第5章地下水的稳定渗流运动-资料
- 格式:ppt
- 大小:2.05 MB
- 文档页数:39
《地下水科学概论》一、名词解释。
第一章地下水分布1. 地下水:分布在地下岩石空隙之中的水。
2.岩石的透水性:岩石允许水透过的能力。
3. 结合水:由于固体颗粒表面的静电作用而吸附在颗粒表面的水。
4. 重力水:重力对它的影响大于固体表面对它的吸引力,因而能在自身重力作影响下运动的那部分水。
5. ★☆毛细水:在毛细力作用,水从地下水面沿着细小空隙上升到一定高度,形成一个毛细水带6. 支持毛细水:由于毛细力的作用,水从地下水面沿孔隙上升形成一个毛细水带,此带中的毛细水下部有地下水面支持。
7.孔角毛细水:在包气带中颗粒接点上由毛细力作用而保持的水。
8. 悬挂毛细水:由于上下弯液面毛细力的作用,在细土层会保留与地下水面不相联接的毛细水。
9. 空隙:地下岩石中没有被固体颗粒或固体骨架占据的那一部分空间。
10. 多孔介质:含有空隙的固体称为多孔介质。
11.孔隙:松散的(或未固结的)固体颗粒之间或颗粒集合体之间的空隙。
12.★孔隙度:某一体积的孔隙介质中孔隙体积与孔隙介质体积之比。
13. ★孔隙比:某一体积孔隙介质内孔隙体积与固体颗粒体积之比14. 有效空隙:相互连通而能使水流通过的孔隙称为有效空隙。
15. 孔隙介质的比表面积:一定体积的孔隙介质中所有颗粒的总面积与孔隙介质体积之比。
16.裂隙:固结的和坚硬的岩石在成岩过程中或成岩以后由于受到一些地质营力的作用而形成的沿一定平面方向展布的空隙。
17.★裂隙率:一定体积的裂隙介质内裂隙的体积与裂隙介质体积之比。
18.溶穴:可溶的沉积岩在地下水溶蚀下产生的空洞。
19.岩溶率:一定体积的岩溶介质内溶穴的体积与岩溶介质体积之比。
20. ☆容水度:一定体积的多孔介质完全被水饱和时所能容纳的水的体积与多孔介质体积之比。
21.★持水度:地下水位下降一个单位深度,单位水平面积岩石柱体中反抗重力而保持于岩石空隙中的水量。
22. ★☆给水度:一定体积的饱水多孔介质在重力作用下释放出的水体积与多孔介质体积之比(重力给水度:地下水位下降一个单位深度,从地下水位延伸到地表面的单位水平面积岩石柱体,在重力作用下释出的水的体积)。
内容主要有:(1)渗流理论基础;(2)地下水向河渠的稳定运动;(3)地下水向完整井的稳定运动;(4)地下水向完整井的非稳定运动;(5)地下水向边界附近井的稳定和非稳定运动。
重点考核地下水运动的基本概念、基本原理和方法。
题目类型有名词解释、判断题、作图题和计算题等,其中计算题占试题总分数的65%。
《地下水动力学》复习要点第一章 渗流理论基础一、基本内容1、基本概念:多孔介质、贮水率、贮水系数(弹性给水度)、渗流、渗流速度及与实际速度关系、水头(位置水头、测压管水头)、水力坡度、渗透系数、渗透率、导水系数、各向异性介质、各向同性介质、均质与非均质、水流折射原理、流网、dupuit 假设、第一类边界条件、第二类边界条件等2、基本定律:达西定律及适用范围3、描述地下水运动的方程:渗流连续性方程、承压水运动的基本微分方程、潜水运动的基本微分方程、越流含水层地下水非稳定流运动方程4、定解条件(初始条件、边界条件),数值方法基本思想二、要求1、理解并掌握上述概念和理论2、用达西定律分析水头线的变化或根据流网分析水文地质条件变化;3、给定水文地质条件,能正确画出反映地下水运动特点的流网图;4、给定水文地质模型和水文地质条件,写出反映地下水运动的基本方程(给定假设条件,建立数学模型,包括初始条件、边界条件)第二章 河间地块地下水的稳定运动一、基本内容有入渗时河间地块潜水的稳定运动问题(水文地质模型、假设条件、数学模型、流网、任意过水断面流量、分水岭移动规律、水头线)、无入渗时潜水的稳定运动、承压水的稳定运动,水在承压—无压含水层中的运动,非均质含水层中水的运动问题。
二、学习要求根据给定问题的水文地质条件,用相关公式计算过水断面流量或水位。
三、常用公式 1、承压含水层(达西定律) l H H m m kq 21212++= x lH H H H 211--= 2、无入渗潜水含水层(达西定律)l h h h h k q 21212-+= x lh h h h 2122212-+= 3、有入渗时潜水 wx wl l h h k q +--=2122221 )(22122212x lx kw x l h h h h -+-+= 4、分水岭位置 l h h w k l a 222221--= 5、其它流动问题(水平层状含水层、非均质含水层、承压—无压含水层、厚度或水流厚度沿流向变化等)第三章 地下水向完整井的稳定运动一、 基本概念:完整井、不完整井、水井及周围水位(水头)、稳定井流条件(定水头边界、越流、入渗补给)、井损与水跃、影响半径与引用影响半径、叠加原理、均匀流及平面或剖面流网二、学习要求1、掌握地下水向承压水井和潜水井运动问题的假设条件、数学模型、平面或剖面流网特征2、利用有关公式计算抽水量、降深或利用抽水试验资料(已知降深或水位),求含水层参数(导水系数或渗透系数)3、应用叠加原理地下水向完整井群的稳定运动问题。
7 地下水运动规律地下水在岩石空隙中的运动,可以在饱水的岩层中或非饱水的岩层中进行。
实际生产中提出不少课题,都涉及地下水的运动规律。
地下水运动是发生在岩石或土体空隙中的。
它和地表水流不同,其主要区别是地下水的运动缓慢,运动空间既有水流又有岩土颗粒存在,运动的阻力很大,地下水流在岩土空隙中作弯弯曲曲的复杂运动,研究地下水每个质点的运动情况即不可能又没必要。
地表水流中水质点充满于整个流速场,水流是连续的。
7.1 渗流的基本概念地下水在岩石空隙(孔隙、裂隙及溶隙)中的运动称为渗流。
研究渗流具有以下几方面的应用:(1)在生产建设部门:如水利、化工、地质、采掘等部门。
(2)土建方面:如给水、排灌工程、水工建筑物、建筑施工。
(3)合理开发利用地下水资源(地下水回灌)防止水污染方面。
(4)保持路基处于干燥稳固状态并防止冻害—降低地下水水位。
(5)涉及地下水流动的集水或排水建筑物—单井、井群、集水廊道、基坑、机井、坎儿井。
7.1.1 水在土壤中的状态水在土壤中的状态可以分为汽态水,附着水,薄膜水,毛细水和重力水等类型,其中对渗流起主导作用的是重力水与毛细水。
(1)重力水(Gravitational water):指在重力及液体动水压强作用下流动的水,是本章主要研究的对象。
重力水与毛细水的界面为潜水面,浸润面(Water table)。
(2)毛细水(capillarywater):指的是地下水受土粒间孔隙的毛细作用上升的水分。
毛细水是受到水与空气交界面处表面张力作用的自由水。
7.1.2 土的渗流特性透水性指土壤允许水透过的性能,用渗透系数k的大小表示其透水强弱。
土壤透水性能不随地点改变的土称为均质土(Homogeneous soil);否则为非均质土(Heterogeneous soil)。
土壤在同一地点的各个方向的透水性能都相同(各个方向的渗透系数相同)的土为各问同性土(Isotropic soil),否则为各向异性土(Anisotropic soil)。
渗流稳定计算范文渗流稳定计算是地下水渗流方面的一种数学计算方法,主要用于预测地下水流动的稳定性。
地下水是地球表面下方的水层,它以不同的形式、速度和方向流动。
在一些情况下,地下水流动可能会发生不稳定,造成地质灾害或其他问题。
因此,渗流稳定计算对于地下水管理和地质工程设计至关重要。
渗流稳定计算的基本原理是通过确定其中一种条件下水流的稳定性和可能的不稳定性。
这包括确定渗流的速度、压力和方向,并预测可能引起不稳定的因素和潜在的灾害。
为了进行渗流稳定计算,需要收集和分析地下水位、地下水渗透率、地下水流速、地下水压差等数据。
然后,利用这些数据和适当的模型和方法,可以计算出地下水流动的稳定性。
渗流稳定计算可以使用多种方法和模型来进行。
其中一种常用的方法是有限元分析。
有限元分析可以将复杂的渗透性介质分解为许多小的有限元素,并通过数值求解方法来计算地下水流动的稳定性。
另一种常用的方法是分析地下水位梯度和渗透率变化之间的关系。
如果地下水位梯度和渗透率变化之间存在不平衡,可能会引发渗流不稳定。
为了进行渗流稳定计算,还需要考虑一些关键的因素。
其中之一是地下水位的变化。
地下水位的变化可能会导致渗流的压力变化,从而引发渗流的不稳定。
另一个关键因素是地下水位的梯度。
地下水位的梯度越大,地下水渗流越稳定。
此外,渗透率的变化和地下水的供给也是影响渗流稳定性的因素。
渗流稳定计算的结果可以用于地下水管理和地质工程设计。
例如,在一些具有高地下水位的地区,稳定的渗流计算可以帮助决定何时漏水泄漏,并采取适当的措施来预防漏水。
在地质工程设计中,渗流稳定计算可以用于确定岩土工程的稳定性,例如土体的稳定性和地下工程的稳定性。
总之,渗流稳定计算是地下水渗流方面的一种重要计算方法,它可以用于预测地下水流动的稳定性。
通过收集和分析相关数据,并使用适当的模型和方法,可以计算出地下水流动的稳定性,并提供决策支持和相关工程设计。
渗流稳定计算对于地下水管理和地质工程设计具有重要意义。
第四章地下水运动的基本规律地下水和固体矿产一样都是资源,但固体矿产开完就完,而水资源开采后还可以恢复,它与森林农作物一样,属于可再生资源。
由于水在不断的运动,就引起许多与固体矿产的不同,水的情况要复杂的多。
地下水在自然因素和人为因素共同作用下,处在不断的运动中,运动中必然要与环境发生作用,改造了环境,也改造了本身,使其水质、水量发生这着相应的变化。
这种变化状态信息。
反映着地下水的运动规律。
所以,研究地下水的运动规律在理论与实践上都有重要的意义,已经形成一门独立的学科—地下水动力学。
它研究地下水在各种状态下、各种存在形式、各种埋藏条件下的运动规律。
一、有关概念及地下水的运动形式(一)、基本概念1、渗流与渗流场—地下水在岩空隙中的运动叫渗流。
渗流范围叫渗流场。
由于地表水与地下水的运动空间性质相差甚大,故二者的运动状态大不相同。
地表水运动叫水流;地下水地下水是在岩石空隙中运动,必然受到介质的阻滞而消耗能量,其运动速度将远远小于地表水流;其运动状也就不同于地表水流,只能是渗透在迂回曲折的空隙之中的渗流。
渗流场中水的运动特点:水质点的运动速度和方向不断变化;地下水的运动要素(水位、流速、流向等)常常不是空间的连续函数。
因为地下水的任何一种空隙介质通道都是不规则的,都是由大小不等、形状各异的孔隙、裂隙、溶穴连接而成,对地下水的阻滞作用各不相同,情况非常复杂,即实际的地下水流的时空状态十分复杂,在理论上无法逼真,使得地下水运动的理论研究十分困难。
为此,人们采用平均化(概化)的方法来研究地下水宏观的运动规律。
即用一种假想的水流来代替实际上很复杂的渗流,将此假想的渗流当作连续的水流来处理。
如此,即可将渗流场中地下水运动要素作为时间和空间的连续函数了,使问题简单化。
(微分学中时间取小段,变按不变算的思路也是一种平均化的处理方法)。
2、渗透流速与实际流速①过水断面—垂直于渗流方向的含水层断面。
(A假想断面B实际断面)A假想断面—空隙与固体骨架构成的整个断面。
渗流的概念一、前言渗流是地下水运动的一种形式,也是地下水资源利用和管理的一个重要方面。
本文将从渗流的定义、特点、影响因素、分类以及应用等方面进行详细阐述,旨在让读者全面了解渗流的概念。
二、定义渗流是指地下水在孔隙或裂隙中沿着压力梯度运动的过程。
当地下水处于不饱和状态时,由于孔隙中存在气体,地下水会遭受毛细力的作用而上升;而当地下水处于饱和状态时,则会沿着压力梯度向低压区域运动。
三、特点1. 与地表径流相比,渗流速度较慢且难以观测;2. 渗流路径受到土壤类型、孔隙结构和含水层分布等因素的影响;3. 渗透能力强的土壤能够促进渗流;4. 渗流对于土壤中物质输移有重要作用。
四、影响因素1. 土壤类型:不同类型的土壤具有不同的孔隙结构和含水层分布,从而影响了渗透能力和渗流路径;2. 孔隙结构:孔隙大小、分布和连通性等都会影响渗透能力和渗流路径;3. 含水层分布:含水层的分布情况会影响地下水的压力梯度,从而影响渗流方向和速度;4. 地形地貌:地形高低起伏、河流湖泊等地貌因素都会影响地下水的运动。
五、分类1. 自由渗流:指孔隙或裂隙中的地下水在不受外界压力作用下自由运动;2. 强迫渗流:指孔隙或裂隙中的地下水受到外界压力作用而运动,例如井涌现象。
六、应用1. 渗透试验:通过测量不同土壤类型的渗透能力,确定其对于渗流的促进程度;2. 地下水资源管理与利用:了解含水层分布和土壤类型等因素对于渗透能力和渗流路径的影响,有助于更好地管理和利用地下水资源;3. 土壤污染控制:了解渗流对于土壤中物质输移的作用,有助于制定有效的土壤污染控制策略。
七、结语渗流作为地下水运动的一种形式,对于地下水资源利用和管理具有重要意义。
通过了解渗流的定义、特点、影响因素、分类以及应用等方面,可以更好地认识和利用地下水资源。