新人教版27.2.3相似三角形应用举例(优质课)
- 格式:ppt
- 大小:1.04 MB
- 文档页数:15
27.2.3 相似三角形的应用举例【教学目标】1.运用三角形相似的知识计算不能直接测量物体的长度和高度;(重点) 2.灵活运用三角形相似的知识解决实际问题.(难点)【教学过程】一、情境导入胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一” .在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量金字塔的高度的吗?二、合作探究探究点:相似三角形的应用【类型一】利用影子的长度测量物体的高度如图,某一时刻一根2m长的竹竿EF的影长GE为1.2m,此时,小红测得一棵被风吹斜的柏树与地面成30°角,树顶端B在地面上的影子点D与B到垂直地面的落点C的距离是3.6m,求树AB的长.解析:先利用△BDC∽△FGE得到BC3.6=21.2,可计算出BC=6m,然后在Rt△ABC中利用含30度的直角三角形三边的关系即可得到AB的长.解:如图,CD=3.6m,∵△BDC∽△FGE,∴BCCD=EFGE,即BC3.6=21.2,∴BC=6m.在Rt△ABC中,∵∠A=30°,∴AB=2BC=12m,即树长AB是12m.方法总结:解答此类问题时,首先要把实际问题转化为数学问题.利用相似三角形对应边成比例建立相等关系求解.【类型二】利用镜子的反射测量物体的高度小红用下面的方法来测量学校教学大楼AB的高度.如图,在水平地面点E处放一面平面镜,镜子与教学大楼的距离AE=20m.当她与镜子的距离CE=2.5m时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC =1.6m,请你帮助小红测量出大楼AB的高度(注:入射角=反射角).解析:根据物理知识得到∠BEA=∠DEC,所以可得△BAE∽△DCE,再根据相似三角形的性质解答.解:如图,∵根据光的反射定律知∠BEA=∠DEC,∵∠BAE=∠DCE=90°,∴△BAE∽△DCE,∴ABDC=AEEC.∵CE=2.5m,DC=1.6m,∴AB1.6=202.5,∴AB=12.8,∴大楼AB的高度为12.8m.方法总结:解本题的关键是找出相似的三角形,然后根据对应边成比例列出方程.解题时要灵活运用所学各学科知识.【类型三】利用标杆测量物体的高度如图,某一时刻,旗杆AB影子的一部分在地面上,另一部分在建筑物的墙面上.小明测得旗杆AB在地面上的影长BC为9.6m,在墙面上的影长CD为2m.同一时刻,小明又测得竖立于地面长1m的标杆的影长为1.2m.请帮助小明求出旗杆的高度.解析:根据在同一时刻物高与影长成正比例,利用相似三角形的对应边成比例解答即可.解:如图,过点D作DE∥BC,交AB于E,∴DE=CB=9.6m,BE=CD=2m,∵在同一时刻物高与影长成正比例,∴EA∶ED=1∶1.2,∴AE=8m,∴AB=AE+EB=8+2=10m,∴学校旗杆的高度为10m.方法总结:利用杆或直尺测量物体的高度就是利用杆(或直尺)的高(长)作为三角形的边构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.【类型四】利用相似三角形的性质设计方案测量高度星期天,小丽和同学们在碧沙岗公园游玩,他们来到1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽问:“这个纪念碑有多高呢?”请你利用初中数学知识,设计一种方案测量纪念碑的高度(画出示意图),并说明理由.解析:设计相似三角形,利用相似三角形的性质求解即可.在距离纪念碑AB的地面上平放一面镜子E,人退后到D处,在镜子里恰好看见纪念碑顶A.若人眼距地面距离为CD,测量出CD、DE、BE的长,就可算出纪念碑AB的高.解:设计方案例子:如图,在距离纪念碑AB的地面上平放一面镜子E,人退后到D处,在镜子里恰好看见纪念碑顶A.若人眼距地面距离为CD,测量出CD、DE、BE的长,就可算出纪念碑AB的高.理由:测量出CD、DE、BE的长,因为∠CED=∠AEB,∠D=∠B=90°,易得△ABE∽△CDE.根据CDAB=DEBE,即可算出AB的高.方法总结:解题的关键是根据相似三角形的性质设计出具体图形,将实际问题抽象出数学问题求解.三、板书设计1.利用相似三角形测量物体的高度;2.利用相似三角形测量河的宽度;3.设计方案测量物体高度.【教学反思】通过本节知识的学习,可以使学生综合运用三角形相似的判定和性质解决问题,发展学生的应用意识,加深学生对相似三角形的理解和认识.基本达到了预期的教学目标,大部分学生都学会了建立数学模型,利用相似的判定和性质来解决实际问题.27.2.3 相似三角形的应用举例〔学习设计〕,即,, 。
相似三角形应用举例【教学目标】1.进一步稳固相似三角形的知识。
2.能够运用三角形相似的知识,解决不能直接测量物体的长度和高度〔如测量金字塔高度问题、测量河宽问题、盲区问题〕等的一些实际问题。
3.通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力。
【教学重难点】1.重点:运用三角形相似的知识计算不能直接测量物体的长度和高度。
2.难点:灵活运用三角形相似的知识解决实际问题〔如何把实际问题抽象为数学问题〕。
【教学过程】难点的突破方法〔1〕本节主要探索的是应用相似三角形的判定、性质等知识去解决某些简单的实际问题〔计算不能直接测量物体的长度和高度及盲区问题〕,学生已经学过了相似三角形的概念、判定方法及性质,在此根底上通过本课的学习将对前面所学知识进展全面应用。
初三学生在思维上已具备了初步的应用数学的意识,在心理特点上那么更依赖于直观形象的认识。
〔2〕在实际生活中,面对不能直接测量出长度和宽度的物体及盲区问题,我们可以应用相似三角形的知识来测量,只要将实际问题转化为数学问题,建立相似三角形模型,再利用线段成比例来求解。
在教学中,要通过这些知识的教学,帮助学生从实际生活中发现数学问题、运用所学知识解决实际问题。
另外,还可以根据学生实情,选择一些实际问题,引导学生加以解决,提高他们应用知识解决问题的能力。
〔3〕课上可以通过著名的科学家名句和如何测量神秘的金字塔的高度来激发学生学数学的兴趣,使学生积极参与探索,体验成功的喜悦。
〔4〕运用三角形相似的知识解决实际问题对于学生来说难度较大,可以适当增加课时。
例题的意图相似三角形的应用主要有如下两个方面:〔1〕测高(不能直接使用皮尺或刻度尺量的);〔2〕测距(不能直接测量的两点间的距离) 。
本节课通过例题的讲解,使学生掌握测高和测距的方法。
知道在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量三角形的各条线段的长,运用相似三角形的性质列出比例式求解。
27.2.3 相似三角形的应用举例1.运用三角形相似的知识计算不能直接测量物体的长度和高度;(重点)2.灵活运用三角形相似的知识解决实际问题.(难点)一、情境导入胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一” .在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量金字塔的高度的吗?二、合作探究探究点:相似三角形的应用【类型一】 利用影子的长度测量物体的高度如图,某一时刻一根2m 长的竹竿EF 的影长GE 为1.2m ,此时,小红测得一棵被风吹斜的柏树与地面成30°角,树顶端B 在地面上的影子点D 与B 到垂直地面的落点C 的距离是3.6m ,求树AB 的长.解析:先利用△BDC ∽△FGE 得到BC 3.6=21.2,可计算出BC =6m ,然后在Rt △ABC 中利用含30度的直角三角形三边的关系即可得到AB 的长.解:如图,CD =3.6m ,∵△BDC ∽△FGE ,∴BC CD =EF GE ,即BC 3.6=21.2,∴BC =6m.在Rt △ABC 中,∵∠A =30°,∴AB =2BC =12m ,即树长AB 是12m.方法总结:解答此类问题时,首先要把实际问题转化为数学问题.利用相似三角形对应边成比例建立相等关系求解.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题【类型二】 利用镜子的反射测量物体的高度小红用下面的方法来测量学校教学大楼AB 的高度.如图,在水平地面点E 处放一面平面镜,镜子与教学大楼的距离AE =20m.当她与镜子的距离CE =2.5m 时,她刚好能从镜子中看到教学大楼的顶端B .已知她的眼睛距地面高度DC =1.6m ,请你帮助小红测量出大楼AB 的高度(注:入射角=反射角).解析:根据物理知识得到∠BEA =∠DEC ,所以可得△BAE ∽△DCE ,再根据相似三角形的性质解答.解:如图,∵根据光的反射定律知∠BEA =∠DEC ,∵∠BAE =∠DCE =90°,∴△BAE∽△DCE ,∴AB DC =AE EC .∵CE =2.5m ,DC =1.6m ,∴AB 1.6=202.5,∴AB =12.8,∴大楼AB 的高度为12.8m.方法总结:解本题的关键是找出相似的三角形,然后根据对应边成比例列出方程.解题时要灵活运用所学各学科知识.变式训练:见《学练优》本课时练习“课堂达标训练” 第5题【类型三】 利用标杆测量物体的高度如图,某一时刻,旗杆AB 影子的一部分在地面上,另一部分在建筑物的墙面上.小明测得旗杆AB 在地面上的影长BC 为9.6m ,在墙面上的影长CD 为2m.同一时刻,小明又测得竖立于地面长1m 的标杆的影长为1.2m.请帮助小明求出旗杆的高度.解析:根据在同一时刻物高与影长成正比例,利用相似三角形的对应边成比例解答即可. 解:如图,过点D 作DE ∥BC ,交AB 于E ,∴DE =CB =9.6m ,BE =CD =2m ,∵在同一时刻物高与影长成正比例,∴EA ∶ED =1∶1.2,∴AE =8m ,∴AB =AE +EB =8+2=10m ,∴学校旗杆的高度为10m.方法总结:利用杆或直尺测量物体的高度就是利用杆(或直尺)的高(长)作为三角形的边构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型四】 利用相似三角形的性质设计方案测量高度星期天,小丽和同学们在碧沙岗公园游玩,他们来到1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽问:“这个纪念碑有多高呢?”请你利用初中数学知识,设计一种方案测量纪念碑的高度(画出示意图),并说明理由.解析:设计相似三角形,利用相似三角形的性质求解即可.在距离纪念碑AB 的地面上平放一面镜子E ,人退后到D 处,在镜子里恰好看见纪念碑顶A .若人眼距地面距离为CD ,测量出CD 、DE 、BE 的长,就可算出纪念碑AB 的高.解:设计方案例子:如图,在距离纪念碑AB 的地面上平放一面镜子E ,人退后到D 处,在镜子里恰好看见纪念碑顶A .若人眼距地面距离为CD ,测量出CD 、DE 、BE 的长,就可算出纪念碑AB 的高.理由:测量出CD 、DE 、BE 的长,因为∠CED =∠AEB ,∠D =∠B =90°,易得△ABE ∽△CDE .根据CD AB =DE BE,即可算出AB 的高.方法总结:解题的关键是根据相似三角形的性质设计出具体图形,将实际问题抽象出数学问题求解.变式训练:见《学练优》本课时练习“课后巩固提升”第6题三、板书设计1.利用相似三角形测量物体的高度;2.利用相似三角形测量河的宽度;3.设计方案测量物体高度.通过本节知识的学习,可以使学生综合运用三角形相似的判定和性质解决问题,发展学生的应用意识,加深学生对相似三角形的理解和认识.基本达到了预期的教学目标,大部分学生都学会了建立数学模型,利用相似的判定和性质来解决实际问题.。