高考数学(文科)一轮总复习【第1篇】集合与常用逻辑用语 专题一(第一篇)
- 格式:ppt
- 大小:4.12 MB
- 文档页数:14
高考数学一轮总复习学案:第1讲集合及其运算1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R [注意] N为自然数集(即非负整数集),包含0,而N*和N+的含义是一样的,表示正整数集,不包含0.2.集合间的基本关系表示关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A B(或B A)集合相等集合A,B中元素相同A=B集合的并集集合的交集集合的补集图形 语言符号 语言A ∪B ={x |x ∈A 或x ∈B }A ∩B ={x |x ∈A 且x ∈B }∁U A ={x |x ∈U 且x ∉A }4.集合的运算性质(1)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (2)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U ,∁U (∁U A )=A . 常用结论(1)对于有限集合A ,其元素个数为n ,则集合A 的子集个数为2n ,真子集个数为2n-1,非空真子集个数为2n-2.(2)A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B .(3)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( ) (2)若{x 2,1}={0,1},则x =0,1.( ) (3){x |x ≤1}={t |t ≤1}.( )(4)对于任意两个集合A ,B ,(A ∩B )⊆(A ∪B )恒成立.( ) (5)若A ∩B =A ∩C ,则B =C .( ) 答案:(1)× (2)× (3)√ (4)√ (5)× 二、易错纠偏常见误区| (1)忽视集合中元素的互异性致误; (2)忽视空集的情况致误; (3)忽视区间端点值致误.1.已知集合A ={1,3,m },B ={1,m },若B ⊆A ,则m =________.解析:因为B ⊆A ,所以m =3或m =m ,即m =3或m =0或m =1,根据集合元素的互异性可知,m ≠1,所以m =0或3.答案:0或32.已知集合M ={x |x -2=0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值是________. 解析:易得M ={2}.因为M ∩N =N ,所以N ⊆M ,所以N =∅或N =M ,所以a =0或a =12.答案:0或123.已知集合A ={x |x 2-4x +3<0},B ={x |2<x <4},则A ∩B =________,A ∪B =________,(∁R A )∪B =________.解析:由已知得A ={x |1<x <3},B ={x |2<x <4},所以A ∩B ={x |2<x <3},A ∪B ={x |1<x <4},(∁R A )∪B ={x |x ≤1或x >2}.答案:(2,3) (1,4) (-∞,1]∪(2,+∞)集合的概念(自主练透)1.设集合A ={0,1,2,3},B ={x |-x ∈A ,1-x ∉A },则集合B 中元素的个数为( ) A .1 B .2 C .3D .4解析:选A .若x ∈B ,则-x ∈A ,故x 只可能是0,-1,-2,-3,当0∈B 时,1-0=1∈A ;当-1∈B 时,1-(-1)=2∈A ; 当-2∈B 时,1-(-2)=3∈A ; 当-3∈B 时,1-(-3)=4∉A ,所以B ={-3},故集合B 中元素的个数为1.2.已知集合A ={x |x ∈Z ,且32-x ∈Z },则集合A 中的元素个数为( )A .2B .3C .4D .5解析:选C .因为32-x ∈Z ,所以2-x 的取值有-3,-1,1,3,又因为x ∈Z ,所以x的值分别为5,3,1,-1,故集合A 中的元素个数为4.3.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 解析:由题意得m +2=3或2m 2+m =3,则m =1或m =-32.当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意; 当m =-32时,m +2=12,而2m 2+m =3,符合题意,故m =-32.答案:-324.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba,b ,则b -a =________.解析:因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则b a =-1,所以a =-1,b =1.所以b -a =2.答案:2解决集合概念问题的3个关键点(1)确定构成集合的元素; (2)确定元素的限制条件;(3)根据元素特征(满足的条件)构造关系式解决相应问题.[提醒] 含字母的集合问题,在求出字母的值后,需要验证集合的元素是否满足互异性.集合的基本关系(典例迁移)(1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则( ) A .B ⊆A B .A =B C .AB D .BA(2)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(3)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.【解析】 (1)由x 2-3x +2=0得x =1或x =2,所以A ={1,2}.由题意知B ={1,2,3,4},比较A ,B 中的元素可知AB ,故选C .(2)因为A ={1,2},B ={1,2,3,4},A ⊆C ⊆B ,则集合C 可以为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.(3)因为B ⊆A ,所以①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为m ≤3. 【答案】 (1)C (2)D (3)(-∞,3]【迁移探究1】 (变条件)本例(3)中,若B A ,求m 的取值范围?解:因为BA ,①若B =∅,成立,此时m <2.②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5,且边界点不能同时取得,解得2≤m ≤3.综合①②,m 的取值范围为(-∞,3].【迁移探究2】 (变条件)本例(3)中,若A ⊆B ,求m 的取值范围.解:若A ⊆B ,则⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3.所以m 的取值范围为∅.【迁移探究3】 (变条件)若将本例(3)中的集合A 改为A ={x |x <-2或x >5},试求m 的取值范围.解:因为B ⊆A ,所以①当B =∅时,2m -1<m +1,即m <2,符合题意.②当B ≠∅时,⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2, 解得⎩⎪⎨⎪⎧m ≥2,m >4或⎩⎪⎨⎪⎧m ≥2,m <-12.即m >4.综上可知,实数m 的取值范围为(-∞,2)∪(4,+∞).[提醒] 题目中若有条件B ⊆A ,则应分B =∅和B ≠∅两种情况进行分类讨论.1.设集合M ={x |x 2-x >0},N =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫1x<1,则( )A .MN B .N MC .M =ND .M ∪N =R解析:选C .集合M ={x |x 2-x >0}={x |x >1或x <0},N =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫1x<1={x |x >1或x <0},所以M =N .故答案为C .2.设M 为非空的数集,M ⊆{1,2,3},且M 中至少含有一个奇数元素,则这样的集合M 共有( )A .6个B .5个C .4个D .3个解析:选A .由题意知,M ={1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.3.若集合A ={1,2},B ={x |x 2+mx +1=0,x ∈R },且B ⊆A ,则实数m 的取值范围为________.解析:①若B =∅,则Δ=m 2-4<0, 解得-2<m <2,符合题意; ②若1∈B ,则12+m +1=0,解得m =-2,此时B ={1},符合题意; ③若2∈B ,则22+2m +1=0,解得m =-52,此时B =⎩⎨⎧⎭⎬⎫2,12,不合题意. 综上所述,实数m 的取值范围为[-2,2). 答案:[-2,2)集合的基本运算(多维探究) 角度一 集合的运算(1)(2020·高考全国卷Ⅰ)已知集合A ={x |x 2-3x -4<0},B ={-4,1,3,5},则A ∩B =( )A .{-4,1}B .{1,5}C .{3,5}D .{1,3}(2)(2021·东北三校第一次联考)已知全集U =R ,集合A ={x |x 2-2x -3<0},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x >1,则∁U (A ∪B )= ( ) A .(-∞,-1)∪(3,+∞) B .(-∞,-1]∪[3,+∞) C .[3,+∞)D .(-∞,-1]∪[1,+∞)(3)(2020·高考全国卷Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6【解析】 (1)方法一:由x 2-3x -4<0,得-1<x <4,即集合A ={x |-1<x <4},又集合B ={-4,1,3,5},所以A ∩B ={1,3},故选D .方法二:因为(-4)2-3×(-4)-4>0,所以-4∉A ,故排除A ;又12-3×1-4<0,所以1∈A ,则1∈(A ∩B ),故排除C ;又32-3×3-4<0,所以3∈A ,则3∈(A ∩B ),故排除B .故选D .方法三:观察集合A 与集合B ,发现3∈A ,故3∈(A ∩B ),所以排除选项A 和B ,又52-3×5-4>0,所以5∉A ,5∉(A ∩B ),排除C .故选D .(2)由已知,得A ={x |-1<x <3},B ={x |0<x <1},所以A ∪B ={x |-1<x <3},所以∁U (A ∪B )={x |x ≤-1或x ≥3},故选B .(3)由题意得,A ∩B ={(1,7),(2,6),(3,5),(4,4)},所以A ∩B 中元素的个数为4,选C .【答案】 (1)D (2)B (3)C集合运算的常用方法(1)若集合中的元素是离散的,常用Venn 图求解.(2)若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况. 角度二 利用集合的运算求参数(1)(2020·高考全国卷Ⅰ)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B={x |-2≤x ≤1},则a =( )A .-4B .-2C .2D .4(2)(2021·福州市适应性考试)已知集合A ={(x ,y )|2x +y =0},B ={(x ,y )|x +my +1=0}.若A ∩B =∅,则实数m =( )A .-2B .-12C .12D .2【解析】 (1)方法一:易知A ={x |-2≤x ≤2},B ={x |x ≤-a2},因为A ∩B ={x |-2≤x ≤1},所以-a2=1,解得a =-2.故选B .方法二:由题意得A ={x |-2≤x ≤2}.若a =-4,则B ={x |x ≤2},又A ={x |-2≤x ≤2},所以A ∩B ={x |-2≤x ≤2},不满足题意,排除A ;若a =-2,则B ={x |x ≤1},又A ={x |-2≤x ≤2},所以A ∩B ={x |-2≤x ≤1},满足题意;若a =2,则B ={x |x ≤-1},又A ={x |-2≤x ≤2},所以A ∩B ={x |-2≤x ≤-1},不满足题意,排除C ;若a =4,则B ={x |x ≤-2},又A ={x |-2≤x ≤2},所以A ∩B ={x |x =-2},不满足题意.故选B .(2)因为A ∩B =∅,所以直线2x +y =0与直线x +my +1=0平行,所以m =12,故选C .【答案】 (1)B (2)C利用集合的运算求参数的值或取值范围的方法(1)对于与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到; (2)若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.[提醒] 在求出参数后,注意对结果的验证(满足互异性).1.(2021·河北九校第二次联考)已知集合A ={x |x 2-x -2<0,x ∈Z },B ={y |y =2x,x ∈A },则A ∪B =( )A .{1}B .{0,1,2}C .⎩⎨⎧⎭⎬⎫12,1,2,4 D .{0,1,2,4}解析:选B .A ={x |-1<x <2,x ∈Z }={0,1},B ={y |y =2x,x ∈A }={1,2},所以A ∪B ={0,1,2},故选B .2.(2021·四省八校第二次质量检测)若全集U =R ,集合A =(-∞,-1)∪(4,+∞),B ={x ||x |≤2},则如图阴影部分所表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤2或x ≥4}C .{x |-2≤x ≤-1}D .{x |-1≤x ≤2}解析:选D .∁U A ={x |-1≤x ≤4},B ={x |-2≤x ≤2},则所求阴影部分所表示的集合为C ,则C =(∁U A )∩B ={x |-1≤x ≤2}.3.(2021·广东省七校联考)设集合A ={1,2,4},B ={x |x 2-4x +m =0},若A ∩B ={1},则B =( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5}解析:选C .由题意可得1-4+m =0,解得m =3,所以B ={x |x 2-4x +3=0}={1,3},故选C .核心素养系列1 数学抽象——集合的新定义问题以集合为背景的新定义问题常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生对新概念的理解,充分体现了核心素养中的数学抽象.若集合A 具有以下性质: (1)0∈A ,1∈A ;(2)若x ∈A ,y ∈A ,则x -y ∈A ,且x ≠0时,1x∈A .则称集合A 是“好集”. 给出下列说法:①集合B ={-1,0,1}是“好集”;②有理数集Q 是“好集”③设集合A 是“好集”,若x ∈A ,y ∈A ,则x +y ∈A .其中,正确说法的个数是( )A .0B .1C .2D .3【解析】 ①集合B 不是“好集”,假设集合B 是“好集”,因为-1∈B ,1∈B ,所以-1-1=-2∈B ,这与-2∉B 矛盾.②有理数集Q 是“好集”,因为0∈Q ,1∈Q ,对任意的x ∈Q ,y ∈Q ,有x -y ∈Q ,且x ≠0时,1x∈Q ,所以有理数集Q 是“好集”.③因为集合A 是“好集”,则0∈A ,由性质(2)知,若y ∈A ,则0-y ∈A ,知-y ∈A ,因此x -(-y )=x +y ∈A ,所以③正确.故正确的说法是②③.故选C .【答案】 C解决集合的新定义问题的两个切入点(1)正确理解新定义.这类问题不是简单的考查集合的概念或性质问题,而是以集合为载体的有关新定义问题.常见的命题形式有新概念、新法则、新运算等;(2)合理利用集合性质.运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,但关键之处还是合理利用集合的运算与性质.1.如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x ,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =________.解析:由题意可知-2x =x 2+x ,所以x =0或x =-3.而当x=0时不符合元素的互异性,所以舍去.当x=-3时,A={-6,0,6},所以A∩B={0,6}.答案:{0,6}2.设A,B是非空集合,定义A⊗B={x|x∈A∪B且x∉A∩B}.已知集合A={x|0<x<2},B={y|y≥0},则A⊗B=________.解析:由已知A={x|0<x<2},B={y|y≥0},又因为新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).答案:{0}∪[2,+∞)。
第一章集合与常用逻辑用语第一讲集合练好题·考点自测1.下列说法正确的是()①集合{x∈N|x3=x},用列举法表示为{—1,0,1}。
②{x|y=x2}={y|y=x2}={(x,y)|y=x2}.③方程√x-2021+(y+2 022)2=0的解集为{2 021,—2 022}.④若5∈{1,m+2,m2+4},则m的取值集合为{1,-1,3}。
⑤若P∩M=P∩N=A,则A⊆(M∩N)。
⑥设U=R,A={x|lg x〈1},则∁U A={x|lg x≥1}={x|x≥10}.A.①③④B.⑤⑥C.⑤ D。
②⑤2.[2021大同市高三调研测试]已知集合A满足{0,1}⊆A⫋{0,1,2,3},则满足条件的集合A的个数为()A.1 B.2 C。
3 D。
43。
[易错题]已知集合A={x|1〈1},则∁R A=()x-1A.(-∞,2]B.[1,2]C。
(1,2] D。
(—∞,2)4.[2020全国卷Ⅲ,1,5分][文]已知集合A={1,2,3,5,7,11},B={x|3<x〈15},则A∩B中元素的个数为()A。
2 B.3 C。
4 D.55.[2020全国卷Ⅰ,1,5分][文]已知集合A={x|x2-3x—4<0},B={-4,1,3,5},则A∩B=()A.{-4,1} B.{1,5}C.{3,5}D.{1,3}6.[2020全国卷Ⅱ,1,5分]已知集合U={—2,—1,0,1,2,3},A={-1,0,1},B={1,2},则∁U(A∪B)=()A.{—2,3}B。
{-2,2,3}C。
{—2,—1,0,3}D.{—2,—1,0,2,3}拓展变式1.[2020全国卷Ⅲ,1,5分]已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A。
2 B。
3 C。
4 D.62。
(1)[2021大同市调研测试]已知集合A={x|x2-x-2<0},B={x|-1〈x<1},则()A。
2020年高考文科数学专题一集合与常用逻辑用语集合概念及其基本理论,是近代数学最基本的内容之一,集合的语言、思想、观点渗透于中学数学内容的各个分支.有关常用逻辑用语的常识与原理始终贯穿于数学的分析、推理与计算之中,学习关于逻辑的有关知识,可以使我们对数学的有关概念理解更透彻,表达更准确.关注本专题内容在其他各专题中的应用是学习这一专题内容时要注意的.§1-1 集合【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【复习要求】1.对于给定的集合能认识它表示什么集合.在中学常见的集合有两类:数集和点集.2.能正确区分和表示元素与集合,集合与集合两类不同的关系.3.掌握集合的交、并、补运算.能使用韦恩图表达集合的关系及运算.4.把集合作为工具正确地表示函数的定义域、值域、方程与不等式的解集等.【例题分析】例1 给出下列六个关系:(1)0∈N*(2)0∉{-1,1} (3)∅∈{0}(4)∅∉{0} (5){0}∈{0,1} (6){0}⊆{0}其中正确的关系是______.【答案】(2)(4)(6)【评析】1.熟悉集合的常用符号:不含任何元素的集合叫做空集,记作∅;N表示自然数集;N+或N*表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集.2.明确元素与集合的关系及符号表示:如果a是集合A的元素,记作:a∈A;如果a 不是集合A的元素,记作:a∉A.3.明确集合与集合的关系及符号表示:如果集合A中任意一个元素都是集合B的元素,那么集合A叫做集合B的子集.记作:A⊆B或B⊇A.如果集合A是集合B的子集,且B中至少有一个元素不属于A,那么,集合A叫做集合B的真子集.A B或B A.4.子集的性质:①任何集合都是它本身的子集:A⊆A;②空集是任何集合的子集:∅⊆A;提示:空集是任何非空集合的真子集.③传递性:如果A⊆B,B⊆C,则A⊆C;如果A B,B C,则A C.例2已知全集U={小于10的正整数},其子集A,B满足条件(U A)∩(U B)={1,9},A∩B={2},B∩(U A)={4,6,8}.求集合A,B.【答案】A={2,3,5,7},B={2,4,6,8}.【解析】根据已知条件,得到如图1-1所示的韦恩图,图1-1于是,韦恩图中的阴影部分应填数字3,5,7.故A={2,3,5,7},B={2,4,6,8}.【评析】1、明确集合之间的运算对于两个给定的集合A、B,由既属于A又属于B的所有元素构成的集合叫做A、B的交集.记作:A∩B.对于两个给定的集合A、B,把它们所有的元素并在一起构成的集合叫做A、B的并集.记作:A∪B.如果集合A是全集U的一个子集,由U中不属于A的所有元素构成的集合叫做A在U 中的补集.记作U A.2、集合的交、并、补运算事实上是较为复杂的“且”、“或”、“非”的逻辑关系运算,而韦恩图可以将这种复杂的逻辑关系直观化,是解决集合运算问题的一个很好的工具,要习惯使用它解决问题,要有意识的利用它解决问题.例3 设集合M ={x |-1≤x <2},N ={x |x <a }.若M ∩N =∅,则实数a 的取值范围是______.【答案】(-∞,-1].【评析】本题可以通过数轴进行分析,要特别注意当a 变化时是否能够取到区间端点的值.象韦恩图一样,数轴同样是解决集合运算问题的一个非常好的工具.例4 设a ,b ∈R ,集合},,0{},,1{b aba b a =+,则b -a =______. 【答案】2【解析】因为},,0{},,1{b a b a b a =+,所以a +b =0或a =0(舍去,否则ab没有意义), 所以,a +b =0,ab=-1,所以-1∈{1,a +b ,a },a =-1, 结合a +b =0,b =1,所以b -a =2.练习1-1一、选择题1.给出下列关系:①R ∈21;②2∉Q ;③|-3|∉N *;④Q ∈-|3|.其中正确命题的个数是( ) (A)1(B)2(C)3(D)42.下列各式中,A 与B 表示同一集合的是( ) (A)A ={(1,2)},B ={(2,1)} (B)A ={1,2},B ={2,1}(C )A ={0},B =∅(D)A ={y |y =x 2+1},B ={x |y =x 2+1}3.已知M ={(x ,y )|x >0且y >0},N ={(x ,y )|xy >0},则M ,N 的关系是( ) (A)M N(B)N M(C)M =N(D)M ∩N =∅4.已知全集U =N ,集合A ={x |x =2n ,n ∈N },B ={x |x =4n ,n ∈N },则下式中正确的关系是( ) (A)U =A ∪B (B)U =(U A )∪B(C)U =A ∪(U B )(D)U =(U A )∪(U B )二、填空题5.已知集合A={x|x<-1或2≤x<3},B={x|-2≤x<4},则A∪B=______.6.设M={1,2},N={1,2,3},P={c|c=a+b,a∈M,b∈N},则集合P中元素的个数为______.7.设全集U=R,A={x|x≤-3或x≥2},B={x|-1<x<5},则(U A)∩B=______. 8.设集合S={a0,a1,a2,a3},在S上定义运算⊕为:a i⊕a j=a k,其中k为i+j被4除的余数,i,j=0,1,2,3.则a2⊕a3=______;满足关系式(x⊕x)⊕a2=a0的x(x∈S)的个数为______.三、解答题9.设集合A={1,2},B={1,2,3},C={2,3,4},求(A∩B)∪C.10.设全集U={小于10的自然数},集合A,B满足A∩B={2},(U A)∩B={4,6,8},(A)∩(U B)={1,9},求集合A和B.U11.已知集合A={x|-2≤x≤4},B={x|x>a},①A∩B≠∅,求实数a的取值范围;②A∩B≠A,求实数a的取值范围;③A∩B≠∅,且A∩B≠A,求实数a的取值范围.§1-2 常用逻辑用语【知识要点】1.命题是可以判断真假的语句.2.逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题.可以利用真值表判断复合命题的真假.3.命题的四种形式原命题:若p则q.逆命题:若q则p.否命题:若⌝p,则⌝q.逆否命题:若⌝q,则⌝p.注意区别“命题的否定”与“否命题”这两个不同的概念.原命题与逆否命题、逆命题与否命题是等价关系.4.充要条件如果p⇒q,则p叫做q的充分条件,q叫做p的必要条件.如果p⇒q且q⇒p,即q⇔p则p叫做q的充要条件,同时,q也叫做p的充要条件.5.全称量词与存在量词【复习要求】1.理解命题的概念.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.2.了解逻辑联结词“或”、“且”、“非”的含义.3.理解全称量词与存在量词的意义.能正确地对含有一个量词的命题进行否定.【例题分析】例 1 分别写出由下列命题构成的“p∨q”“p∧q”“⌝p”形式的复合命题,并判断它们的真假.(1)p:0∈N,q:1∉N;(2)p:平行四边形的对角线相等,q:平行四边形的对角线相互平分.【解析】(1)p∨q:0∈N,或1∉N;p∧q:0∈N,且1∉N;⌝p:0∉N.因为p真,q假,所以p∨q为真,p∧q为假,⌝p为假.(2)p∨q:平行四边形的对角线相等或相互平分.p∧q:平行四边形的对角线相等且相互平分.⌝p:存在平行四边形对角线不相等.因为p假,q真,所以p∨q为真,p∧q为假,⌝p为真.【评析】判断复合命题的真假可以借助真值表.例2 分别写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若a2+b2=0,则ab=0;(2)若A∩B=A,则A B.【解析】(1)逆命题:若ab=0,则a2+b2=0;是假命题.否命题:若a2+b2≠0,则ab≠0;是假命题.逆否命题:若ab≠0,则a2+b2≠0;是真命题.(2)逆命题:若A B,则A∩B=A;是真命题.否命题:若A∩B≠A,则A不是B的真子集;是真命题.逆否命题:若A不是B的真子集,则A∩B≠A.是假命题.【评析】原命题与逆否命题互为逆否命题,同真同假;逆命题与逆否命题也是互为逆否命题.例3 指出下列语句中,p是q的什么条件,q是p的什么条件.(1)p:(x-2)(x-3)=0;q:x=2;(2)p:a≥2;q:a≠0.【解析】由定义知,若p⇒q且q p,则p是q的充分不必要条件;若p q且q⇒p,则p是q的必要不充分条件;若p⇒q且q⇒p,p与q互为充要条件.于是可得(1)中p是q的必要不充分条件;q是p的充分不必要条件.(2)中p是q的充分不必要条件;q是p的必要不充分条件.【评析】判断充分条件和必要条件,首先要搞清楚哪个是条件哪个是结论,剩下的问题就是判断p与q之间谁能推出谁了.例4设集合M={x|x>2},N={x|x<3},那么“x∈M或x∈N”是“x∈M∩N”的( )(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)非充分条件也非必要条件【答案】B【解析】条件p:x∈M或x∈N,即为x∈R;条件q:x∈M∩N,即为{x∈R|2<x<3}.又R{x∈R|2<x<3},且{x∈R|2<x<3}⊆R,所以p是q的必要非充分条件,选B.【评析】当条件p和q以集合的形式表现时,可用下面的方法判断充分性与必要性:设满足条件p的元素构成集合A,满足条件q的元素构成集合B,若A⊆B且B A,则p是q 的充分非必要条件;若A B且B⊆A,则p是q的必要非充分条件;若A=B,则p与q互为充要条件.例5命题“对任意的x∈R,x3-x2+1≤0”的否定是( )(A)不存在x∈R,x3-x2+1≤0,(B)存在x∈R,x3-x2+1≤0(C)存在x∈R,x3-x2+1>0(D)对任意的x∈R,x3-x2+1>0【答案】C【分析】这是一个全称命题,它的否定是一个特称命题.其否定为“存在x∈R,x3-x2+1>0.”答:选C.【评析】注意全(特)称命题的否定是将全称量词改为存在量词(或将存在量词改为全称量词),并把结论否定.练习1-2一、选择题1.下列四个命题中的真命题为( )(A)∃x∈Z,1<4x<3(B)∃x∈Z,3x-1=0(C)∀x∈R,x2-1=0(D)∀x∈R,x2+2x+2>02.如果“p或q”与“非p”都是真命题,那么( )(A)q一定是真命题(B)q不一定是真命题(C)p不一定是假命题(D)p与q的真假相同3.已知a为正数,则“a>b”是“b为负数”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4.“A是B的子集”可以用下列数学语言表达:“若对任意的x∈A⇒x∈B,则称A⊆B”.那么“A 不是B 的子集”可用数学语言表达为( ) (A)若∀x ∈A 但x ∉B ,则称A 不是B 的子集 (B)若∃x ∈A 但x ∉B ,则称A 不是B 的子集 (C)若∃x ∉A 但x ∈B ,则称A 不是B 的子集 (D)若∀x ∉A 但x ∈B ,则称A 不是B 的子集 二、填空题5.“⌝p 是真命题”是“p ∨q 是假命题的”__________________条件. 6.命题“若x <-1,则|x |>1”的逆否命题为_________. 7.已知集合A ,B 是全集U 的子集,则“A ⊆B ”是“U B⊆U A ”的______条件.8.设A 、B 为两个集合,下列四个命题: ①A B ⇔对任意x ∈A ,有x ∉B ②A B ⇔A ∩B =∅③AB ⇔AB④AB ⇔存在x ∈A ,使得x ∉B其中真命题的序号是______.(把符合要求的命题序号都填上) 三、解答题9.判断下列命题是全称命题还是特称命题并判断其真假: (1)指数函数都是单调函数;(2)至少有一个整数,它既能被2整除又能被5整除; (3)∃x ∈{x |x ∈Z },log 2x >0; (4).041,2≥+-∈∀x x x R10.已知实数a ,b ∈R .试写出命题:“a 2+b 2=0,则ab =0”的逆命题,否命题,逆否命题,并判断四个命题的真假,说明判断的理由.习题11.命题“若x 是正数,则x =|x |”的否命题是( ) (A)若x 是正数,则x ≠|x | (B)若x 不是正数,则x =|x | (C)若x 是负数,则x ≠|x |(D)若x 不是正数,则x ≠|x |2.若集合M 、N 、P 是全集U 的子集,则图中阴影部分表示的集合是( )(A)(M ∩N )∪P (B)(M ∩N )∩P (C)(M ∩N )∪(U P )(D)(M ∩N )∩(U P )3.“81=a ”是“对任意的正数12,≥+xa x x ”的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件4.已知集合P ={1,4,9,16,25,…},若定义运算“&”满足:“若a ∈P ,b ∈P ,则a &b ∈P ”,则运算“&”可以是( ) (A)加法(B)减法(C)乘法(D)除法5.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是( ) (A)ab >ac (B)c (b -a )<0 (C)cb 2<ab 2 (D)ac (a -c )<0二、填空题6.若全集U ={0,1,2,3}且U A ={2},则集合A =______.7.命题“∃x ∈A ,但x ∉A ∪B ”的否定是____________.8.已知A ={-2,-1,0,1},B ={y |y =|x |,x ∈A },则B =____________. 9.已知集合A ={x |x 2-3x +2<0},B ={x |x <a },若A B ,则实数a 的取值范围是____________.10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2; ④a 2+b 2>2;⑤ab >1,其中能推出“a ,b 中至少有一个大于1”的条件是______.(写出所有正确条件的序号)11.解不等式.21<x12.若0<a <b 且a +b =1.(1)求b 的取值范围;(2)试判断b 与a 2+b 2的大小.13.设a ≠b ,解关于x 的不等式:a 2x +b 2(1-x )≥[ax +b (1-x )]2.14.设数集A 满足条件:①A ⊆R ;②0∉A 且1∉A ;③若a ∈A ,则.11A a∈- (1)若2∈A ,则A 中至少有多少个元素; (2)证明:A 中不可能只有一个元素.专题01 集合与常用逻辑用语参考答案练习1-1一、选择题1.B 2.B 3.A 4.C提示:4.集合A表示非负偶数集,集合B表示能被4整除的自然数集,所以{正奇数}(U B),从而U=A∪(U B).二、填空题5.{x|x<4} 6.4个7.{x|-1<x<2} 8.a1;2个(x为a1或a3).三、解答题9.(A∩B)∪C={1,2,3,4}10.分析:画如图所示的韦恩图:得A={0,2,3,5,7},B={2,4,6,8}.11.答:①a<4;②a≥-2;③-2≤a<4提示:画数轴分析,注意a可否取到“临界值”.练习1-2一、选择题1.D 2.A 3.B 4.B二、填空题5.必要不充分条件6.若|x|≤1,则x≥-1 7.充要条件8.④提示:8.因为A B,即对任意x∈A,有x∈B.根据逻辑知识知,A B,即为④.另外,也可以通过文氏图来判断.三、解答题9.答:(1)全称命题,真命题.(2)特称命题,真命题.(3)特称命题,真命题;(4)全称命题,真命题.10.略解:答:逆命题:若ab=0,则a2+b2=0;是假命题;例如a=0,b=1否命题:若a2+b2≠0,则ab≠0;是假命题;例如a=0,b=1逆否命题:若ab ≠0,则a 2+b 2≠0;是真命题;因为若a 2+b 2=0,则a =b =0,所以ab =0,即原命题是真命题,所以其逆否命题为真命题.习题1一、选择题1.D 2.D 3.A 4.C 5.C提示:5.A 正确.B 不正确.D .正确.当b ≠0时,C 正确;当b =0时,C 不正确,∴C 不一定成立.二、填空题6.{0,1,3} 7.∀x ∈A ,x ∈A ∪B 8.{0,1,2} 9.{a |a ≥2} 10.③. 提示:10、均可用举反例的方式说明①②④⑤不正确.对于③:若a 、b 均小于等于1.即,a ≤1,b ≤1,则a +b ≤2,与a +b >2矛盾,所以③正确.三、解答题11.解:不等式21<x 即,021,021<-<-x x x 所以012>-xx ,此不等式等价于x (2x -1)>0,解得x <0或21>x , 所以,原不等式的解集为{x |x <0或21>x }. 12.解:(1)由a +b =1得a =1-b ,因为0<a <b ,所以1-b >0且1-b <b ,所以.121<<b (2)a 2+b 2-b =(1-b )2+b 2-b =2b 2-3b +1=⋅--81)43(22b 因为121<<b ,所以,081)43(22<--b 即a 2+b 2<b .13.解:原不等式化为(a 2-b 2)x +b 2≥(a -b )2x 2+2b (a -b )x +b 2,移项整理,得(a -b )2(x 2-x )≤0.因为a ≠b ,故(a -b )2>0,所以x 2-x ≤0.故不等式的解集为{x |0≤x ≤1}.14.解:(1)若2∈A ,则.22111,21)1(11,1211A A A ∈=-∴∈=--∴∈-=- ∴A 中至少有-1,21,2三个元素. (2)假设A 中只有一个元素,设这个元素为a ,由已知A a∈-11,则a a -=11.即a 2-a +1=0,此方程无解,这与A 中有一个元素a 矛盾,所以A 中不可能只有一个元素.。
第一节集合[基础知识]一、元素与集合1.集合中元素的三个特性:确定性、互异性、无序性.2.集合中元素与集合的关系:元素与集合之间的关系有属于和不属于两种,表示符号为∈和∉.3.常见集合的符号表示:集合自然数集正整数集整数集有理数集实数集表示N N*或N+Z Q R 4.集合的表示法:列举法、描述法、韦恩图.二、集合间的基本关系描述关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B子集A中任意一元素均为B中的元素A⊆B或B⊇A 真子集A中任意一元素均为B中的元素,且B中至少有一个元素A中没有A B或B A 空集空集是任何集合的子集∅⊆B空集是任何非空集合的真子集∅B(B≠∅)三、集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B 若全集为U,则集合A的补集为∁U A图形表示意义{x|x∈A,或x∈B} {x|x∈A,且x∈B} {x|x∈U,且x∉A}[特别提示]1.准确理解集合的概念:研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.注意区分{x|y=f(x)}、{y|y=f(x)}、{(x,y)|y=f(x)}三者的不同.2.注意空集的特殊性:空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A⊆B,则需考虑A=∅和A≠∅两种可能的情况.第二节命题及其关系、充分条件与必要条件[基础知识]一、命题的概念:在数学中用语言、符号或式子表达的,能够判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.二、四种命题及其关系1.四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若﹁p,则﹁q逆否命题若﹁q,则﹁p2.四种命题间的逆否关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没相关系.三、充分条件与必要条件1.如果p⇒q,则p是q的充分条件,q是p的必要条件.2.如果p⇒q,q⇒p,则p是q的充要条件.[特别提示]1.充分条件与必要条件的两个特征(1)对称性:若p是q的充分条件,则q是p的必要条件,即“p⇒q”⇔“q⇐p”;(2)传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件.注意区分“p是q的充分不必要条件”与“p的一个充分不必要条件是q”两者的不同,前者是“p ⇒q”而后者是“q⇒p”.2.从逆否命题,谈等价转换:因为互为逆否命题的两个命题具有相同的真假性,因而,当判断原命题的真假比较困难时,可转化为判断它的逆否命题的真假,这就是常说的“正难则反”.第三节简单的逻辑联结词、全称量词与存有量词[基础知识]一、简单的逻辑联结词1.用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.2.用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.3.对一个命题p全盘否定,就得到一个新命题,记作﹁p,读作“非p”或“p的否定”.4.命题p∧q,p∨q,﹁p的真假判断:p∧q中p、q有一假为假,p∨q有一真为真,p与非p必定是一真一假.二、全称量词与存有量词1.全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题,叫做全称命题.(3)全称命题“对M中任意一个x,有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.2.存有量词与特称命题(1)短语“存有一个”“至少有一个”在逻辑中通常叫做存有量词,并用符号“∃”表示.(2)含有存有量词的命题,叫做特称命题.(3)特称命题“存有M中的一个x0,使p(x0)成立”可用符号简记为∃x0∈M,P(x0),读作“存有M中的元素x0,使p(x0)成立”.三、含有一个量词的命题的否定[特别提示]1.逻辑联结词与集合的关系:“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.2.正确区别命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.。