MN长度;当点C在线段BA的延长线上时,MN等于NC减去MC,NC=BC=n,MC=AC=m,从而可求出MN的长度.【解答】解:(1)MN=MC+CN=AC CB=7cm;(2)MN=MC+CN=AC=;(3)当点C在线段AB的延长线上时,MN=(m﹣n);当点C在线段BA的延长线上时,MN=(n﹣m);综合以上情况得:MN=.【点评】本题前两问主要根据题中图形得到各线段之间的关系,求出MN的长度,而第三问要分情况讨论,M在AB不同侧时有不同的情况,分析各情况得到MN的表达式.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.【考点】余角和补角.【分析】(1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD和∠COB表示出∠BOD,列出方程整理即可得解;(2)根据周角等于360°列式整理即可得解.【解答】解:(1)∠AOD与∠COB互补.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOD﹣90°=90°﹣∠COB,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补;(2)成立.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补.【点评】本题考查了余角和补角的定义,比较简单,用两种方法表示出∠BOD是解题的关键.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.5【考点】二元一次方程组的应用.【专题】图表型.【分析】通过理解题意可知本题的两个等量关系,西红柿的重量+豆角的重量=40,1.2×西红柿的重量+1.6×豆角的重量=60,根据这两个等量关系可列出方程组.【解答】解:设西红柿的重量是xkg,豆角的重量是ykg,依题意有解得10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些西红柿和豆角能赚33元.【点评】注意要先求出西红柿和豆角的重量,再计算利润.。
第一学期期中测试卷一、选择题(每题3分,共30分) 1.a 的相反数是( )A .|a |B .1aC .-aD .以上都不对2.计算-3+(-1)的结果是( )A .2B .-2C .4D .-43.在1,-2,0,53这四个数中,最大的数是( )A .-2B .0C .53D .14.人类的遗传物质是DNA ,DNA 是一个很长的链,最短的22号染色体也长达30 000000个核苷酸.30 000 000用科学记数法表示为( ) A .3×107B .30×106C .0.3×107D .0.3×1085.计算2a 2+a 2,结果正确的是( )A .2a 4B .2a 2C .3a 4D .3a 26.下列判断中,错误的是( )A .1-a -ab 是二次三项式B .-a 2b 2c 是单项式C .a +b2是多项式D .34πR 2中,系数是347.对于四舍五入得到的近似数5.60×105,下列说法正确的是( )A .精确到百分位B .精确到个位C .精确到万位D .精确到千位8.已知a =2 019x +20,b =2 019x +19,c =2 019x +21,那么式子a +b -2c 的值是( )A .-4B .-3C .-2D .-19.已知a ,b 是有理数,若a 在数轴上的对应点的位置如图所示,且a +b <0,有以下结论:①b <0;②b -a >0;③|-a |>-b ;④ba <-1.则正确的结论是( ) A .①④B .①③C .②③D .②④(第9题)(第10题)10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中的一个正方形剪开得到图③,图③中共有7个正方形;将图③中的一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2 018个图中共有正方形的个数为( ) A .6 046B .6 049C .6 052D .6 055二、填空题(每题3分,共24分)11.-32的绝对值是________,2 018的倒数是________.12.已知多项式x |m |+(m -2)x -10是二次三项式,m 为常数,则m 的值为________. 13.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是______________. 14.若关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.15.某音像社出租光盘的收费方法如下:每张光盘在出租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后的第n 天(n 是大于2的自然数)应收租金____________元,第10天应收租金__________元. 16.若mn =m +3,则2mn +3m -5mn +10=________.17.数轴上与原点的距离小于2的整数点的个数为x ,不大于2的整数点的个数为y ,等于2的整数点的个数为z ,则x +y +z =________.18.有一数值转换器,原理如图,若开始输入的x 的值是5,可发现第一次输出的结果是8,第二次输出的结果是4……请你探索第99次输出的结果是________.(第18题)三、解答题(19题12分,20题6分,22题7分,26题9分,其余每题8分,共66分) 19.计算:(1) 35-3.7-⎝ ⎛⎭⎪⎫-25-1.3;(2)(-3)÷⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-25÷⎝ ⎛⎭⎪⎫-14+34;(3) ⎝ ⎛⎭⎪⎫-34+712-58÷⎝ ⎛⎭⎪⎫-124; (4) ⎣⎢⎡⎦⎥⎤(-1)2 018+⎝ ⎛⎭⎪⎫1-12×13÷(-32+2).20.在如图所示的数轴上表示3.5和它的相反数、-14和它的倒数、绝对值等于1的数、-2和它的立方,并用“<”把它们连接起来.(第20题)21.先化简,再求值:(1)3x 2-⎣⎢⎡⎦⎥⎤5x -⎝ ⎛⎭⎪⎫12x -3+2x 2,其中x =2;(2)(-3xy -7y )+[4x -3(xy +y -2x )],其中xy =-2,x -y =3.22.某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10.(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置的最远距离是多少米?(3)守门员离开初始位置达到10 m以上(包括10 m)的次数是多少?23.有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;(2)|b-1|+|a-1|=________;(3)化简:|a+b|+|a-c|-|b|+|b-c|.(第23题)24.如图,一个长方形运动场被分隔成A,B,A,B,C共5个区,A区是边长为a m 的正方形,C区是边长为c m的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果a=40,c=10,求整个长方形运动场的面积.(第24题)25.如今,网上购物已成为一种新的消费时尚,新星饰品店想购买一种贺年卡在元旦时销售,在互联网上搜索了甲、乙两家网店(如图所示),已知两家网店的这种贺年卡的质量相同,请看图回答下列问题:(第25题)(1)假若新星饰品店想购买x张贺年卡,那么在甲、乙两家网店分别需要花多少钱(用含有x的式子表示)?(提示:如需付运费时,运费只需付一次,即8元)(2)新星饰品店打算购买300张贺年卡,选择哪家网店更省钱?26.有一列数,第一个数为x1=1,第二个数为x2=3,从第三个数开始依次为x3,x4,…,x n,….从第二个数开始,每个数是左右相邻两个数和的一半,如x2=x1+x32,x3=x2+x42.(1)求x3,x4,x5的值,并写出计算过程;(2)根据(1)的结果,推测x9等于多少;(3)探索这一列数的规律,猜想第k(k为正整数)个数x k等于多少.答案一、1.C 2.D 3.C 4.A 5.D 6.D7.D 8.B 9.A 10.C二、11.32;12 018 12.-2 13.-8,8 14.-6 15.(0.6+0.5n );5.616.1 17.10 18.2三、19.解:(1)原式=(35+25)-(3.7+1.3)=1-5=-4;(2)原式=(-3)÷85+34=-158+34=-98;(3)原式=⎝ ⎛⎭⎪⎫-34+712-58×(-24)=⎝ ⎛⎭⎪⎫-34×(-24)+712×(-24)-58×(-24)=18-14+15=19;(4)原式=⎝ ⎛⎭⎪⎫1+16÷(-7)=76×⎝ ⎛⎭⎪⎫-17=-16. 20.解:图略.-8<-4<-3.5<-2<-1<-14<1<3.5.21.解:(1)原式=3x 2-5x +12x -3-2x 2=x 2-92x -3.当x =2时,原式=22-92×2-3=-8.(2)原式=-3xy -7y +(4x -3xy -3y +6x )=-3xy -7y +4x -3xy -3y +6x=-6xy +10x -10y .当xy =-2,x -y =3时,原式=-6xy +10(x -y )= -6×(-2)+10×3=12+30=42.22.解:(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).即守门员没有回到初始位置.(2)守门员离开初始位置的距离分别为5 m ,2 m ,12 m ,4 m ,2 m ,11 m ,1 m.所以守门员离开初始位置的最远距离是12 m.(3)守门员离开初始位置达到10 m 以上(包括10 m)的次数是2次.23.解:(1)<;=;>;<(2)a -b(3)原式=|0|+(a -c )+b -(b -c )=0+a -c +b -b +c =a .24.解:(1)2[(a+c)+(a-c)]=2(a+c+a-c)=4a(m).(2)2[(a+a+c)+(a+a-c)]=2(a+a+c+a+a-c)=8a(m).(3)当a=40,c=10时,长=2a+c=2×40+10=90(m),宽=2a-c=2×40-10=70(m),所以面积=90×70=6 300(m2).25.解:(1)当x≤30时,在甲网店需要花(x+8)元,在乙网店需要花(0.8x+8)元;当x>30时,在甲网店需要花(0.6x+8)元,在乙网店需要花0.8x元.(2)当x=300时,甲网店:0.6×300+8=188(元);乙网店:0.8×300=240(元).因为188<240,所以选择甲网店更省钱.26.解:(1)x3=2x2-x1=2×3-1=5,x4=2x3-x2=2×5-3=7,x5=2x4-x3=2×7-5=9.(2)由(1)可知x9=9+2+2+2+2=17.(3)x k=2k-1.。
2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。
2018-2019学年度上学期期中质量检测试卷七年级数学(本卷共六大题,全卷共23题,满分120分,考试时间为100分钟)一、选择题(本大题共6小题,每小题3分,共18分.每题只有一个正确的选项)1.在下列各数中:1.3、13--、0、 1.23∙∙-、π,负有理数有( )A .1个B .2个C .3个D .4个 2.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示是( )A .50.67510⨯B .367.510⨯C .46.7510⨯D .56.7510⨯ 3.下面几个几何体,主视图是圆的是( )4.已知221x y +=,22x xy -=,则23(1)1x y x +--=( )A .4B .﹣1C .3D .2 5.如图是一个正方体纸盒的外表面展开图,则这个正方 体可能是( )A .B .C .D .6.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a 、b 的值分别为( )A .10、91B .12、91C .10、95D .12、95二、填空题(本大题共6个小题,每小题3分,共18分) 7.﹣5的相反数为 ;8.一件商品定价为a ,成本为b ,现决定打8折出售,则每件利润为 ;9.下列图形中,柱体为 (请填写你认为正确物体的序号);A B .C .D第5题图第9题图第12题图第11题图10.已知多项式(2)8m+-+(m为常数)是二次三项式,x m x则3m=;11.现有甲、乙两支同样的温度计,将它们按如图位置放置,如果向左移动甲温度计,使其度数12与乙温度计的度数﹣6对齐,那么此时乙温度计与甲温度计数﹣4对齐的度数是;12.如图所示的立方体的六个面分别标着连续的整数,则这六个数的和为;三、解答题(本大题共5小题,每小题各6分,共30分)13.(本题共2小题,每小题3分)(1)计算:13.1 1.6( 1.9)( 6.6)+--+-.(2)化简:222--+-532xy x xy x x14. 计算:315119(1)(1)22424-+⋅+--÷15.如果两个关于x 、y 的单项式32a mx y 与3634a nx y --是同类项(其中0xy ≠).(1)求a 的值; (2)如果他们的和为零,求2016(21)m n --的值.16.如图①是一个组合几何体,右边是它的两种视图.(1)在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)17.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,向西为负方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升?四、(本大题共4小题,每小题各8分,共32分)18.汽车制造厂本周计划每日生产100辆北斗星小轿车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数为正数,减少的辆数为负数)根据记录回答:(1)本周生产了多少辆小轿车?(2)本周总生产量与计划量相比是增加了还是减少了?增加或减少了多少辆?(3)生产量最多的一天比生产量最少的一天多生产多少辆?19.完成下列各题.(1)比较大小:﹣0.11 ﹣0.1,32- 54-(用“>、<或=”填空);(2)在图1数轴上表示下列各数,并用“<”连接:2.5, ﹣3, 4, 112-, 0;(3)将(2)中的有理数填入图2中它所属于的集合圈内;(4)如图3,数轴上A 、B 、C 、D 四点对应的有理数分别是整数a 、b 、c 、d 并满足27c a -=,且四个点中有一个是坐标原点.试问:坐标原点为哪个点?并给出你的理由.图1图2 图320.“囧”像一个人脸郁闷的神情.如图边长为a的正方形纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的两个小直角三角形的两直角边长分别为x、y,剪去的小长方形长和宽也分别为x,y.(1)用式子表示“囧”的面积S;(用含a、x、y的式子表示)(2)当a=7,x=π,y=2时,求S.(π取3.14)21.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如下.试问,老师用手捂住的多项式是什么?22222--+=+(2)2()a b ab ab a b ab五、(本大题共1小题,每小题10分,共10分)22.阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为=-.AB a b理解:(1)数轴上表示2和﹣4的两点之间的距离是;(2)数轴上表示x和﹣6的两点A和B之间的距离是;应用:(1)当代数式12-++取最小值时,相应的x的取x x值范围,最小值为;(2)当x≤﹣2时,代数式12--+的值 3(填x x写“≥、≤或=”).六、(本大题共1小题,每小题12分,共12分)23.阅读理解题:如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.(1)可知x=,●=,○= .(2)试判断第2016个格子中的数是多少?并给出相应的理由.(3)判断:前n个格子中所填整数之和是否可能为2016?若能,求出n的值,若不能,请说明理由;(4)若在前三个格子中任取两个数并用大数减去小数得到差值,而后将所有的这样的差值累加起来称为累差值.例如前三项的累差值为:●●.则前三项的累差值为;-+-+-11若取前10项,那么前10项的累差值为多少?(请给出必要的计算过程)2016-2017学年度上学期期中质量检测试卷七年级数学答案一、选择题(本大题共6小题,每小题3分,共18分)1.B2.C3.B4. D5. C6.A二、填空题(本大题共6个小题,每小题3分,共18分) 7. 5 8. 0.8a -b 9. ①②③⑥10. ﹣8 11. 10 12. 27或33或39三、解答题(本大题共5小题,每小题各6分,共24分)13.解:(1)原式10=.(2)原式4xy =.14.解:原式0=.15.解:(1)依题意,36a a =-,解得:3a =;(2)∵33332(4)0mx y nx y +-=,故20m n -=,∴20162016(21)(1)1m n --=-=.16.解:(1)主,俯;(2)表面积2(858252)46π=⨯+⨯+⨯+⨯⨯2(858252)4 3.146=⨯+⨯+⨯+⨯⨯2207.36(cm )=.17.解:(1)如图所示:;(2)小明家与小刚家相距:4(3)7--=(千米); (3)这辆货车此次送货共耗油:(4 1.58.53) 1.525.5+++⨯=(升). 答:小明家与小刚家相距7千米,这辆货车此次送货共耗油25.5升.四、(本大题共4小题,每小题各8分,共32分)18.解:(1)1007(573410925)700(21)679⨯+-+-++--=+-=(辆);(2)减少了,减少的辆数为:21(辆);(3)生产量最多的一天比生产量最少的一天多生产多(10)(25)35+--=辆.答:本周生产了679辆小轿车,总生产量与计划量相比减少了21辆,生产量最多的一天比生产量最少的一天多生产多35辆.19.解:(1) < , < ;(2),1310 2.542-<-<<<;(3)(4)假如A 点是原点时,则a=0,c=4,不符合c -2a=7,故A 点不可能是原点; 假如B 点是原点时,则a=﹣3,c=1,符合c -2a=7,故B 点是原点; 假如C 点是原点时,则a=﹣4,c=0,不符合c -2a=7,故C 点不可能是原点;假如D 点是原点时,则a=﹣7,c=﹣3,不符合c -2a=7,故D 点不可能是原点.故B 点是原点.20.解:(1)221222S a xy xy a xy =-⨯-=-; (2)当a=7,x=π,y=2时,22272 3.14236.44S a xy =-=-⨯⨯=.21.解:原式22222222()(2)3a b ab a b ab ab a b ab =++--=-,∴捂住的多项式为223a b ab -.五、(本大题共1小题,每小题10分,共10分)22.解:理解:(1) 6 ;(2)6x +;应用:(1)21x -≤≤, 3 ;(2) = .六、(本大题共1小题,每小题12分,共12分)23.解:(1) 1 , 7 ,﹣3 ;(2)由于表格中的数是1,7,﹣3,1,7,﹣3,…循环,而2016能被3所整除,故第2016个数为﹣3;(3)∵1+7+(﹣3)=5,而2016=5×403+1,故n=403×3+1=1210;(4) 20 ;由于前10个数中1出现了4次,而7与﹣3个出现了3次,∴前19项的累差值=-⨯⨯+--⨯⨯+--⨯⨯=.17431(3)437(3)33210。
七年级数学·第 1 页 (共 5 页)黄山市2018—2019学年度第一学期期末质量检测七年级数学试题(考试时间:100分钟 满分:100分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给的四个选项中,只有一项正确. 请在答题卷的相应区域答题.............) 1.中国人很早开始就使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么-80元表示() A.支出20元B .收入20元C .收入80元D .支出80元2.-3的相反数是( ) A .3B . -3C .13D .13-3.计算3(2)-,结果是( ) A .8B .-8C .-6D .64.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划,“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为( ) A .84410⨯ B .84.410⨯ C .94.410⨯ D .104.410⨯ 5.单项式22a b π的系数和次数分别是( )A .2,4B .2π,3C .2π,2D .2,36.下面四个立体图形,从正面、左面、上面观察,看到的都是长方形的是( )A .B .C .D .7.下列各式中,去括号正确的是( ) A .()a b a b -+=-+ B .2()2a b a b -=- C .(2)2x y z x y z -+=--D .()x y z x y z --+=--8.下列等式的变形,不正确的是( ) A . 若x y =,则x a y a +=+B .若x y =,则ax ay =七年级数学·第 2 页 (共 5 页)第16题图C . 若x y =,则x a y a -=-D .若x y =,则a a x y= 9.如图所示的四条射线中,表示南偏东65︒的是( )A .射线OAB .射线OBC .射线OCD .射线OD10.某车间有27名工人,生产某种由一个螺栓套两个螺母的 产品,每人每天生产螺母22个或螺栓16个.若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺 栓和螺母配套.则下面所列方程中正确的是( ) A .21622(27)x x ⨯=- B .1622(27)x x =-C .2216(27)x x =-D .22216(27)x x ⨯=-二、填空题(本大题共10小题,每小题2分,共20分. 请在答题卷的相应区域答题.............) 11.把1.5972精确到百分位得到的近似数是______.12.如果0,0x y <>,且2,3x y ==,那么x y += . 13.若523m x y +与7n x y 的和是单项式,则m n = . 14.若2x =-是方程210x k +-=的解,则k = .15.已知多项式128m x x -++是关于x 的二次三项式,则3m = . 16.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的 汉字是 .17.已知7236α'∠=︒,则α∠的余角是 .18.在有理数集合里定义运算“*”,其规则为a b a b *=-,则(3)21x **=的解为x = .19.下列式子按一定规律排列:357,,,2468a a a a ,…,则第2019个式子是 .20.下列说法中:①射线AB 与射线BA 表示同一条射线;②若12180∠+∠=︒,13180∠+∠=︒,则23∠=∠;③一条射线把一个角分成两个角,这条射线叫做这个角的平分线; ④连结两点的线段叫做这两点之间的距离; ⑤405040.5'︒=︒;⑥互余且相等的两个角都是45︒.其中正确的选项序号是 (把你认为正确的选项序号都填上). 三、计算题(本大题共2小题,第21题8分,第22题5分,共13分. 请在答题卷的......相应..第9题图七年级数学·第 3 页 (共 5 页)区域答题.....) 21.计算:(1)(3)(4)(11)(9)-+--+-- (2)22323(2)-⨯-⨯-22.解方程:2151136x x ---=四、解答题(本大题共4小题,第23、24题各5分,第25、26题各6分,共22分. 请在..答题卷的相应区域答题...........) 23.先化简,再求值:211(428)(1)42a a a ----,其中1a =.24.已知有理数a b c 、、 在数轴上的对应点如图所示. (1)用“<”号把a b c 、、连接起来; (2)化简:a b b c c a -+---.25.根据下列语句,画出图形:如图,已知平面内有四个点A 、B 、C 、D ,其中任意三点都不在同一直线上. (1)画直线BC ;第24题图x七年级数学·第 4 页 (共 5 页)(2)连接AC 、BD ,相交于点E ; (3)画射线BA 、CD ,交于点F .26.如图,已知90AOB ∠=︒,60EOF ∠=︒,OE 平分AOB ∠,OF 平分BOC ∠,求COB ∠和AOC ∠的度数.五、应用题(本大题共2小题,第27题7分,第28题8分,共15分. 请在答题卷的相应........区域答题.....) 27.初一年级举行乒乓球比赛,需购买5副乒乓球拍和若干盒乒乓球. 现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球拍和乒乓球,乒乓球拍每副定价48元,乒乓球每盒定价12元. 经洽谈,甲店每买一副乒乓球拍就赠送一盒乒乓球;乙店则全部按定价9折优惠.设该校需购乒乓球x 盒(不少于5盒).(1)通过计算和化简后,用含x 的式子分别表示甲、乙两店购买所需的费用; (2)当需购买40盒乒乓球时,请你去办这件事,你打算去哪家商店购买划算?为什么? (3)试探究:当购买乒乓球的盒数x 分别取什么值时,去哪家商店购买划算?28.如图,B 是线段AD 上一动点,沿A D A →→以2/cm s 的速度往返运动1次,C 是线段BD 的中点,10AD cm =,设点B 运动时间为t 秒(010t ≤≤). (1)当2t =时,①AB =_____cm ;②求线段CD 的长度; (2)用含t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.第26题图第25题图第28题图七年级数学·第 5 页(共 5 页)。
2018-2019学年安徽省芜湖市部分学校联考七年级(上)期中数学试卷一、选择题(本大题共10小题,共40.0分) 1. 下列各数中,比-3小的数是( )A. −4B. −2C. −1D. 02. 下列关于单项式-3xy 25的说法中,正确的是( )A. 系数是−35,次数是2 B. 系数是35,次数是2 C. 系数是−35,次数是3D. 系数是−3,次数是33. 下列运算正确的是( )A. 2a 2−3a 2=−a 2B. 4m −m =3C. a 2b −ab 2=0D. x −(y −x)=−y4. 下列说法正确的是( )A. 两个负数的差,一定是一个负数B. 0减去一个数,结果仍是这个数C. 两个正数的差,一定是一个正数D. a +2的值一定大于a 的值5. 如果-2a m b 2与12a 5b n +1的和仍然是单项式,那么m +n 的值为( )A. 5B. 6C. 7D. 86. 多项式36x 2-3x +5与3x 3+12mx 2-5x +7相加后,不含二次项,则常数m 的值是( )A. 2B. −3C. −2D. −8 7. 下列说法错误的是( )A. 近似数16.8与16.80表示的意义不同B. 近似数0.2900是精确到0.0001C. 近似数6.850×104精确到十位D. 49564精确到万位是5.0×104 8. 下列各式计算正确的是( )A. −7−2×5=−45B. 3÷54×45=3C. −22−(−3)3=31D. 2×(−5)−5÷(−12)=09. 某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( ) A. 200−60x B. 140−15x C. 200−15x D. 140−60x10. 观察下面一组数:-1,2,-3,4,-5,6,-7,…,将这组数排成如图的形式,按照如图规律排下去,则第10行中从左边数第9个数是( )A. −90B. 90C. −91D. 91二、填空题(本大题共4小题,共20.0分)11. 据中国旅游研究院数据,仅2018年10月1日当天全国就接待了国内游客1.22亿人次.用科学记数法表示1.22亿为______. 12. 若|a |=-a ,则a 的取值范围是______. 13. 若|a +3|+(b -2)2=0,则-a b =______.14. a 是不为1的有理数,我们把11−a 称为a 的差倒数.如:2的差倒数是11−2=-1,-1的差倒数是11−(−1)=12.已知a 1=-13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,则a 2018=______. 三、计算题(本大题共3小题,共28.0分) 15. 计算:(1)-3.25-(-19)+(-6.75)+179; (2)-12018-6÷(-2)×12.16. 已知一个三角形的第一条边长为2a +5b ,第二条边比第一条边长3a -2b ,第三条边比第二条边的一半短3a .(1)则第二边的边长为______,第三边的边长为______;(2)用含a ,b 的式子表示这个三角形的周长,并将整式化简.17. 请观察下列定义新运算的各式:1⊙3=1×4+3=7; 3⊙(-1)=3×4-1=11; 5⊙4=5×4+4=24; 4⊙(-3)=4×4-3=13.(1)请你归纳:a ⊙b =______;(2)若a ≠b ,那么a ⊙b ______b ⊙a (填“=”或“≠”);(3)先化简,再求值:(a -b )⊙(2a +b ),其中a 是最大的负整数,b 是绝对值最小的整数.四、解答题(本大题共6小题,共62.0分)18.画出数轴,用数轴上的点表示下列各数,并用“<”把各数从小到大连起来.3,-12,0,-|-3|,31.219.计算:(1)2a-5b+3a+b(2)3(2a2b-ab2)-4(ab2-3a2b)20.一辆交通巡逻车在南北公路上巡视,某天早上从A地出发,中午到达B地,行驶记录如下(规定向北为正方向,单位:千米):+15,-8,+6,+12,-8,+5,-10.回答下列问题:(1)B地在A地的什么方向?与A地相距多远?(2)巡逻车在巡逻中,离开A地最远多少千米?(3)巡逻车行驶每千米耗油a升,这半天共耗油多少升?21.已知:A=2a2+3ab-2a-1,B=-a2+ab-1(1)求4A-(3A-2B)的值;(2)若A+2B的值与a的取值无关,求b的值.22.某学生用品销售商店中,书包每只定价20元,水性笔每支定价5元.现推出两种优惠方法:①按定价购1只书包,赠送1支水性笔;②购书包、水性笔一律按9折优惠.小丽和同学需买4只书包,水性笔x支(不少于4支).(1)若小丽和同学按方案①购买,需付款______元:(用含x的代数式表示并化简)若小丽和同学按方案②购买,需付款______元.(用含x的代数式表示并化简)(2)若x=10,则小丽和同学按方案①购买,需付款______元;若小丽和同学按方案②购买,需付款______元.(3)现小丽和同学需买这种书包4只和水性笔12支,请你设计一种最合算的购买方案.23.如图所示,已知一个面积为S的等边三角形,现将其各边n等分(n为大于2的整数),并以相邻等分点为顶点向外作小等边三角形.(1)当n=5时,共向外作出了______个小等边三角形,每个小等边三角形的面积为______,这些小等边三角形的面积和为______;(用含S的式子表示)(2)当n=k时,共向外作出了______个小等边三角形,每个小等边三角形的面积为______,这些小等边三角形的面积和为______;(用含k和S的式子表示)(3)若大等边三角形的面积为100,则当n=10时,共向外作出了多少个小等边三角形?这些小等边三角形的面积和为多少?答案和解析1.【答案】A【解析】解:|-4|>|-3|,-4<-3,故选:A.根据负数比较大小,绝对值大的数反而小,可得答案.本题考查了有理数比较大小,两个负数比较大小,绝对值大的反而小是解题关键.2.【答案】C【解析】解:该单项式的系数为:-,次数为:3,故选:C.根据单项式的概念即可求出答案.本题考查单项式的概念,属于基础题型.3.【答案】A【解析】解:(B)原式=3m,故B错误;(C)原式=a2b-ab2,故C错误;(D)原式=x-y+x=2x-y,故D错误;故选:A.根据整式的加减运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.【答案】D【解析】解:A、两个负数的差,不一定是负数,不符合题意;B、0减去一个数,结果是这个数的相反数,不符合题意;C、两个正数的差,不一定是正数,不符合题意;D、a+2的值一定大于a的值,符合题意,故选:D.利用有理数的减法法则判断即可.此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.5.【答案】B【解析】解:由题意可知:-2a m b2和a5b n+1是同类项,∴m=5,2=n+1,∴m=5,n=1,∴m+n=6,故选:B.根据同类项的定义即可求出答案.本题考查同类项的定义,解题的关键是熟练运用同类项的定义,本题属于基础题型.6.【答案】B【解析】解:36x2-3x+5+3x3+12mx2-5x+7=3x3+(36+12m)x2-8x+12,∵多项式36x2-3x+5与3x3+12mx2-5x+7相加后,不含二次项,∴36+12m=0,解得,m=-3,故选:B.根据多项式36x2-3x+5与3x3+12mx2-5x+7相加后,不含二次项可得,两个多项式相加之后的二次项系数为零,从而可以求得m的值.本题考查整式的加减,解答本题的关键是利用整式的加减化简本题,利用二次项系数为零解答.7.【答案】D【解析】解:A、近似数16.8精确到0.1,16.80精确到0.01,所以A选项的说法正确;B、近似数0.2900是精确到0.0001的近似数,所以B选项的说法正确;C、近似数6.850×104精确到十位,所以C选项的说法正确;D、49564精确到万位是5×104,所以D选项的说法错误.故选:D.根据近似数的精确度对各选项进行判断.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.8.【答案】D【解析】解:∵-7-2×5=-7-10=-17,故选项A错误,∵3÷×=3×=,故选项B错误,∵-22-(-3)3=-4-(-27)=-4+27=23,故选项C错误,∵2×(-5)-5÷(-)=(-10)-5×(-2)=(-10)+10=0,故选项D正确,故选:D.根据各个选项中的式子,可以计算出正确的结果,本题得以解决.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.9.【答案】C【解析】解:∵学校租用45座的客车x辆,则余下20人无座位,∴师生的总人数为45x+20,又∵租用60座的客车则可少租用2辆,∴乘坐最后一辆60座客车的人数为:45x+20-60(x-3)=45x+20-60x+180=200-15x.故选:C.由于学校租用45座的客车x辆,则余下20人无座位,由此可以用x表示出师生的总人数,又租用60座的客车则可少租用2辆,且最后一辆还没坐满,利用这个条件就可以求出乘坐最后一辆60座客车的人数.此题主要考查了整式的计算,解题时首先根据题意列出代数式,然后根据题意进行整式的加减即可.10.【答案】B【解析】【分析】本题考查了规律型:数字的变化.解题关键是确定第9行的最后一个数字,同时注意符号的变化.奇数为负,偶数为正,每行的最后一个数的绝对值是这个行的行数n的平方,所以第9行最后一个数字的绝对值是81,第10行从左边第9个数是81+9=90.【解答】解:由题意可得:9×9=81,81+9=90,故第10行从左边第9个数是90.故选B.11.【答案】1.22×108【解析】解:用科学记数法表示1.22亿为1.22×108.故答案为:1.22×108.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】a≤0【解析】解:若|a|=-a,则a的取值范围是a≤0.故答案为:a≤0.根据一个负数的绝对值是它的相反数;0的绝对值是0,可得结论.本题主要考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单,注意不要丢了a=0这种可能.13.【答案】-9【解析】解:∵|a+3|+(b-2)2=0,∴a=-3,b=2则-a b=-(-3)2=-9.故答案为:-9.直接利用绝对值以及偶次方的性质化简进而得出答案.此题主要考查了绝对值以及偶次方的性质,正确得出a,b的值是解题关键.14.【答案】34【解析】解:根据题意得:a1=-,a2=,a3=4;a4=-;则三个数是一个周期,则2018÷3=672…2,故a2018=a2=.故答案为:先依次计算出a2、a3、a4、a5,即可发现每3个数为一个循环,然后用2018除以3,即可得出答案.此题主要考查了数字的变化类,考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a 2、a 3、a 4,找出数字变化的规律. 15.【答案】解:(1)-3.25-(-19)+(-6.75)+179;=-3.25+19+(-6.75)+179 =-10+2 =-8;(2)-12018-6÷(-2)×12 =-1-(-3)×12 =-1+32 =12. 【解析】(1)根据有理数的加减法可以解答本题; (2)根据有理数的乘除法和减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.【答案】5a +3b 1.5b -1.5a【解析】解:(1)第二边的边长为2a+5b+3a-2b=5a+3b ,第三边的边长为(5a+3b )-3a=2.5a+1.5b-3a=1.5b-1.5a ; 故答案为:5a+3b ;1.5b-1.5a ;(2)周长为(2a+5b )+(5a+3b )+(1.5b-0.5a ) =2a+5b+5a+3b+1.5b-0.5a =6.5a+9.5b .(1)根据题意表示出第二边与第三边即可; (2)将三边相加,再化简即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键. 17.【答案】4a +b ≠【解析】解:(1)由题意可得,a⊙b=4a+b,故答案为:4a+b;(2)∵a⊙b=4a+b,b⊙a=4b+a,a≠b,∴a⊙b≠b⊙a,故答案为:≠;(3)(a-b)⊙(2a+b)=4(a-b)+(2a+b)=4a-4b+2a+b=6a-3b,∵a是最大的负整数,b是绝对值最小的整数,∴a=-1,b=0,∴原式=6×(-1)-3×0=-6.(1)根据题目中的例子,可以得到a⊙b的结果;(2)根据(1)中的结果和题意,可以解答本题;(3)根据(1)中的结果可以化简题目中的式子,然后根据a是最大的负整数,b 是绝对值最小的整数,可以得到a、b的值,从而可以解答本题本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.【答案】解:如图所示,故-|-3|<-12<0<3<31.2【解析】在数轴上表示出各数,从左到右用“<”连接起来即可.本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.19.【答案】解:(1)原式=5a-4b;(2)原式=6a2b-3ab2-4ab2+12a2b=18a2b-7ab2.【解析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)将公路看成数轴,A地作为原点,规定向北为正.根据题意,得:+15+(-8)+6+12+(-8)+5+(-10)=12(千米)因此,B地在A地北面,与A地相距12千米;(2)第一次是15千米,第二次与A地相距15-8=7千米,第三次与A地相距7+6=13千米,第四次与A地相距13+12=25千米,第五次与A地相距25-8=17千米,第六次与A 地相距17+5=23千米,第七次与A地相距23-10=13千米,25>23>17>>15>13>7离开A地最远25千米;(3)|+15|+|-8|+|+6|+|+12|+|-8|+|+5|+|-10|=64(千米)因为每千米耗油a升所以,共耗油64 a升.【解析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次与A地的距离,根据有理数的大小比较,可得答案;(3)根据单位耗油量乘以行驶路程等于总耗油量,可得答案.本题考查了正数和负数,利用有理数的加法是解题关键.21.【答案】解:(1)4A-(3A-2B)=A+2B∵A=2a2+3ab-2a-1,B=-a2+ab-1,∴原式=A+2B=2a2+3ab-2a-1+2(-a2+ab-1)=5ab-2a-3;(2)若A+2B的值与a的取值无关,则5ab-2a-3与a的取值无关,即:(5b-2)a-3与a的取值无关,∴5b-2=0,解得:b=25.即b的值为25【解析】(1)先化简,然后把A和B代入求解;(2)根据题意可得5ab-2a-3与a的取值无关,即化简之后a的系数为0,据此求b值即可.本题考查了整式的加减,解答本题的关键是掌握去括号法则以及合并同类项法则.22.【答案】5x +60 4.5x +72 110 117【解析】解:(1)按方案①购买花费:5x+60(元);按方案②购买花费:4.5x+72(元);故答案为:5x+60;4.5x+72;(2)当x=10时,5x+60=50+60=110,4.5x+72=45+72=117,故答案为:110;117;(3)运用方案①购买4个书包,得到免费4支水性笔,再运用方案②购买8支水性笔,这样共用去80+8×5×0.9=116(元).(1)根据两种优惠方案列式子即可;(2)将x=10代入,分别计算即可;(3)哪种方案花费少,那么这种方案就合理.本题考查了列代数式以及代数式求值的知识,解答本题的关键是仔细审题,得出两种方案下需要的花费.23.【答案】9 125S 925S 3(k -2) 1k 2S3(k−2)k 2S【解析】 解:(1)当n=5时,共有3×(5-2)=9个小等边三角形,∴每个小三角形与大三角形边长的比=,∵大三角形的面积是S ,∴每个小三角形的面积为S ,这些小等边三角形的面积和为S ;(2)由(1)可知,当n=k 时,共有3×(k-2)=3(k-2),每个小等边三角形的面积为S,每个小三角形的面积和为S.故答案为:(1)9,S,S;(2)3(k-2),S,S;(3)当S=100,n=10时,3(n-2)=3×(10-2)=24(个),S=×100=24.即共向外作出了24个小等边三角形,这些小等边三角形的面积和为24.结合图形正确数出前面几个具体值,从而发现等边三角形的个数和等分点的个数之间的关系:是n等分点的时候,每条边可以作(n-2)个三角形,共有3(n-2)个三角形;再根据相似三角形面积的比是边长的比的平方进行计算.此题考查了规律型:图形的变化类,此题要特别注意画等边三角形的时候,必须以相邻等分点为顶点向外作小等边三角形,所以有n等分点的时候,一边可以作(n-2)个等边三角形;计算面积的时候,主要是根据面积比是边长的平方比进行计算.。
2018--2019学年第二学期期末考试初一数学试卷考 生 须 知1.本试卷共6页,共三道大题,27道小题。
满分100分。
考试时间90分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、做图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.001 22,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.001 22用科学记数法表示应为 A .1.22×10-5B .122×10-3C .1.22×10-3D .1.22×10-2 2.32a a ÷的计算结果是 A .9aB .6aC .5aD .a3.不等式01<-x 的解集在数轴上表示正确的是A B C D4.如果⎩⎨⎧-==21y x ,是关于x 和y 的二元一次方程1ax y +=的解,那么a 的值是A .3B .1C .-1D .-35.如图,2×3的网格是由边长为a 的小正方形组成,那么图中阴影部分的面积是 A .2a B .232a C .22a D .23a 6.如图,点O 为直线AB 上一点,OC ⊥OD . 如果∠1=35°,那么∠2的度数是 A .35° B .45° C .55°D .65°7知道香草口味冰淇淋一天售出200的份数是 A .80 B .40 C .20D .108.如果2(1)2x -=,那么代数式722+-x x 的值是A .8B .9-3 -2 -1 1 23 0 -3 -2 -1 1 2 30 -3 -2 -1 1 23 0 -3 -2 -1 1 23 0 香草味50%21D CBAOC .10D .119.一名射箭运动员统计了45次射箭的成绩,并绘制了如图所示的折线统计图. 则在射箭成绩的这组数据中,众数和中位数分别是 A .18,18B .8,8C .8,9D .18,810.如图,点A ,B 为定点,直线l ∥AB ,P 是直线l 上一动点. 对于下列各值: ①线段AB 的长 ②△P AB 的周长 ③△P AB 的面积④∠APB 的度数其中不会..随点P 的移动而变化的是 A .① ③ B .① ④ C .② ③ D .② ④二、填空题(本题共18分,每小题3分) 11.因式分解:328m m -= . 12.如图,一把长方形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上.如果∠ADE =126°, 那么∠DBC = °. 13.关于x 的不等式b ax >的解集是abx <. 写出一组满足条件的b a ,的值: =a ,=b .14.右图中的四边形均为长方形. 根据图形的面积关系,写出一个正确的等式:_____________________.15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四. 问人数、鸡价各几何?” 译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为_____________.16.同学们准备借助一副三角板画平行线. 先画一条直线MN ,再按如图所示的样子放置三角板. 小颖认为AC ∥DF ;小静认为BC ∥EF .ABCM ABlP你认为 的判断是正确的,依据是 .三、解答题(本题共52分,第17-21小题,每小题4分,第22-26小题,每小题5分,第27小题7分)17.计算:1072012)3()1(-+π---.18.计算:)312(622ab b a ab -.19.解不等式组:⎪⎩⎪⎨⎧-≤--<-,,2106)1(8175x x x x 并写出它的所有正整数解.....20.解方程组:2312 4.x y x y +=⎧⎨-=⎩,21.因式分解:223318273b a ab b a +--.22.已知41-=m ,求代数式)1()1(12)12)(32(2-+++++m m m m m )(-的值.23.已知:如图,在∆ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G . (1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.24.在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次6 5 700第二次3 7 710第三次7 8 693(1)王老师是第次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车”)的现状,北京市统计局采用拦截式问卷调查的方式对全市16个区,16-65周岁的1000名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用1次,32.5%的人2-3天使用1次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8%、93.1%和92.3%.使用过共享单车的被访者中,满意度(包括满意、比较满意和基本满意)达到97.4%,其中“满意”和“比较满意”的比例分别占41.1%和40.1%,“基本满意”占16.2%.从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9%;对“付费/押金”和“找车/开锁/还车流程”的满意度分别为96.2%和91.9%;对“管理维护”的满意度较低,为72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)现在北京市16-65周岁的常住人口约为1700万,请你估计每天共享单车骑行人数至少约为万;(2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来;(3)请你写出现在北京市共享单车使用情况的特点(至少一条).26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论. 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图, ABC.求证:∠A+∠B+∠C =180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB =180°(平角定义),∴∠A+∠B+∠ACB =180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.27.对x ,y 定义一种新运算T ,规定:)2)(()(y x ny mx y x T ++=,(其中m ,n 均为非零常数).例如:n m T 33)11(+=,. (1)已知8)20(0)11(==-,,,T T .① 求m ,n 的值;② 若关于p 的不等式组 ⎩⎨⎧≤->-a p p T p p T )234(4)22(,,,恰好有3个整数解,求a 的取值范围;(2)当22y x ≠时,)()(x y T y x T ,,=对任意有理数x ,y 都成立,请直接写出m ,n 满足的关系式.2018-2019学年度第二学期期末练习初一数学评分标准及参考答案二、填空题(本题共18分,每小题3分)17 18 19.解:20.分分21 -分1分23.(1)如图. ……1分(2)判断:∠BEF=∠ADG.……2分证明:∵AD⊥BC,EF⊥BC,∴∠ADF =∠EFB =90°.∴AD ∥EF (同位角相等,两直线平行).∴∠BEF =∠BAD (两直线平行,同位角相等). ……3分 ∵DG ∥AB ,∴∠BAD =∠ADG (两直线平行,内错角相等). ……4分 ∴∠BEF =∠ADG. ……5分24.解:(1)三; ……1分(2)设足球的标价为x 元,篮球的标价为y 元.根据题意,得65700,37710.x y x y +=⎧⎨+=⎩解得:50,80.x y =⎧⎨=⎩ 答:足球的标价为50元,篮球的标价为80元; ……4分 (3)最多可以买38个篮球. ……5分25.解:(1)略. ……1分(2) 使用共享单车分项满意度统计表……4分(3)略. ……5分26. 已知:如图,∆ABC .求证:∠A +∠B +∠C =180°.证明:过点A 作MN ∥BC. ……1分∴∠MAB =∠B ,∠NAC =∠C (两直线平行,内错角相等).…3分 ∵∠MAB +∠BAC +∠NAC =180°(平角定义),∴∠B +∠BAC +∠C =180°. ……5分ABCMN27.解:(1)①由题意,得()0,88.m n n --=⎧⎨=⎩1,1.m n =⎧∴⎨=⎩ ……2分②由题意,得(22)(242)4,(432)(464).p p p p p p p p a +-+->⎧⎨+-+-≤⎩①②解不等式①,得1p >-. ……3分 解不等式②,得1812a p -≤.181.12a p -∴-<≤……4分∵恰好有3个整数解,182 3.12a -∴≤<4254.a ∴≤< ……6分(2)2m n =. ……7分。
2018-2019学年七年级(上)期末数学试卷一、选择题(每题3分,共30分)1.﹣2019的相反数是()A.2019 B.﹣2019 C.D.﹣2.截止2018年11月26日,合肥新桥国际机场年旅客吞吐量达1000万,正式跨入千万级机场行列.“1000万”用科学记数法表示正确的是()A.1×103B.1×107C.l×108D.1×10113.下列代数式b,﹣2ab,,x+y,x2+y2,﹣3,中,单项式共有()A.6个B.5 个C.4 个D.3个4.下列说法正确的是()A.两点之间直线最短B.线段MN就是M、N两点间的距离C.射线AB和射线BA是同一条射线D.将一根木条固定在墙上需要两枚钉子,其原理是两点确定一条直线5.若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣46.如图,一艘轮船行驶在点O处同时测得海岛A、B的方向北分别是北偏东75°和西北方向,则∠AOB的度数是()A.l50°B.135°C.120°D.100°7.二次三项式3x2﹣4x+6的值为9,则的值为()A.18 B.12 C.9 D.78.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元9.解方程﹣=0.2时,下列变形正确的是()A.﹣=200 B.﹣=20C.﹣=2 D.﹣=0.210.如图,已知正方形的边长为4,甲,乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2019次相遇在边()A.AB上B.BC上C.CD上D.DA上二、填空题(每题4分,计20分)11.方程2x﹣1=3的解是.12.多项式﹣3x2y﹣x3+xy3的次数是次.13.如果两个角互补,并且较大角比较小角大40°20’,则较大角度数是.14.我国古典数学文献《增删算法统宗•六均输》中有这样一道题:甲、乙两人一同放牧,两人暗地里在数羊的数量如果乙给甲9只羊,则甲的羊数量为乙的两倍;如果甲给乙9只羊,则两人的羊数量相同.则甲的羊数量为只.15.已知∠AOB=90°,射线OC在∠AOB内部,且∠AOC=20°,∠COD=50°,射线OE、OF 分别平分∠BOC、∠COD,则∠EOF的度数是.16.王师傅将一根长133毫米的铜管锯成长为8毫米和长为13毫米两种规格的小铜钢管若干根,恰好用完.如果每个锯口都要损耗1毫米铜管.那么他共将铜管锯成了段.三、解答题(计50分)17.计算:(﹣1)5+2×(﹣4)﹣(﹣2)2÷4.18.解方程组.19.求多项式3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中|x﹣1|+(y+2)2=0.20.为了解某校七年级学生每周课外阅读情况,随机抽查了部分七年级学生第一学期每周课外阅读的时间,并用得到的数据绘制了两幅统计图(不完整)请根据图中提供的信息,回答下列问题:(1)本次共抽查了人,请补全条形统计图.(2)a=,并写出每周阅读时间8小时的扇形所对圆心角的度数为.(3)如果该校共有七年级学生800人,请你估计“每周课外阅读时间不少于7小时”的学生人数大约有多少人?21.小明早上从家去学校,如果每分钟走50米,将要迟到2分钟,如果每分钟走70米,将早到2分钟,求小明从家到学校的距离.三、附加题(5分,计入总分,满分不超过100分):22.已知线段MN=2,点Q是线段MN的中点,先按要求画图形,再解决问题.(1)反向延长线段MN至点A,使AM=3MN;延长线段MN至点B,使BN=BM.(2)求线段BQ的长度.(3)若点P是线段AM的中点,求线段PQ的长度.参考答案与试题解析一.选择题(共10小题)1.﹣2019的相反数是()A.2019 B.﹣2019 C.D.﹣【分析】根据相反数的意义,直接可得结论.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:A.2.截止2018年11月26日,合肥新桥国际机场年旅客吞吐量达1000万,正式跨入千万级机场行列.“1000万”用科学记数法表示正确的是()A.1×103B.1×107C.l×108D.1×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1000万=1×107,故选:B.3.下列代数式b,﹣2ab,,x+y,x2+y2,﹣3,中,单项式共有()A.6个B.5 个C.4 个D.3个【分析】直接利用单项式的定义判断得出答案.【解答】解:代数式b,﹣2ab,,x+y,x2+y2,﹣3,中,单项式有:b,﹣2ab,﹣3,共4个.故选:C.4.下列说法正确的是()A.两点之间直线最短B.线段MN就是M、N两点间的距离C.射线AB和射线BA是同一条射线D.将一根木条固定在墙上需要两枚钉子,其原理是两点确定一条直线【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,两点确定一条直线对各小题分析判断即可得解.【解答】解:A、两点之间线段最短,故选项A错误;B、线段MN的长度就是M、N两点间的距离,故选项B错误;C、射线AB和射线BA是两条不同的射线,故选项C错误;D、将一根木条固定在墙上需要两枚钉子,其原理是两点确定一条直线.正确.故选:D.5.若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣4【分析】将x与y的两对值代入方程计算即可求出m与n的值.【解答】解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A.6.如图,一艘轮船行驶在点O处同时测得海岛A、B的方向北分别是北偏东75°和西北方向,则∠AOB的度数是()A.l50°B.135°C.120°D.100°【分析】根据A在O北偏东75°,可得A在O东偏北的度数,根据角的和差,可得答案.【解答】解;A在O北偏东75°,A在O东偏北15°,∠AOB=75°+45°=120°.故选:C.7.二次三项式3x2﹣4x+6的值为9,则的值为()A.18 B.12 C.9 D.7【分析】由已知得出等式3x2﹣4x+6=9,再将等式变形,整体代入即可.【解答】解:依题意,得3x2﹣4x+6=9,整理,得x2﹣x=1,则=1+6=7,故选:D.8.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.9.解方程﹣=0.2时,下列变形正确的是()A.﹣=200 B.﹣=20C.﹣=2 D.﹣=0.2【分析】根据分式的性质,将分式的分母、分子化为整数即可.【解答】解:分式的分子、分母化为整数,得﹣=0.2,故选:D.10.如图,已知正方形的边长为4,甲,乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2019次相遇在边()A.AB上B.BC上C.CD上D.DA上【分析】因为乙的速度是甲的速度的4倍,所以第1次相遇,甲走了正方形周长××;从第2次相遇起,每次甲走了正方形周长×,从第2次相遇起,5次一个循环,从而不难求得它们第2019次相遇位置.【解答】解:根据题意分析可得:乙的速度是甲的速度的4倍,且AD+DC=正方形周长的一半,故第1次相遇,甲走了正方形周长的××;从第2次相遇起,每次甲走了正方形周长×,从第2次相遇起,5次一个循环.因此可得:从第2次相遇起,每次相遇的位置依次是:DC,点C,CB,BA,AD;依次循环.故它们第2019次相遇位置与第4次相同,在边CB上.故选:B.二.填空题(共6小题)11.方程2x﹣1=3的解是x=2 .【分析】根据解方程的步骤:移项,移项要变号,合并同类项,把x的系数化为1,进行计算即可.【解答】解:2x﹣1=3,移项得:2x=3+1,合并同类项得:2x=4,把x的系数化为1得:x=2.故答案为:x=2.12.多项式﹣3x2y﹣x3+xy3的次数是 4 次.【分析】根据多项式的次数解答即可.【解答】解:多项式﹣3x2y﹣x3+xy3的次数是4,故答案为:413.如果两个角互补,并且较大角比较小角大40°20’,则较大角度数是110°10′.【分析】设较大角为x,则其补角为180°﹣x,根据较大角比较小角大40°20’可列出方程,解出即可.【解答】解:设较大角为x,则其补角为180°﹣x,由题意得:x﹣(180°﹣x)=40°20’,解得:x=110°10′;故答案为:110°10′.14.我国古典数学文献《增删算法统宗•六均输》中有这样一道题:甲、乙两人一同放牧,两人暗地里在数羊的数量如果乙给甲9只羊,则甲的羊数量为乙的两倍;如果甲给乙9只羊,则两人的羊数量相同.则甲的羊数量为63 只.【分析】设甲放x只羊,乙放y只羊,根据“如果乙给甲9只羊,则甲的羊数量为乙的两倍;如果甲给乙9只羊,则两人的羊数量相同”列出方程组解答即可.【解答】解:设甲放x只羊,乙放y只羊,由题意得,解得:.答:甲的羊数量为63只.故答案为63.15.已知∠AOB=90°,射线OC在∠AOB内部,且∠AOC=20°,∠COD=50°,射线OE、OF 分别平分∠BOC、∠COD,则∠EOF的度数是10°或60°.【分析】先根据题意画出图形,再分OD在∠AOB内和OD在∠AOB外,根据角的和差关系和角平分线的定义可求∠EOF的度数.【解答】解:如图1,OD在∠AOB内,∵∠AOB=90°,∠AOC=20°,∴∠BOC=70°,∵射线OE平分∠BOC,∴∠EOC=35°,∵射线OF平分∠COD,∠COD=50°,∴∠FOC=25°,∴∠EOF=10°;如图2,OD在∠AOB外,∵∠AOB=90°,∠AOC=20°,∴∠BOC=70°,∵射线OE平分∠BOC,∴∠EOC=35°,∵射线OF平分∠COD,∠COD=50°,∴∠FOC=25°,∴∠EOF=60°.则∠EOF的度数是10°或60°.故答案为:10°或60°.16.王师傅将一根长133毫米的铜管锯成长为8毫米和长为13毫米两种规格的小铜钢管若干根,恰好用完.如果每个锯口都要损耗1毫米铜管.那么他共将铜管锯成了11 段.【分析】设锯成长为8毫米和长为13毫米两种规格的小铜钢管分别x、y根,由题意得出方程8x+13y+(x+y﹣1)=133,由x、y为正整数,得出符合条件的解为,即可得出答案.【解答】解:设锯成长为8毫米和长为13毫米两种规格的小铜钢管分别x、y根,由题意得:8x+13y+(x+y﹣1)=133,∵x、y为正整数,∴符合条件的解为,∴x+y=4+7=11(段);即王师傅共将铜管锯成了11段;故答案为:11.三.解答题(共6小题)17.计算:(﹣1)5+2×(﹣4)﹣(﹣2)2÷4.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=﹣1﹣8﹣1=﹣10.18.解方程组.【分析】首先对原方程组化简,然后①×2运用加减消元法求解.【解答】解:原方程组可化为:,①×2+②得11x=22,∴x=2,把x=2代入①得:y=3,∴方程组的解为.19.求多项式3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中|x﹣1|+(y+2)2=0.【分析】原式去括号、合并同类项化简,再由非负数的性质得出x和y的值,代入计算可得.【解答】解:原式=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2=﹣6xy,∵|x﹣1|+(y+2)2=0,∴x=1,y=﹣2,则原式=﹣6×1×(﹣2)=12.20.为了解某校七年级学生每周课外阅读情况,随机抽查了部分七年级学生第一学期每周课外阅读的时间,并用得到的数据绘制了两幅统计图(不完整)请根据图中提供的信息,回答下列问题:(1)本次共抽查了60 人,请补全条形统计图.(2)a=10 ,并写出每周阅读时间8小时的扇形所对圆心角的度数为36°.(3)如果该校共有七年级学生800人,请你估计“每周课外阅读时间不少于7小时”的学生人数大约有多少人?【分析】(1)由5小时的人数及其所占百分比可得总人数,用总人数减去5、6、7、9小时的人数求得8小时人数即可补全条形图;(2)用8小时的人数除以总人数可得a的值,再用360°乘以每周阅读时间8小时的人数所占比例可得;(3)用总人数乘以阅读时间是7、8、9小时人数和所占比例可得.【解答】解:(1)本次抽查的总人数为24÷40%=60(人),则8小时的人数为60﹣(24+12+15+3)=6(人),补全条形图如下:故答案为:60;(2)a%=×100%=10%,即a=10,每周阅读时间8小时的扇形所对圆心角的度数为360°×10%=36°,故答案为:10,36°;(3)估计“每周课外阅读时间不少于7小时”的学生人数大约有800×=320(人).21.小明早上从家去学校,如果每分钟走50米,将要迟到2分钟,如果每分钟走70米,将早到2分钟,求小明从家到学校的距离.【分析】设小明从家到学校的距离为x米,根据它们之间的时间关系列出方程并解答.【解答】解:设小明从家到学校的距离为x米,依题意得:﹣2=+2解方程得:x=700答:小明从家到学校的距离是700米.22.已知线段MN=2,点Q是线段MN的中点,先按要求画图形,再解决问题.(1)反向延长线段MN至点A,使AM=3MN;延长线段MN至点B,使BN=BM.(2)求线段BQ的长度.(3)若点P是线段AM的中点,求线段PQ的长度.【分析】(1)根据题意作图即可;(2)由线段中点的定义可得NQ=1,再根据BN=BM可得BN的长,根据线段的和差解答即可;(3)根据线段中点的定义求出MQ的长以及PM的长,根据线段的和差解答即可.【解答】解:(1)如图所示:;(2)∵点Q是线段MN的中点,∴NQ=,∵BN=BM,∴BN=MN=2,∴BQ=BN+NQ=2+1=3;(3)∵点Q是线段MN的中点,MQ=,AM=3MN=6,∵点P是线段AM的中点,∴PM=,∴PQ=PM+MQ=3+1=4.。
2018-2019学年七年级(上)期末数学试卷一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.﹣5的绝对值是()A.﹣5B.5C.D.﹣2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10133.已知代数式﹣3a m﹣1b6和ab2n是同类项,则m﹣n的值是()A.﹣1B.﹣2C.﹣3D.04.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有()A.1个B.2个C.3个D.4个5.某书店把一本书按进价提高60%标价,再按七折出售,这样每卖出一本书就可盈利6元,设每本书的进价是x元,根据题意列一元一次方程,正确的是()A.(1+60%)x=6B.60%x﹣x=6C.(1+60%)x﹣x=6D.(1+60%)x﹣x=66.已用点A、B、C、D、E的位置如图所示,下列结论中正确的是()A.∠AOB=130°B.∠AOB=∠DOEC.∠DOC与∠BOE互补D.∠AOB与∠COD互余7.已知线段AB=6,在直线AB上画线段BC,使BC=2,则线段AC的长()A.2B.4C.8D.8或48.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b二、填空题(每题2分,共16分,把答案写在题中横线上)9.|﹣|的相反数是.10.请写出一个单项式,同时满足下列条件:①含有字母m、n;②系数是负整数;③次数是3,你写的单项式为.11.如图,在正方形网格中,点O、A、B、C、D均是格点.若OE平分∠BOC,则∠DOE 的度数为°.12.已知|x+1|+(3﹣y)2=0,则x y的值是.13.已知a+b=2,则多项式2﹣3a﹣3b的值是.14.若一个角比它的补角大36°48′,则这个角为°′.15.甲组有33个人,乙组有27个人,从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,求变化后乙组有人.16.有一列数4,7,x3,x4,…,x n,从第二个数起,每一个数都是它前一个数和后一个数和的一半,则当n≥2时,x n=.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.(8分)计算:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019(2)﹣×[﹣32×(﹣)2﹣2]18.(4分)解方程:x﹣=1﹣19.(5分)先化简,再求值:3x2y﹣[2x2y﹣x(xy+3)],其中x=﹣,y=2.20.(5分)已知多项式A、B,其中A=x2+2x﹣1,某同学在计算A+B时,由于粗心把A+B 看成了A﹣B求得结果为﹣3x2+2x﹣1,请你算出A+B的正确结果.四、解答题(每题8分,共16分)21.(8分)如图,N为线段AC中点,点M、点B分别为线段AN、NC上的点,且满足AM:MB:BC=1:4:3.(1)若AN=6,求AM的长.(2)若NB=2,求AC的长.22.(8分)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE(1)若∠BOC=60°,则∠AOF的度数为.(2)若∠COF=x°,求∠BOC的度数.五、解答题(23题10分,24题10分,25题10分,共30分)23.(10分)上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1180公里,问两车几点相遇?24.(10分)某商场购进西装30件,衬衫45件,共用了39000元,其中西装的单价是衬衫的5倍.(1)求西装和衬衫的单价各为多少元?(2)商场仍需要购买上面的两种产品55件(每种产品的单价不变),采购部预算共支出32000元,财会算了一下,说:“如果你用这些钱共买这两种产品,那么账肯定算错了”请你用学过的方程知识解释财会为什么会这样说?25.(10分)如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:3,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度.(2)在(1)旋转过程中,当旋转至图3的位置时,使得OM在∠BOC的内部,ON落在直线AB下方,试探究∠COM与∠BON之间满足什么等量关系,并说明理由.2018-2019学年辽宁省鞍山市七年级(上)期末数学试卷参考答案与试题解析一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.【分析】根据负数的绝对值等于它的相反数计算即可.【解答】解:﹣5的绝对值是5,故选:B.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】由同类项的定义可先求得m和n的值,从而求出代数式的值.【解答】解:∵代数式﹣3a m﹣1b6和ab2n是同类项,∴m﹣1=1,2n=6,∴m=2,n=3,∴m﹣n=2﹣3=﹣1,故选:A.【点评】本题考查了同类项定义,定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.4.【分析】根据有理数的分类可得A的正误;根据射线的表示方法可得B的正误;根据相反数的定义可得C的正误;根据线段的性质可得D的正误.【解答】解:①一个有理数不是正数就是负数,说法错误,0既不是正数也不是负数;②射线AB与射线BA是同一条射线,说法错误,端点不同;③0的相反数是它本身,说法正确;④两点之间,线段最短,说法正确.故选:B.【点评】此题主要考查了相反数、有理数、线段的性质、射线的表示方法,关键是牢固掌握基础知识.5.【分析】设每本书的进价是x元,根据利润=售价﹣进价,即可得出关于x的一元一次方程,此题得解.【解答】解:设每本书的进价是x元,根据题意得:(1+60%)x•﹣x=6.故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.6.【分析】由题意得出∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,得出∠DOC+∠BOE=180°即可.【解答】解:∵∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,∴∠DOC+∠BOE=180°;故选:C.【点评】本题考查了余角和补角;根据题意得出各个角的度数是关键.7.【分析】由于在直线AB上画线段BC,那么CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC;②当C在线段AB的延长线上,此时AC=AB﹣BC.然后代入已知数据即可求出线段AC的长度.【解答】解:∵在直线AB上画线段BC,∴CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC=6﹣2=4cm;②当C在线段AB的延长线上,此时AC=AB+BC=6+2=8cm.故选:D.【点评】此题主要考查了线段的和差的计算.在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.【分析】根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c﹣a>0,a+b<0,根据绝对值的性质化简计算.【解答】解:由数轴可知,b<a<0<c,∴c﹣a>0,a+b<0,则|c﹣a|﹣|a+b|=c﹣a+a+b=c+b,故选:A.【点评】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.9.【分析】根据负数的绝对值是它的相反数,可得负数的绝对值,根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:,的相反数是﹣,故答案为:﹣.【点评】本题考查了相反数,先求绝对值,再求相反数.10.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据题意,得﹣2m2n(答案不唯一),故答案为:﹣2m2n(答案不唯一).【点评】本题考查了单项式的定义,解答本题的关键是理解单项式的定义中的单项式的次数的正确含义.11.【分析】观察图形可知,∠BOC=135°,∠COD=45°,根据角平分线的定义可得∠EOC,再根据角的和差关系即可求解.【解答】解:由图形可知,∠BOC=135°,∠COD=45°,∵OE平分∠BOC,∴∠EOC=67.5°,∴∠DOE=67.5°﹣45°=22.5°.故答案为:22.5【点评】此题考查了角的计算,角平分线的定义,关键是观察图形可得∠BOC=135°,∠COD=45°.12.【分析】直接利用非负数的性质以及偶次方的性质得出x,y的值进而得出答案.【解答】解:∵|x+1|+(3﹣y)2=0,∴x+1=0,3﹣y=0,解得:x=﹣1,y=3,则x y的值是:(﹣1)3=﹣1.故答案为:﹣1.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.13.【分析】观察题中的两个代数式a+b和2﹣3a﹣3b,可以发现,2﹣3a﹣3b=2﹣3(a+b),因此可整体代入a+b=2,求出结果.【解答】解:2﹣3a﹣3b=2﹣3(a+b)因为a+b=2,所以原式=2﹣3×2=2﹣6=﹣4故答案为:﹣4.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,应考虑a+b为一个整体,然后利用“整体代入法”求代数式的值.14.【分析】设这个角为x°,则这个角的补角为(180﹣x)°,根据题意可得方程x﹣(180﹣x)=36.8,再解即可.【解答】解:36°48′=36.8°,设这个角为x°,则这个角的补角为(180﹣x)°,x﹣(180﹣x)=36.8,解得:x=108.4,108.4°=108°24′,故答案为:108;24.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.【分析】根据从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,可以列出相应的方程,从而可以解答本题.【解答】解:设变化后乙组有x人,33+(27﹣x)=3x,解得,x=15,即变化后乙组有15人,故答案为:15.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.16.【分析】根据题意分别计算出x3,x4,x5…,据此可得后面每个数均比前一个数大3,据此求解可得.【解答】解:由题意知=7,解得x3=10,=10,解得x4=13,=13,解得x5=16,……∴第n个数x n为3n+1,故答案为:3n+1.【点评】本题主要考查数字的变化规律,解题的关键是根据题意得出后面每个数均比前一个数大3的规律.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.【分析】(1)先算乘方,再算乘除法,最后加减法即可解答本题;(2)先算中括号里的,再根据有理数的乘法即可解答本题.【解答】解:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019=﹣4+8×(﹣)×﹣(﹣1)=﹣4﹣1+1=﹣4;(2)﹣×[﹣32×(﹣)2﹣2]====9.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.18.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:4x﹣(x﹣1)=4﹣2(3﹣x),去括号得:4x﹣x+1=4﹣6+2x,移项合并得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=3x2y﹣(2x2y﹣x2y﹣3x)=3x2y﹣(x2y﹣3x)=3x2y﹣x2y+3x=2x2y+3x当x=,y=2时,原式=2××2+3×()=1=.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:∵A=x2+2x﹣1,A﹣B=﹣3x2+2x﹣1,∴A+B=2A﹣(A﹣B)=2x2+4x﹣2﹣(﹣3x2+2x﹣1)=2x2+4x﹣2+3x2﹣2x+1=5x2+2x﹣1.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.四、解答题(每题8分,共16分)21.【分析】(1)根据线段中点的定义得到AC=2AN=12,于是得到AM=×AC=×12=;(2)根据线段中点的定义得到AN=AC,得到AB=AC=AC,列方程即可得到结论.【解答】解:(1)∵AN=6,N为线段AC中点,∴AC=2AN=12,∵AM:MB:BC=1:4:3.∴AM=×AC=×12=;(2)∵N为线段AC中点,∴AN=AC,∵AM:MB:BC=1:4:3,∴AB=AC=AC,∴BN=AB﹣AN=AC﹣AC=AC=2,∴AC=16.【点评】本题考查的是两点间的距离,正确理解线段中点的意义是解题的关键.22.【分析】(1)根据对顶角的性质得到∠AOD=∠BOC=60°,根据垂直的定义得到∠DOE=90°,根据角平分线的定义即可得到结论;(2)由垂直的定义得到∠DOE=∠COE=90°,根据角平分线的定义得到∠AOE=2∠EOF=180°﹣2x°,根据对顶角的性质即可得到结论.【解答】解:∵∠AOD=∠BOC=60°,∵OE⊥OC于点O,∴∠DOE=90°,∴∠AOE=30°,∵OF平分∠AOE,∴∠AOF=∠AOE=15°,故答案为:15°;(2)∵OE⊥OC于点O,∴∠COE=∠DOE=90°,∵∠COF=x°,∴∠EOF=x°﹣90°,∵OF平分∠AOE,∴∠AOE=2∠EOF=2x°﹣180°,∴∠AOD=90°﹣∠AOE=270°﹣2x°,∴∠BOC=∠AOD=270°﹣2x°.【点评】本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足,垂线的性质过一点有且只有一条直线与已知直线垂直.五、解答题(23题10分,24题10分,25题10分,共30分)23.【分析】设从北京到上海的G5次列车行驶x小时与G102次列车相遇,根据相遇时,两车行驶的路程和等于1180公里列出方程,求解即可.【解答】解:设从北京到上海的G5次列车行驶x小时与G102次列车相遇,根据题意,得200(x+)+280x=1180,解得x=2.25,2.25时=2时15分,7时+2时15分=9时15分.答:两车于9点15分相遇.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.【分析】(1)设衬衫的单价为x元,则西装的单价为5x元,由两种产品共39000元为等量关系建立方程求出其解即可;(2)设单价为21元的A种产品为y件,单价为25元的B种产品为(105﹣y)件,根据支出总额为2447元为等量关系建立方程求出其解就可以判断结论.【解答】解:(1)设衬衫的单价为x元,则西装的单价为5x元,根据题意,得30×5x+45x=39000解得:x=200 则:5x=1000答:衬衫的单价为200元,则西装的单价为1000元;(2)设购买衬衫的数量为y件,则购买西装的数量为(55﹣y)件,根据题意,得200y+1000(55﹣y)=32000,解得:y=28.75(不符合题意),所以,帐肯定算错了.【点评】本题考查了列一元一次方程的运用,解答时找准题目的等量关系是解答本题的关键.25.【分析】(1)根据OM的初始位置和旋转后在图2的位置进行分析;(2)依据已知先计算出∠BOC=135°,则∠MOB=135°﹣MOC,根据∠BON与∠MOB互补,则可用∠MOC表示出∠BON,从而发现二者之间的等量关系.【解答】解:(1)OM由初始位置旋转到图2位置时,在一条直线上,所以旋转了180°.故答案为180;(2)∵∠AOC:∠BOC=1:3,∴∠BOC=180°×=135°.∵∠MOC+∠MOB=135°,∴∠MOB=135°﹣∠MOC.∴∠BON=90°﹣∠MOB=90°﹣(135°﹣∠MOC)=∠MOC﹣45°.即∠COM﹣∠BON=45°.【点评】本题主要考查了角之间的和差关系,解题时一定要结合图形分析题目.2018—2019 学年度第一学期期末初一年级学业水平测试数学试卷(考试时间120分钟,全卷满分120分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上。
七年级数学·第 1 页 (共 5 页) 黄山市2018—2019学年度第一学期期末质量检测
七年级数学试题
(考试时间:100分钟 满分:100分)
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给的四个选项中,只有一项正确. 请在答题卷的相应区域答题.............)
1.中国人很早开始就使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么-80
元表示( )
A .支出20元
B .收入20
元 C .收入80元 D .支出80元
2.-3的相反数是( )
A .3
B . -3
C .1
3 D .1
3-
3.计算3(2)-,结果是( )
A .8
B .-8
C .-6
D .6
4.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划,“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为( )
A .84410⨯
B .84.410⨯
C .94.410⨯
D .104.410⨯
5.单项式22a b π的系数和次数分别是( )
A .2,4
B .2π,3
C .2π,2
D .2,3
6.下面四个立体图形,从正面、左面、上面观察,看到的都是长方形的是( )
A .
B .
C .
D .
7.下列各式中,去括号正确的是( )
A .()a b a b -+=-+
B .2()2a b a b -=-
C .(2)2x y z x y z -+=--
D .()x y z x y z --+=--
8.下列等式的变形,不正确的是( )
A . 若x y =,则x a y a +=+
B .若x y =,则ax ay =
七年级数学·第 2 页 (共 5 页) 第16题图
C . 若x y =,则x a y a -=-
D .若x y =,则a
a
x y =
9.如图所示的四条射线中,表示南偏东65︒的是( )
A .射线OA
B .射线OB
C .射线OC
D .射线OD
10.某车间有27名工人,生产某种由一个螺栓套两个螺母的
产品,每人每天生产螺母22个或螺栓16个.若分配x 名
工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺
栓和螺母配套.则下面所列方程中正确的是( )
A .21622(27)x x ⨯=-
B .1622(27)x x =-
C .2216(27)x x =-
D .22216(27)x x ⨯=-
二、填空题(本大题共10小题,每小题2分,共20分. 请在答题卷的相应区域答题.............)
11.把1.5972精确到百分位得到的近似数是______.
12.如果0,0x y <>,且2,3x y ==,那么x y += .
13.若523m x y +与7n x y 的和是单项式,则m n = .
14.若2x =-是方程210x k +-=的解,则k = .
15.已知多项式128m x x -++是关于x 的二次三项式,则3m = .
16.如图是每个面上都有一个汉字的正方体的一种展开
图,那么在正方体的表面与“生”相对应的面上的
汉字是 .
17.已知7236α'∠=︒,则α∠的余角是 . 18.在有理数集合里定义运算“*”,其规则为a b a b *=-,则(3)21x **=的解为x = .
19.下列式子按一定规律排列:357
,,,2468a a a a ,…,则第2019个式子是 .
20.下列说法中:
①射线AB 与射线BA 表示同一条射线;
②若12180∠+∠=︒,13180∠+∠=︒,则23∠=∠;
③一条射线把一个角分成两个角,这条射线叫做这个角的平分线;
④连结两点的线段叫做这两点之间的距离;
⑤405040.5'︒=︒;
⑥互余且相等的两个角都是45︒.
其中正确的选项序号是 (把你认为正确的选项序号都填上).
三、计算题(本大题共2小题,第21题8分,第22题5分,共13分. 请在答题卷的......相应
..
第9题图
七年级数学·第 3 页 (共 5 页)
区域答题.....)
21.计算:(1)(3)(4)(11)(9)-+--+-- (2)22323(2)-⨯-⨯-
22.解方程:2151
136x x --
-=
四、解答题(本大题共4小题,第23、24题各5分,第25、26题各6分,共22分. 请在..
答题卷的相应区域答题...........)
23.先化简,再求值:21
1
(428)(1)42a a a ----,其中1a =.
24.已知有理数a b c 、、 在数轴上的对应点如图所示.
(1)用“<”号把a b c 、、连接起来;
(2)化简:a b b c c a -+---.
25.根据下列语句,画出图形:
如图,已知平面内有四个点A 、B 、C 、D ,其中任意三点都不在同一直线上.
(1)画直线BC ;
第24题图 x
七年级数学·第 4 页 (共 5 页)
(2)连接AC 、BD ,相交于点E ;
(3)画射线BA 、CD ,交于点F .
26.如图,已知90AOB ∠=︒,60EOF ∠=︒,OE 平分AOB ∠,OF 平分BOC ∠,求
COB ∠和AOC ∠的度数.
五、应用题(本大题共2小题,第27题7分,第28题8分,共15分. 请在答题卷的相应........
区域答题.....)
27.初一年级举行乒乓球比赛,需购买5副乒乓球拍和若干盒乒乓球. 现了解情况如下:甲、
乙两家商店出售同样品牌的乒乓球拍和乒乓球,乒乓球拍每副定价48元,乒乓球每盒定价12元. 经洽谈,甲店每买一副乒乓球拍就赠送一盒乒乓球;乙店则全部按定价9折优惠.设该校需购乒乓球x 盒(不少于5盒).
(1)通过计算和化简后,用含x 的式子分别表示甲、乙两店购买所需的费用;
(2)当需购买40盒乒乓球时,请你去办这件事,你打算去哪家商店购买划算?为什么?
(3)试探究:当购买乒乓球的盒数x 分别取什么值时,去哪家商店购买划算?
28.如图,B 是线段AD 上一动点,沿A D A →→以2/cm s 的速度往返运动1次,C 是
线段BD 的中点,10AD cm =,设点B 运动时间为t 秒(010t ≤≤).
(1)当2t =时,①AB =_____cm ;②求线段CD 的长度;
(2)用含t 的代数式表示运动过程中AB 的长;
(3)在运动过程中,若AB 中点为E ,则EC 的长是否变化?若不变,求出EC 的长;
若发生变化,请说明理由.
第26题图
第25题图
第28题图
七年级数学·第 5 页(共 5 页)。