相似三角形预备定理证明
- 格式:docx
- 大小:20.33 KB
- 文档页数:4
相似三角形的预备定理的证明
设有两个三角形ABC和DEF,已知∠ABC=∠DEF,并且
AB/DE=AC/DF=BC/EF。
我们需要证明三角形ABC和DEF是相似的。
首先,我们来证明AB/DE=BC/EF。
由已知条件可得
AB/DE=AC/(DE+EF)=AC/DF。
再由已知条件中的两对边成比例可得
AC/DF=BC/EF。
所以,AB/DE=BC/EF。
接下来,我们来证明∠ACB=∠DFE。
由已知条件可知∠ABC=∠DEF。
再加上我们已经得到的AB/DE=BC/EF,由三角形的角对应边成比例可知
∠ACB=∠DFE。
最后,我们需要证明∠CAB=∠EDF。
首先,根据克莱姆法则可得
AB/DE=AC/DF,进一步化简得AB/AC=DE/DF。
由三角形的角对应边成比例可知∠CAB=∠EDF。
综上所述,我们证明了∠ABC=∠DEF,并且AB/DE=AC/DF=BC/EF,那么三角形ABC和DEF是相似的。
根据相似三角形的定义,我们得到了相似三角形的预备定理。
(第4节)相似三角形预备定理目标:使学生理解并掌握相似三角形的预备定理。
并能简单应用。
学生初识A型8字形图形重点:理解定理,会应用。
过程:一、相似三角形(书42页)相似三角形:若△ABC~△A′B′C′,则对应角相等,对应边成比例。
相似比为k= AB:A′B′;那么△A′B′C′~△ABC,则相似比为1:k= A′B′:AB例如 AB:A′B′=2:3,那么△ABC与△A′B′C′的相似比为2:3,而△A′B′C′与△ABC的相似比为3:2;如AB:A′B′=1:1,那么△ABC与△A′B′C′是全等三角形。
二、探究三角形相似的判定方法复习:三角形中位线定理。
问题1:D、E是△ABC中AB、AC的中点,那么△ADE与△ABC相似吗?为什么?△ADE相似于△ABC记作:△ADE~△ABC,对应边的比叫做相似比。
k=1:2问题2:在△ABC中,D是AB边的中点,DE∥BC交AC于E,那么△ADE与△ABC相似吗?为什么?结论:1* E是AC的中点。
定理:经过三角形一边的中点与另一边平行的直线必平分第三边。
若AD=DB,DE∥BC 则AE=EC2*若AD=DB,DE∥BC 则△ADE~△ABC,相似比k=1:2问题3:在△ABC中,D是AB边上人一点,且DE∥BC交AC于E,那么△ADE与△ABC相似吗?定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
?平行于三角形一边的直线和其他两边的延长线相交所构成的三角形与原三角形是否也相似呢?基本图形:与两边相交与两边的延长线相交写出相似三角形及它们的相似比。
例题:①如图1,已知:DE∥FG∥BC,D、F将AB三等分,写出图中的相似三角形及对应边的比;如果BC=6,则DE=___________,FG=_________。
②已知DE∥BC,CD、BE相交于点O,写出图中的相似三角形及对应边的比;③已知:平行四边形ABCD,写出图中的相似三角形及相似比;如果 AB=6,BC=8,若AE=2 求:AF。
18.5.1相似三角形的判定——预备定理【教学目标】知识技能:掌握用相似三角形的定义和预备定理判断两个三角形相似过程方法:在探索相似三角形判定定理过程中,体现解决问题的方法情感态度:在探索相似图形的性质过程中,培养学生与他人交流、合作的意识和品质.【教学重点】预备定理的证明与应用【教学难点】预备定理的证明【教学过程】一.复习引入活动1回顾相似三角形的定义,定义既是判定也是性质;平行线分线段成比例出示问题:如图,DE//BC, △ADE 与△ABC 有什么关系?说明理由.学生猜想:相似。
能得到△ADE ∽△ABC 吗?教师活动:教师出示并提出问题,组织学生思考.(1)△ADE 与△ABC 满足“对应角相等”吗?为什么?(2)△ADE 与△ABC 满足对应边成比例吗?由“DE ∥BC ”的条件可得到哪些线段的比相等?(3)根据以前学习的知识如何把DE 移到BC 上去?(作辅助线DF ∥AC )学生活动:学生小组讨论:要证△ADE ∽△ABC只需证∠A=∠A ,∠B=∠2,∠C=∠3←——由平行得=AD AE DE AB AC BC ⎫=⎬⎭由DE ∥BC 得相似定义 只需证出:DE AD BC AB=或DE AE BC AC = 由于DE 、BC 不在同一直线上,故可以通过做辅助线平移DE ,将DE 、BC 放在同一直线上证明: 过D 点作DF ∥AC 交BC 于F ∵DE ∥BC ,DF ∥AC ∴四边形DFCE 是□ ∴DE=CF ∵DF ∥AC ∴CF AD BC BD= ∴DE AD BC BD= ∵DE ∥BC ∴=AD AE BD AC∵DE ∥BC∴∠A=∠A ,∠1=∠B ,∠2=∠C ∴△ADE ∽△ABC BC DE AC AE AB AD ==∴B分析完后由学生口述再ppt 出示过程由此可得:平行于三角形一边的直线截其他两边所得的三角形与原三角形相似。
拓展: 思考: 若条件不变,图形如图所示,结论是否仍然成立?依然成立几何画板演示教师活动:板书课题“相似三角形的判定”二、形成新知:活动2 归纳总结:判定三角形相似的(预备)定理: 文字语言:平行于三角形一边的直线,截其他两边所得的三角形与原来三角形相似。
基本内容相似三角形的判定(一)知识精要1、相似三角形:若一个三角形的三个角与另一个三角形的三个角对应相等,且它们各有的对应边成比例,那么这两个三角形叫做相似三角形.即:两个对应角相等,对应边成比例的三角形叫做相似三角形.说明:证两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边.2、相似比:两个相似三角形对应边的比k,叫做这两个相似三角形的相似比(相似系数).如:若△DEF与△ABC相似,则AB BC AC DE EF DF==.3、相似三角形的预备定理:平行于三角形一边的直线截其他两边所在的直线,截得的三角形与原三角形相似.说明:这个定理反映了相似三角形的存在性,所以有的书把它叫做相似三角形的存在定理,它是证明三角形相似的判定定理的理论基础.4、三角形相似的判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两三角形相似.三角形相似的判定定理2:如果一个三角形的两边与另一个三角形的两边对应相等,并且夹角相等,那么这两个三角形相似.可简单说成:两边对应成比例且夹角相等,两三角形相似.热身练习1、在△ABC中,E、F分别在AC、AB上,且AF AB AE AC⋅=⋅,则下列各式中正确的是()A.EF AFAC BC=;B.AF BCAE AB=;C.EF AEBC AC=;D.BC ABEF AE=.2、BD、CE是△ABC的两条高,BD、CE相交于点O.下列结论中不正确的是()A.△ADE∽△ABC;B.△DOE∽△COB;C.△BOE∽△COD;D.△BOE∽△BDE.3、下列各组有可能不相似的是()A .各有一个角是45︒的两个等腰三角形;B .各有一个角是60︒的两个等腰三角形;C .各有一个角是105︒的两个等腰三角形;D .两个等腰直角三角形.4、在Rt △ABC 中,90C ∠=︒,CD ⊥AB ,垂足D 在斜边AB 上,则下列四个结论中正确的是( )①2AC AD AB =⋅; ②2BC BD AB =⋅; ③2CD AD BD =⋅; ④AC BC AB CD ⋅=⋅. A .①②④; B .②③④; C .①③④; D .①②③④.5、已知点P 是△ABC 的边BC 的中点,过点P 作直线截△ABC ,使截得的三角形与原三角形相似,那么这样的直线最多有( )条A .5;B .4;C .3;D .2.精解名题例1、已知在△ABC 中,点D 是边AB 的中点,DE ∥BC ,DE 交AC 于点E , △ADE 与△ABC 有什么关系?例2、根据下列条件,判断△ABC 与△'''A B C 是否相似,并说明理由:(1)120A ∠=︒,7AB =cm ,14AC =cm ; '120A ∠=︒,''3A B =cm ,''6A C =cm . (2)4AB =cm ,6BC =cm ,8AC =cm ; ''12A B =cm ,''18B C =cm ,''21A C =cm .例3、四边形ABCD 的对角线AC 与BD 相交于点O ,1OA =,1.5OB =,3OC =,2OD =,求证:△OAD 与△OBC 是相似三角形.备选例题GF E DCBA例1、点D 是△ABC 的边AB 上的一点,且2AC AD AB =⋅,求证:△ACD ∽△ABC .例2、如图,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起, A 为公共顶点,90BAC AGF ∠=∠=︒, 它们的斜边长为2, 若△ABC 固定不动,△AFG 绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E (点D 不与点B 重合,点E 不与点C 重合),设BE m =,CD n =.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明. (2)求m 与n 的函数关系式,直接写出自变量n 的取值范围.(3)以△ABC 的斜边BC 所在的直线为x 轴,BC 边上的高所在的直线为y 轴,建立平面直角坐标系(如图2).在边BC 上找一点D ,使BD CE =,求出D 点的坐标,并通过计算验证222BD CE DE +=.(4)在旋转过程中,(3)中的等量关系222BD CE DE +=是否始终成立,若成立,请证明;若不成立,请说明理由.巩固练习1、下列命题中,不正确的是( )Gy xOFE DCBAA .如果两个三角形相似,且相似比为1,那么这两个三角形全等;B .等腰直角三角形都是相似三角形;C .有一个角为60︒的两个等腰三角形相似;D .有一个锐角相等的两个等腰三角形相似. 2、下列结论中,不正确的是( )A .有一个角相等,有两条边对应成比例的两个三角形相似;B .顺次连结三角形各边中点所得的三角形与原三角形相似;C .如果三角形两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似;D .两条边长分别是7、4和14、8的两个直角三角形相似. 3、△ABC ∽△'''A B C 且相似比为13错误!未找到引用源。
三角形相似判定预备定理一、定理内容平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
二、证明方法(一)利用平行线分线段成比例定理证明(以平行于三角形一边的直线和其他两边相交为例)1. 已知条件- 设 ABC,DE∥ BC,D在AB上,E在AC上。
2. 证明思路- 因为DE∥ BC,根据平行线分线段成比例定理,可得(AD)/(DB)=(AE)/(EC)。
- 过点D作DF∥ AC交BC于F,则四边形DFCE是平行四边形,所以DF = EC。
- 在 ADE和 ABC中,∠ A=∠ A(公共角),(AD)/(AB)=(AE)/(AC)(由(AD)/(DB)=(AE)/(EC)推导得出)。
- 根据三角形相似的判定定理(两边对应成比例且夹角相等的两个三角形相似),可得 ADEsim ABC。
(二)利用角的关系证明(以平行于三角形一边的直线和其他两边的延长线相交为例)1. 已知条件- 设 ABC,DE∥ BC,D在AB的延长线上,E在AC的延长线上。
2. 证明思路- 因为DE∥ BC,所以∠ D=∠ B,∠ E=∠ C(两直线平行,同位角相等)。
- 在 ADE和 ABC中,∠ A=∠ A(公共角),∠ D=∠ B,∠ E=∠ C。
- 根据三角形相似的判定定理(两角分别相等的两个三角形相似),可得ADEsim ABC。
三、定理的应用(一)直接应用判定相似1. 例题- 在 ABC中,DE∥ BC,D在AB上,E在AC上,AD = 3,DB = 2,AC=10,求AE的长。
2. 解题步骤- 所以(AE)/(AC)=(AD)/(AB),又AB = AD+DB=3 + 2=5。
- 设AE=x,则(x)/(10)=(3)/(5),解得x = 6。
(二)与其他相似判定定理结合应用1. 例题- 如图,在 ABC中,AD是角平分线,EF∥ AD,EF与AB交于E,与CA的延长线交于F,求证: AEFsim ACB。
课题:相似三角形的判定(预备定理)
教学目标:1 •掌握预备定理以及用相似三角形的定义判断两三角形相似;
2 •在探索相似三角形预备定理过程中,感受特殊到一般的思想方法,体验 分析解决
问题的方法;
3•通过思考交流与教师启发,获得探索问题的乐趣,增强数学学习的信心
与原动力。
教学重点: 预备定理的证明与应用。
教学难点: 预备定理的证明。
教学方法: 启发+探究+讲授
教学手段: 常规教学用具,计算机及课件 教学过程:
教学过程
教师活动
学生活动 设计意图
出示情境问题:
1、 什么叫相似三角形?什么叫相似比?
2、 如图,矩形草坪长20m 宽10m 沿草坪四 周有1m
宽的小路。
小路的内外边缘所围成的 矩形相似吗?
□—''~:—:—A ?—'—>:—?—A
3、 如图两个三角形相似吗?若相似,你是若 何判
断的,相似比是多少?若不相似,也请说 明。
4、 思考:如图:在AA BC 与厶DEF 中,/ A= / D, Z B=Z E ,请问 AA BC 与△ DEF 是否相似? 明确指出:
本节课将研究如何用相似三角形的定义判断 两三角形相似。
板书课题:相似三角形的判定
创
设 情 境
复习相似形 的有关概
思考回答问题:
念,明确否 1、2 口答 定两图形相 3题可能的方法:
似,指出一 ⑴直觉(引导有理有
个不满足的 据);
条件即可, ⑵度量角与边,再计
而冃疋两图 算(指引这种方法简 形相似,则 单易于操作,但有时 需要所有对 会对结果的精确程度 应角相等, 质疑)
对边成比 ⑶根据格点特性计算 例。
(积极鼓励)
而随后的思 考,是为了 给学生点引 一下,预备 定理为什么 叫预备定
理,后继学
教案设计说明:
本节课的主要内容是相似三角形判定的预备定理。
由于学生的逻辑推理能力已有所提高,具备了一定的能力。
因此,需要通过理论上的证明得到判断定理。
而,定理证明之前还没有判定两三角形相似的定理。
只能引导学生考虑用定义来证明。
即证明三个角对应相等,三条边对应成比例。
不仅复习了相似三角形的定义,而且为后面的证明打下基础。
后继学习相似三角形的判定定理,转化为预备定理可以很大程度上简化证明。
为了解决好定理证明,首先通过情境复习了相似三角形的定义,通过矩形草坪与网格三角形问题,辅助计算深层次回忆定义。
并且,定理的发现,采用了从特殊到一般的方法,让学生在证明定理之前,对定理已产生了一定的认可度,也好能深层思考定理证明。
而在定理分析中,辅助几何画板追踪技术,给学生非常直观的将形内线段推倒三角形一边上视觉刺激,通过闪烁突出平行线分三角形两边成比例图形,突破定理证明难关,给学生学习应用本定理证明的思维方法留下深刻的印象。