第五章 地下水
- 格式:doc
- 大小:110.50 KB
- 文档页数:5
第五章地下水运动的基本规律5. 1 港流基本概念渗流一地卞水在岩石空隙中的运动称为渗流(渗透,地下径流)。
渗流场一发生渗流的区域。
层流运动——水的质点作有秩序的、互不混杂的流动。
紊流运动——水的质点无秩序的、互相混杂的流动。
稳定流一各个运动要素(水位、流速、流向等)不随时间改变的水流运动。
非稳定流——运动要素随时间变化的水流运动。
地卜•水总是从能量校高处流向能量较低处。
能态差异是地卜水运动的驱动力。
地下水的机械能包括动能和势能,水力学中用总水头(hydiaulic head)H表示,水总是从总水头高的地方流向总水头低的地方。
5. 2重力水运动的基本规律1.达西定律(Darcy'sLaw)1856年达西通过实验得到达西定律。
实验在砂柱中进行(P36:图4-1),根据实验结果(流量):Q=KA(H r H2)/L=KAI(5.1)式中:Q为渗透流童(出口处流量,即通过砂柱各断面的体枳流量):A为过水断面的面积(砂柱的横断面积,包括砂颗粒和孔隙面积);Hi比分别为上、卜•游过水断面的水头:L为渗透途径(上、卜•游过水断面的距离):图5. 1I为水力梯度;达西实验装置示意图(据Bear, 1979)K 为渗透系数。
由水力学:Q=vA达西定律也可以另一种形式表达(流速): 由公式(5.1)及Q=\A 得:v=KI式中:£ --- 渗透流速,m/d, cm/s ;K ----- 渗透系数,m/d, cm/s :I —水力梯度,无量纲(比值)。
具体到实际问题:计算流量:H _ HQ = Kw ------- (单位一•般为:m 3/d, L/s)L微分形式:式中:负号表示水流方向与水力梯度方向相反,水流方向(坐标方向):由水位高一 低: 而水力梯度方向:由等水位线低一高。
或V = -KVH ,式中:K 一为渗透系数张最:gradH = 二更i+更了+更二西。
da dy &L若用标量表示,V 的三个分最分别为:得到 v=Q/A (对地下水也适用)(5.2)(5.3)v=-KdHK. —k = -KgradH ■ dz在三维空间中(向量形式):Vy= ~K - dy—K 罗**■ dz2. 渗透流速(V ) (seepage velocity, Daicy velocity )与实际流速(u )渗透流速一水流通过整个过水断面(包括砂砾和孔隙)的流速。
第五章地下水运动的基本规律5. 1 渗流基本概念渗流––––地下水在岩石空隙中的运动称为渗流(渗透,地下径流)。
渗流场––––发生渗流的区域。
层流运动––––水的质点作有秩序的、互不混杂的流动。
紊流运动––––水的质点无秩序的、互相混杂的流动。
稳定流––––各个运动要素(水位、流速、流向等)不随时间改变的水流运动。
非稳定流––––运动要素随时间变化的水流运动。
地下水总是从能量较高处流向能量较低处。
能态差异是地下水运动的驱动力。
地下水的机械能包括动能和势能,水力学中用总水头(hydraulic head)H表示,水总是从总水头高的地方流向总水头低的地方。
5.2 重力水运动的基本规律1.达西定律(Darcy’s Law)1856年达西通过实验得到达西定律。
实验在砂柱中进行(P36:图4—1),根据实验结果(流量):Q=KA(H1-H2)/L=KAI(5.1)式中:Q为渗透流量(出口处流量,即通过砂柱各断面的体积流量);A为过水断面的面积(砂柱的横断面积,包括砂颗粒和孔隙面积);H1 H2分别为上、下游过水断面的水头;L为渗透途径(上、下游过水断面的距离);I为水力梯度;K 为渗透系数。
由水力学:Q=vA得到 v=Q/A(对地下水也适用) (5.2)达西定律也可以另一种形式表达(流速): 由公式(5.1)及Q=V A 得:v=KI (5.3)式中:V ––––渗透流速,m/d ,cm/s ;K ––––渗透系数,m/d ,cm/s ; I ––––水力梯度,无量纲(比值)。
具体到实际问题:计算流量:LH H KwQ 21-=(单位一般为:m 3/d ,L/s ) 微分形式:dxdHKv -= 式中:负号表示水流方向与水力梯度方向相反,水流方向(坐标方向):由水位高→低;而水力梯度方向:由等水位线低→高。
在三维空间中(向量形式):KgradH k zHK j y H K i x H K V z y x-=∂∂-∂∂-∂∂-= 或H K V ∇-=,式中:K ––––为渗透系数张量;H k zHj y H i x H gradH ∇=∂∂+∂∂+∂∂=。
第五章地下水的地质作用一、概述定义:以各种形式埋藏在地表下面土中孔隙、岩石孔隙和裂隙种的水,称为地下水。
研究地下水意义:全地球表层的地下水量估计4亿立方km。
1、地下水是改造地壳表层的地质动力,它的地质作用可以形成千奇百怪的地质景观供人们欣赏;同时是一种重要的矿产,是人畜饮用、农业灌溉及工业供水的重要水源之一。
它不仅可以形成矿产,同时还可以利用它找到矿产。
2、在对人类有利的同时,它还具有不利的一面。
如:1降低岩土体的强度与稳定性,表现:地基沉降,沙土液化,边坡失稳;2道路冻胀与翻浆:温差较大的寒冷地区;3潜蚀作用:冲蚀水颗粒,溶蚀。
3破坏岩土体的整体性,降低其强度和稳定性。
4地下开挖(基坑、隧道)涌水5侵蚀性地下水对工程的腐蚀作用。
6同时还会产生静水、动水压力-对挡墙、桥墩。
二、地下水的形成条件-形成环境(一)地下水的来源:1渗透水:大气降水、冰雪融水、地面流水(江、河、湖、海)等从地面渗入地下积聚成。
2凝结水:水蒸汽凝结成水滴后渗于地下。
3岩浆水:(原生水)地下岩浆活动形成的水(结晶水、水气)。
4埋藏水:(古水)地史中沉积物空隙中的水,被封闭保存下来。
(二)形成条件1)土石条件:1土石体必须有空隙(空隙的大小、多少、连通情况对地下水的形成及储存的影响) 2土体颗粒大小,级配、形状及孔隙度决定透水性(透水层与隔水层及其作用)。
2)构造条件:决定地下水的补、排及径流的情况褶皱构造的情形:背斜、向斜断裂构造的情形:透水性张性>扭性>压性3)气候条件:决定地下水的补给及蒸发量-决定水量4)地貌条件:不仅控制地下水的径流及排泄,而且影响地下水的形成。
5)人为条件:直接影响地下水的水位变化。
(三)地下水的赋存状态1吸着水:靠分子引力及静电引力吸附在土和岩石颗粒表面上的水。
不受重力影响,不被植物吸收。
2薄膜水:包围在吸着水的外层,可以从原处向薄处“移动”,少部分可被植物吸收。
3毛细管水:受表面张力影响,保留在毛细管中,易被植物吸收。
第五章地下水资源计算地下水是水资源的重要组成部分,在区域水资源分析计算中,查清地下水资源的数量、质量及时空分布特点,掌握地下水资源的循环补给规律,了解地下水与地表水之间的转化关系,不仅能为农业生产、水利规划提供科学根据,而且也能为城市规划、工业布局及国防建设等提供可靠的依据。
区域地下水资源分析计算的对象一般指浅层地下水,评价的重点是水量。
多数地区以分析矿化度不大于2g/L的淡水资源为主,有些地区对矿化度2~5g/L的微咸水及大于5g/L的咸水也进行计算与评价。
地下水资源计算的基本方法主要有四大储量法、地下水动力学法、数理统计法及水均衡法等。
水均衡法建立在地下水各补给项、各排泄项和地下含水层蓄变量等区域水平衡分析的基础上,是平原区地下水资源常用的计算方法,本章将主要介绍这种方法。
第一节概述一、地下水的垂直分布地面以下水分在垂直剖面上的分布可以按照岩石空隙中含水的相对比例,以地下水面为界,划分为两个带:饱和带和包气带。
在包气带,岩石的空隙空间一部分被水所占据,还有一部分为空气所占据。
在大多数情况下,饱和带的上部界限,或者是饱和水面,或者覆盖着不透水层,其下部界限则为下伏透水层,如粘土层。
包气带(充气带)从地下水面向上延伸至地面。
它通常可进一步划分为3个带:土壤水带、中间带和毛细管带。
土壤水带的水分形式主要有结合水、毛细水和一些过路性质的重力水。
中间带的水为气态水、结合水和毛细水。
毛细管带内的水分含量随着距潜水面高度的增加而逐渐减少,在毛细管带中,压力小于大气压力,水可以发生水平流动及垂直流动。
饱和带岩石的所有空隙空间均为水所充满,有重力水,也有结合水。
重力水是开发利用的主要对象。
图5.1 地面以下水的分布1.吸湿水它是气态水分子在分子引力和静电引力的作用下吸附在土壤固相颗粒表面的水分(图5.2a)。
吸湿水的水分子与土壤固相表面之间的结合力非常大(大约是3.14×106~1.Ol ×109Pa),水分不能自由移动,不能被植物吸收利用。
第六节地下水的监测一、意义二、监测内容三、监测工作布置原则四、监测方法五、监测资料的整理和应用一、意义地下水对工程岩土体的强度和变形以及对建筑物稳定性的影响,是极为重要的。
例如,在高层建筑深基坑开挖和支护中,由于地下水的作用,可能会导致坑底上鼓溃决、流砂突涌、支护结构移位倾倒、降水引起周围地面沉降而导致建筑物破坏。
因此在深基坑施工过程中要加强地下水的监测。
地下水也是各种不良地质现象产生的重要因素。
作用于滑坡上的孔隙水压力、浮托力和动水压力,直接影响滑坡的稳定性;饱水砂土的管涌和液化、岩溶区的地面塌陷等,无不与地下水的作用息息相关。
因此要对地下水压力、孔隙水压力准确控制,以保证工程顺利、安全施工和正常运行。
地下水的监测是指对地下水的水位、水量、水质、水压、水温及流速、流向等自然或人为因素影响下随时间或空间变化规律的监测。
地下水的监测应根据岩土工程和建筑物稳定性的需要有目的、有计划、有组织地进行。
一、应进行地下水监测的情况(1)地下水位升降影响岩土稳定性时;(2)地下水位上产生浮力对地下室或构筑物的防潮、防水或稳定性产生较大影响时;(3)施工降水对拟建工程或相邻工程有较大影响时;(4)施工或环境条件改变,造成的孔隙水压力、地下水压力变化,对工程设计或施工有较大影响时;(5)地下水位的下降造成区域性地面沉降;(6)地下水位上升可能使沿途发生软化、湿陷、胀缩时;(7)需要进行污染物运移对环境影响的评价时。
二、监测内容地下水的监测应根据工程需要和水文地质条件确定,主要监测内容有:1、水位监测:查明地下水位(最高、最低水位)、水位变化幅度范围;查明地下水位与地表水体(江、河、湖等)、大气降水的联系;2、水质监测:查明地下水的物理、化学成分变化;查明污染源、污染途径、污染程度及对建筑材料的腐蚀等级。
3、水压监测:开挖深基坑、洞室、隧道工程;评价岸边、斜坡稳定性工程;软土地基加固处理工程等,都应对岩土的孔隙或裂隙水压力进行监测。
第五章地下水的结构与运动
•
●地下水系统的组成与结构
●地下水类型
●地下水的补给与排泄
●地下水运动
●地下水的动态与平衡
§5.1 地下水系统的组成与结构
•地下水的贮存空间
•地下水流系统
•地下水系统垂向结构
地下水是存在于地表以下岩(土)层空隙中的各种不同形式水的统称。
一、地下水的贮存空间
1.含水介质、含水层和隔水层
通常把既能透水,又饱含水的多孔介质称为含水介质,这是地下水存在的首要条件。
所谓含水层是指贮存有地下水,并在自然状态或人为条件下,能够流出地下水来的岩体。
对于那些虽然含水,但几乎不透水或透水能力很弱的岩体,称为隔水层。
2.含水介质的空隙性与水理性
含水介质的空隙性:裂隙率(KT)、岩溶率(Kk)与孔隙率(n) 。
含水介质的水理性质:与水分的贮容、运移有关的岩石性质称为含水介质的水理性质,包括岩土的容水性、持水性、给水性、贮水性、透水性及毛细性等。
3.蓄水构造
指由透水岩层与隔水层相互结合而构成的能够富集和贮存地下水的地质构造体。
主要有:单斜蓄水结构、背斜蓄水结构、向斜蓄水结构、断裂型蓄水结构、岩溶型蓄水结构等。
二、地下水流系统
地下水虽然埋藏于地下,难以用肉眼观察,但它象地表上河流湖泊一样,存在集水区域,在同一集水区域内的地下水流,构成相对独立的地下水流系统。
1.地下水流系统的基本特征
在一定的水文地质条件下,汇集于某一排泄区的全部水流,自成一个相对独立的地下水流系统,又称地下水流动系。
与地表水系相比较具有如下的特征:空间上的立体性;流线组合的复杂性和不稳定性;流动方向上的下降与上升的并存性;区域范围一般比较小。
2.地下水域
地下水流系统的集水区域,为立体的集水空间。
地下水域范围变化快,在地表上均存在相应的补给区与排泄区.
三、地下水系统垂向结构
1.地下水垂向层次结构的基本模式
包气带:土壤水带、中间过渡带及毛细水带等3个亚带;存在结合水(包括吸湿水和薄膜水)和毛管水;
饱和水带:潜水带和承压水带两个亚带;存在重力水(包括潜水和承压水)。
2.地下水不同层次的力学结构
分子力、毛细力和重力。
3.地下水体系作用势
重力势、静水压势、渗透压势、吸附势等分势组合为总水势。
§5.2 地下水类型
•地下水基本类型的划分
•包气带水
•饱水带水(潜水和承压水)
•空隙水(孔隙水、裂隙水和岩溶水)
一、地下水基本类型的划分
从地理水文学角度来说,特别重视如下的分类:
1.按地下水的贮存埋藏条件分类
(1)包气带水
结合水(分吸湿水、薄膜水)
毛管水(分毛管悬着水与毛管上升水)
重力水(分上层滞水与渗透重力水)
(2)饱水带水
潜水
承压水(分自流溢水与非自流溢水)
2.按岩土的贮水空隙的差异分类
(1)孔隙水
(2)裂隙水
(3)岩溶水
二包气带水
1.包气带水的特征与包气带的类型
(1)包气带水的主要特征
包气带含水率和剖面分布最容易受外界条件的影响;
包气带在空间上的变化主要体现在垂直剖面上的差异;
包气带含水率变化与岩土层本身、岩土颗粒的机械组成有关;
(2)包气带的类型
厚型:土壤、中间和毛管带.
薄型:厚度不到1米
过渡型:
2.包气带的水分交换与动态
外界水分交换和内部水分的再分配及内排水过程,发生在上、下界面上.
三、潜水
1.潜水的概念和主要特征
饱水带中自地表向下第一个具有自由水面的含水层中的重力水,称为潜水.
潜水位(h)是指潜水面上任一点的海拔高程(m);
潜水埋深(T)是指潜水面距地表的铅直距离(m);
含水层厚度(H)指潜水面至隔水底板的距离(m);
潜水流水力坡度:是指潜水面上任意两点的水位差与该两点的渗透距离之比。
潜水面上无隔水层,与大气相通,压强等于大气压强,不承受静水压力,潜水分布区与补给区基本一致。
潜水含水层通过包气带与地表水及大气圈之间存在密切联系,因此深受外界气象、水文因素的影响,动态变化比较大,呈现明显的季节变化。
2.潜水面形状及其表示方法
(1)潜水面的形状:倾斜、抛物线形和水平等多种形状;
(2)潜水面表示方法:水文地质剖面图和平面图。
3.潜水与地表水之间的互补关系
潜水与地表水之间的这种相互补给和排泄关系,称为水力联系。
(1)具有周期性水力联系;
(2)具有单向的水力联系;
(3)具有间歇性水力联系.
四、承压水
承压水是指充满于两个稳定隔水层之间的含水层中的地下水。
1.承压水的主要特征
承压性、分布区与补给区不同、动态变化相对稳定、水质类型多样。
2.承压水的形成
主要取决于地质构造条件, 最适宜的是向斜构造和单斜构造.
3.承压水等水压线
某一含水层中承压水位相等的各点的连线。
五、空隙水
1.孔隙水
埋藏于松散岩土孔隙中的重力水。
透水性、给水性的变化小,运动呈层流状态。
2.裂隙水
存在于岩石裂隙中的地下水。
埋藏与分布极不均匀,动力性质比较复杂,基岩裂隙的发育具有明显的分带性。
3.岩溶水
在溶隙中贮存、运动的地下水称.分布不均匀, 径流动态不稳定.地表与地下径流及无压流与有压流相互转化。