激光原理 第四章
- 格式:pptx
- 大小:1.16 MB
- 文档页数:60
第四章 电磁场与物质的共振相互作用1 静止氖原子的4223P S →谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0.4c 、0.8c 的速度向着观察者运动,问其表观中心波长分别变为多少?解:根据公式νν=c λν=可得:λλ=代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,0.4414.3C nm λ=,nm C 9.2109.0=λ2.设有一台迈克尔逊干涉仪,其光源波长为λ。
试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。
证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。
由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν。
将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为:因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。
在屏P 上面,I 光和II 光的广场可以分别表示为:S2M (1)vcνν'=+2(1)(1)(12)v v v c c cνννν'''=+=+≈+00cos(2)cos 2(12)I II E E t v E E t πνπν=⎡⎤=+因而光屏P 上的总光场为光强正比于电场振幅的平方,所以P 上面的光强为它是t 的周期函数,单位时间内的变化次数为由上式可得在dt 时间内屏上光强亮暗变化的次数为(2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。
对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的2M 镜的空间坐标,并且有21L L L -=。
.第三章光学谐振腔理论一、学习要求与重点难点学习要求1.了解光学谐振腔的构成、分类和模式等基本知识,及其研究方法。
2.理解腔的损耗和无源腔的单模线宽。
3.掌握传播矩阵和光学谐振腔的稳定条件。
4.理解自再现模积分本征方程,了解针对平行平面腔模的数值迭代解法,理解针对球面对称共焦腔模式积分本征方程的近似方法及其解。
5.掌握等价共焦腔方法,掌握谐振腔的模式概念和光束特性。
6.了解非稳腔的模式理论。
重点1.谐振腔的作用,谐振腔的构成和分类,腔和模的联系;2.传播矩阵分析方法;3.光学谐振腔的稳定条件;4.模自再现概念;5.自再现模积分本征方程的建立,及其近似;6.球面对称共焦腔积分本征方程的近似方法,及其解;7.谐振腔的横纵模式和光束特性;8.稳定谐振腔的等价共焦腔。
难点1.传播矩阵的近似;2.非稳腔;3.模自再现概念;4.自再现模积分本征方程的建立5.球面对称共焦腔积分本征方程的近似方法,及其解;6.谐振腔的横纵模式和光束特性;WORD 专业.二、知识点总结,,mnq TEM m n q ⇔⎧⎧⎫→−−−−→⎪⎪→⎪⎨⎬⎪→→→−−−−→⎪⎪⎨⎩⎭⎪⇔--⎪⎩→驻波条件自再现模分立的本征态有限范围的电磁场形成驻波纵模光的频率(振荡频率,空间分布)模式的形成反映腔内光场的分布谐振腔的作用腔和模的联系衍射筛选横模光场横向能量分布腔内存在的电磁场激光模式模式的表示方法:横模指数,纵模指数衍射理论:不同模式按场分布,损耗,谐振频率来区分,理论方法几何光学+干涉仪理12121212()11)12()10101,1A D A D A D g g or g g L L g g R R ⎧⎨⎩+<+>⇒+±<<==⇒=-=-论:忽略镜边缘引起的衍射效应,不同模式按传输方向和谐振频率区分-粗略但简单明了光腔的损耗-光子的平均寿命-无源腔的Q值-无源腔的线宽1-1<稳定腔2(非稳定腔适用任何形式的腔,只要列出往返矩阵就能判断其稳定与否1共轴球面腔的稳定条件:稳定判据=临界腔2只使用于简单的共轴球面镜腔⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩(直腔)1. 谐振腔衍射积分方程推导⎧⎧⎫→−−−−−−→−−−−→→⎨⎬⎨⎩⎭⎩自再现模的概念求解方法引进复常数因子解析解:特殊腔(对称共焦腔)本征函数-振幅和相位分布(等相位面)菲涅尔基尔霍夫积分公式推广到谐振腔自再现模积分方程数值求解(数值迭代法)本征值-模的损耗、相移和谐振频率WORD 专业.⎧⎧22/0000(1)(1)2(,)N 11[4(,1)(,1)]arg (1)2x y L mn mn om on mn mn mn x y c e NR C R C kL m n λπμδγπφγφ+-⎧⎪=⎪→→⎨⎪⎪⎩=-=-→→∆==-+++∆基模:角向长椭球函数;本征函数振幅和相位高阶横模不是很小时,厄密~高斯函数相位分布:反射镜构成等相位面方形镜:对单程损耗:称本征值径向长椭球函数单程相移:共焦谐振频率:谐振条件2=-腔的自再现模2/0000[2(1)]4(,)N arg (21)2mnq r L mn mn mn c q m n L x y c e kL m n λππνμπφγφ-⎧⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋅→=+++⎪⎪⎩⎩⎧⎪=⎪→→⎨⎪⎪⎩→∆==-+++∆q 2基模:超椭球函数;本征函数振幅和相位高阶横模不是很小时,拉盖尔~高斯函数相位分布:反射镜构成等相位面圆形镜:单程损耗:只有精确解能够给出。