两轴手动变速器换挡原理与动力传递完整版本
- 格式:ppt
- 大小:1019.00 KB
- 文档页数:12
手动变速器的工作原理详述手动变速器是一种常见的汽车传动装置,它允许驾驶者在行驶过程中手动选择合适的挡位以改变车辆的速度和扭矩输出。
本文将详细介绍手动变速器的工作原理,从齿轮机构、离合器和操作杆三个方面进行阐述。
一、齿轮机构手动变速器的齿轮机构是实现挡位切换和传动功能的核心部件。
它由一系列平行轴的齿轮组成。
不同挡位的选择会使得不同的齿轮组合在一起,实现不同的变速比。
常见的手动变速器包括常用的H型齿轮机构和X型齿轮机构。
H型齿轮机构具有三个轴和四个齿轮,分别代表着一、二、三挡和倒挡。
当驾驶员通过操作杆将换挡叉推动到相应的位置时,离合器断开连接,该挡位所需的齿轮组合将被锁定在传动轴上,从而实现对应的挡位功能。
X型齿轮机构相较于H型齿轮机构增加了一个轴和一个齿轮,因此可以实现更多的挡位选择。
通过操作杆将换挡叉推动到相应的位置,离合器断开连接,特定的齿轮组合将被锁定在传动轴上。
二、离合器离合器是手动变速器与发动机之间的连接器件,它的主要作用是在挂挡和起步时使发动机与变速器分离,从而实现平稳的换挡和起步动作。
离合器通常由驱动盘、驱动轴和压力盘组成。
在起步阶段,当驾驶员踩下离合器踏板时,压力盘与驱动盘分离,使发动机的动力不能传递给变速器,车辆处于空挡状态。
当驾驶员松开离合器踏板时,压力盘和驱动盘通过离合器压盘弹簧的作用重新连接,发动机的动力通过离合器传递到变速器,车辆开始运动。
三、操作杆操作杆是手动变速器的操控装置,它与变速器的换挡叉相连,通过向前或向后推动操作杆来选择不同的挡位。
操作杆的设计通常采用直杆式或者弧形杆式,以便驾驶员能够准确选择不同的挡位。
当操作杆推动到前方时,齿轮机构会切换到高挡位或者变速器空挡状态;当操作杆推动到后方时,齿轮机构会切换到低挡位或者倒挡状态。
通过掌握操作杆的使用方法,驾驶员可以根据道路条件和行驶速度选择合适的挡位,以实现平稳的加速或降速。
结论手动变速器通过齿轮机构、离合器和操作杆的相互配合,实现了驾驶员对汽车的速度调节和扭矩输出的控制。
手动变速器工作原理解析手动变速器是汽车传动系统中的一种重要部件,其主要功能是通过变换齿轮传递比来调整发动机输出的转速和扭矩,以满足不同驾驶条件下的需要。
本文将对手动变速器的工作原理进行详细解析。
一、手动变速器的基本结构手动变速器通常由输入轴、输出轴、主轴、选择齿轮和同步器等组成。
其中输入轴和输出轴分别与发动机和驱动轴连接,主要负责传递动力。
选择齿轮和同步器的作用是将输入轴的动力传递给输出轴,并根据驾驶员的操作来选择不同的齿比。
二、手动变速器的工作原理1. 空挡状态当手动变速器处于空挡状态时,输入轴和输出轴无直接连接。
驾驶员在这个状态下可以使发动机自由运转,而不需要将动力传递到驱动轴。
2. 转入挡位当驾驶员踩下离合器踏板,并选择某个挡位时,选择齿轮就会转动。
同时,同步器会通过摩擦作用来使选择齿轮与正在旋转的主轴匹配。
这样,输入轴的动力就会传递给输出轴,从而实现驱动。
3. 换挡过程在换挡过程中,驾驶员需要先松开离合器踏板,然后才能选择下一个挡位。
这是因为离合器的作用是将发动机与变速器隔离开来,以便实现平稳换挡。
4. 制动机构手动变速器还配备有制动机构,用于在停车或斜坡上止住车辆。
制动机构主要由辅助装置、制动齿轮和制动器组成。
它们能够限制输出轴的转动,从而使车辆停止或保持静止。
三、手动变速器的优点相比自动变速器,手动变速器具有以下优点:1. 操控性更强:手动变速器可以提供更精确的动力输出,使驾驶员能够更好地控制车辆。
2. 更高的效率:手动变速器没有液压系统,没有液力损耗,因此在传递动力时更为高效。
3. 维修成本较低:相对于自动变速器来说,手动变速器的维修成本较低,更容易进行维护和修理。
四、手动变速器的应用范围手动变速器在不同类型的车辆中广泛应用,尤其是运动型汽车和赛车。
这是因为手动变速器可以提供更高的操控性和更准确的传动比,以满足对驾驶性能和加速度要求较高的驾驶者。
总结:手动变速器作为汽车传动系统中重要的组成部分,其工作原理涉及到多个关键部件的协同运作。
手动变速器-工作原理
手动变速器是一种用于汽车传动系统的机械装置,具有多个不同的齿轮比。
它的工作原理如下:
1. 车辆驱动力传递给引擎,引擎产生动力。
2. 动力通过离合器传递给变速器。
3. 变速器内部包含主轴和从轴,主轴与引擎相连,而从轴与驱动轮相连。
齿轮通过齿轮轴与主轴或从轴相连。
4. 在启动车辆时,车辆处于空挡,离合器踏板踩下,动力无法传递到驱动轮。
5. 踩下离合器踏板后,将换挡杆从空挡位置移到目标档位。
使用手动变速器时,通常有5个或6个档位可供选择。
6. 当离合器踏板松开时,离合器片离合器压盘紧密接合。
此时,动力从引擎传递到主轴,通过相应的齿轮传递到从轴。
7. 随着车速的增加和引擎转速的改变,驾驶员可以通过选择不同的档位来改变齿轮比。
较低的齿轮比提供更高的扭矩,适用于加速或爬坡。
而较高的齿轮比则提供更高的速度,适用于高速行驶。
8. 在变速时,驾驶员使用离合器来断开引擎和变速器之间的连接。
随后,他们通过变速杆将车辆从当前档位换到另一个档位。
然后,他们松开离合器踏板,使离合器片与压盘接合并传递动力。
9. 重复上述步骤,驾驶员可以根据需要不断改变齿轮比,以适应不同的行驶条件和驾驶风格。
综上所述,手动变速器通过选择不同的齿轮比,将引擎输出的动力传递到驱动轮,从而使驾驶员能够控制车辆的速度和扭矩。
手动变速箱的基本工作原理2005年11月17日 14:57 来源:汽车之家社区类型:转载编辑:翟元为了更好的理解变速箱的工作原理,下面让我们先来看一个2档变速箱的简单模型,看看各部分之间是如何配合的:输入轴(绿色)通过离合器和发动机相连,轴和上面的齿轮是一个部件。
变速箱简易模型轴和齿轮(红色)叫做中间轴。
它们一起旋转。
轴(绿色)旋转通过啮合的齿轮带动中间轴的旋转,这时,中间轴就可以传输发动机的动力了。
轴(黄色)是一个花键轴,直接和驱动轴相连,通过差速器来驱动汽车。
车轮转动会带着花键轴一起转动。
齿轮(蓝色)在花键轴上自由转动。
在发动机停止,但车辆仍在运动中时,齿轮(蓝色)和中间轴都在静止状态,而花键轴依然随车轮转动。
齿轮(蓝色)和花键轴是由套筒来连接的,套筒可以随着花键轴转动,同时也可以在花键轴上左右自由滑动来啮合齿轮(蓝色)。
挂进1档时,套筒就和右边的齿轮(蓝色)啮合如上图所示,输入轴(绿色)带动中间轴,中间轴带动右边的齿轮(蓝色),齿轮通过套筒和花键轴相连,传递能量至驱动轴上。
在这同时,左边的齿轮(蓝色)也在旋转,但由于没有和套筒啮合,所以它不对花键轴产生影响。
当套筒在两个齿轮中间时,变速箱在空挡位置。
两个齿轮都在花键轴上自由转动,速度是由中间轴上的齿轮和齿轮(蓝色)间的变速比决定的。
5档手动变速箱模型注意,倒档是通过增加一个小齿轮简单实现的。
换档杆通过三个连杆连接着三个换档叉。
在换挡杆的中间有个旋转点,当你拨入1档时,实际上是将连杆和换档叉往反方向推。
你左右移动换档杆时,实际上是在选择不同的换档叉(不同的套筒);前后移动时则是选择不同的齿轮(蓝色)。
同步装置同步是使得套筒上的齿和齿轮(蓝色)啮合之前产生一个摩擦接触齿轮(蓝色)上的锥形凸出刚好卡进套筒的锥形缺口,两者之间的摩擦力使得套筒和齿轮(蓝色)同步,套筒的外部滑动,和齿轮啮合。
奔驰C级Sport Coupe 6速手动变速箱汽车厂商制造变速箱时有各自的实现方式,这里介绍的是一个基本的概念!(网友/流水)。
两轴式变速器工作原理
两轴式变速器是一种常用于汽车或其他机械设备中的传动装置,它可以通过改变输入轴和输出轴之间的齿轮比来实现不同的速度和扭矩输出。
在这种变速器中,一根轴被称为输入轴,另一根轴被称为输出轴。
两个轴通过一系列的齿轮和离合器相连,以实现动力的传递和变速操作。
工作原理如下:
1. 初始状态:当汽车发动机启动时,齿轮箱处于空挡状态,输入轴和输出轴没有相互连接。
2. 一档:当驾驶员将换挡杆从空挡位置移动到一档位置时,离合器将连接输入轴和输出轴。
此时,输入轴的齿轮会传递动力给输出轴的齿轮,使输出轴开始旋转。
3. 二档:当驾驶员将换挡杆从一档位置移动到二档位置时,齿轮箱内部的机械装置会改变齿轮比,使输出轴以较高的速度旋转。
这通常是通过更大的齿轮或者较小的齿轮来实现的。
4. 反档:当驾驶员将换挡杆从任意挡位移动到倒车挡位时,离合器将连接输入轴和输出轴,但齿轮箱内部的机械装置会逆转输入轴的运动方向,使输出轴以相反的方向旋转。
需要注意的是,切换档位时需要使用离合器来分离输入轴和输
出轴,以免造成损坏或冲击。
离合器的作用是在换挡时实现无级切换。
总的来说,两轴式变速器通过齿轮的组合和离合器的连接,可以实现不同档位的切换和输出轴的变速,从而满足不同驾驶需求。
技术普及——手动变速器工作原理(已补充同步器图解)如果您开的是用换挡杆换挡的汽车,您脑海中可能会浮现这几个问题:通过换挡按钮换挡的H形跟变速器内的齿轮有什么关系吗?移动变速杆时,变速器中哪些部件会移动?因操作不当而听到可怕刺耳的声音时,这个刺耳的声音是从哪里发出的?汽车在高速公路上减速时,如果不小心换到倒挡会出现什么情况?是不是整个变速器都会爆炸?在本文中,我们将了解手动变速器的内部结构,从而回答以上所有问题以及相关问题。
汽车需要变速器,这是由汽车发动机的物理特性决定的。
首先,任何发动机都有速度极限,转速超过这个最大值,发动机就会爆炸。
其次,如果读过马力及其应用,您就会知道,在马力和扭矩都达到最大值时,发动机的转速变化范围很小。
例如,发动机可能在5,500转/分时产生最大马力。
在汽车加速或者减速时,变速器的存在使发动机与驱动轮之间的齿比能够发生变化。
通过改变齿比,就能使发动机转速保持在速度极限以下,并且使发动机接近最佳性能转速区。
在理想情况下,变速器齿比变化范围非常大,因而发动机总是以单一的最佳性能转速运行。
这就是无级变速器(CVT)的概念。
CVT的齿比范围几乎没有任何限制。
过去,CVT在成本、尺寸和可靠性方面都不能与四速和五速变速器抗衡,所以在量产汽车中看不到它们。
目前,设计方面的改善使CVT得到了普及。
丰田普锐斯就是使用CVT的混合动力汽车。
变速器通过离合器与发动机连接。
因此,变速器输入轴的转速与发动机相同。
五速变速器为输入轴提供五种不同的齿比,以便在输出轴产生不同的转速值。
以下是一些典型的齿比:挡位速比发动机转速为3000转/分时变速器输出轴的转速一挡 2.315:11,295二挡 1.568:11,913三挡 1.195:12,510四挡 1.000:13,000五挡 0.915:13,278有关无级变速器工作原理的更多信息,请参考CVT(无级变速器)工作原理。
接下来让我们看看简单的变速器。
两轴式变速器-------------机械与材料工程学院B1042班张孟良35号(指导老师:刘鑫老师)摘要:二轴式变速器用于发动机前置前轮驱动的汽车,一般与驱动桥(前桥)合称为手动变速驱动桥。
目前,我国常见的国产轿车均采用这种变速器,如桑塔纳、捷达、富康、奥迪等。
关键字:二轴式、前置前轮驱动、手动式变速器一两轴式变速器特点两轴式变速器是前进挡的动力传递采用两根轴来实现的变速器,它的特点是动力的输人轴和输出轴不在一个轴线上,两根轴分别为第一轴(动力输人轴),第二轴(动力输出轴)。
通常第一轴为离合器的从动轴,第二轴同时也是主减速器的主动轴。
二发动机布置形式前置发动机有纵向布置和横向布置两种形式,与其配用的二轴式变速器也有两种不同的结构形式。
发动机纵置时,主减速器为一对圆锥齿轮,如奥迪100、桑塔纳2000轿车,如图3-3所示;发动机横置时,主减速器采用一对圆柱齿轮,如捷达轿车,如图3-4所示。
图3-3 发动机纵置的二轴式变速器传动示意图(桑塔纳2000)1-纵置发动机2-离合器3-变速器4-变速器输入轴5-变速器输出轴(主减速器主动锥齿轮)6-差速器7-主减速器从动锥齿轮8-前轮Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ-一、二、三、四、五档齿轮R-倒档齿轮图3-4 发动机横置的二轴式变速器传动示意图(捷达)1-发动机2-离合器3-变速器4-主减速器5-差速器6-带等角速万向节的半轴三发动机结构与工作过程1.发动机纵向布置的二轴式变速器如图3-5、3-6所示分别为桑塔纳2000轿车二轴式变速器传动机构的结构图和示意图。
图3-5 桑塔纳2000轿车二轴式变速器传动机构的结构图1-四档齿轮2-三档齿轮3-二档齿轮4-倒档齿轮5-一档齿轮6-五档齿轮7-五档运行齿环8-换档机构壳体9-五档同步器10-齿轮箱体11-一、二档同步器12-变速器壳体13-三、四档同步器14-输出轴15-输入轴16—差速器图3-6 桑塔纳2000轿车二轴式变速器传动机构的示意图1-输入轴2-输出轴3-三、四档同步器4-一、二档同步器5-倒档中间齿轮Ⅰ-一档齿轮Ⅱ-二档齿轮Ⅲ-三档齿轮Ⅳ-四档齿轮Ⅴ-五档齿轮R-倒档齿轮1) 结构该变速器的变速传动机构有输入轴和输出轴,二轴平行布置,输入轴也是离合器的从动轴,输出轴也是主减速器的主动锥齿轮轴。
手动变速器的工作原理
手动变速器是汽车传动系统的重要组成部分,其主要作用是调节发动机输出功率与车轮承载的关系,实现适应不同行驶速度和路况的目的。
它主要由离合器、齿轮组件和操作机构组成。
离合器是手动变速器的起动装置,用于连接和分离发动机与变速器之间的动力传递。
当离合器踏板被踩下时,离合器压盘与离合器盘之间的摩擦力降低,发动机的动力传递到变速器。
松开离合器踏板时,离合器压盘与离合器盘之间产生摩擦力,将发动机的动力隔离开。
齿轮组件是手动变速器的核心部分,它由多个齿轮和轴承组成,用于实现发动机转速和车轮转速之间的变化比例。
手动变速器通常采用齿轮组件来实现多个档位的切换。
通过人工操作操作机构,可以选择不同的齿轮比,从而改变发动机输出功率传递给车轮的速度和扭矩。
操作机构包括换档杆和操作杆,通过调整操作杆来改变变速器内部的齿轮组合。
在手动变速器中,通常有多个前进档位和一个倒档。
通过操作机构,驾驶员可以选择合适的档位来适应不同的道路条件或行驶需求。
总的来说,手动变速器的工作原理就是通过离合器的连接和分离以及齿轮组件的调整,实现发动机输出功率和车轮速度的正常匹配。
驾驶员通过操作机构来选择合适的档位,以得到所需的动力传递效果。
这种传动方式相对于自动变速器更加灵活,能够根据实际情况做出更准确的调整。
两轴手动变速器换挡原理与动力传递手动变速器是一种机械传动装置,用于调整发动机输出转速与车辆驱动轮转速之间的比例关系。
它主要由变速机构、离合器和变速操作机构等部件组成。
手动变速器的换挡原理与动力传递包括以下几个方面:1.变速机构:手动变速器的核心是变速机构,它由一系列齿轮、轴承和同步器组成。
通过不同组合方式的齿轮转动,可以实现不同的传动比。
换挡时,变速机构将驱动轴与输出轴的连接方式改变,从而实现不同档位的转速调节。
2.离合器:离合器是手动变速器换挡的关键部件之一、它位于发动机和变速器之间,用于在换挡时分离发动机与传动系统的连接。
当离合器踏板脚下时,离合器的压盘和导向轴通过压力使离合器片与发动机的飞轮分离,从而切断发动机对变速机构的动力传递。
3.变速操作机构:手动变速器的变速操作机构由档把、拉线或杆件等组成,通过操控这些操作部件来实现换挡操作。
一般而言,通过操纵档把来选择不同的档位,然后通过操纵离合器踏板来控制离合器的连接或分离,实现换档。
在换挡过程中,首先需要踩下离合器踏板,断开发动机与传动系统之间的连接。
然后,通过操作变速机构,将所需的齿轮组合挂入变速箱中。
最后,松开离合器踏板,使离合器片与发动机飞轮接合,从而将动力从发动机传递给变速器,驱动车辆。
换挡过程中需要注意的是,换挡时速度要合适,过快或过慢都可能导致换挡不顺畅或产生异响。
此外,在换挡过程中要保持流畅的操作,避免急刹车或急加速,以免对车辆和变速器造成损坏。
总的来说,手动变速器的换挡原理与动力传递是通过控制离合器和操作变速器,将发动机的动力传递给车辆驱动轮,从而实现换挡和调节转速的过程。
在实际驾驶中,换挡需要掌握合适的时机和正确的操作方法,以确保驾驶安全和车辆正常行驶。
两轴式变速器各档位传动原理一、输入轴与输出轴结构两轴式变速器的输入轴和输出轴是相互平行的,并且呈纵向排列。
输入轴直接与发动机连接,负责接收发动机的转动动力。
输出轴则与车辆的驱动轮连接,负责将变速器的动力传递到车轮。
二、档位传动路线两轴式变速器的档位传动路线主要依赖于不同长度的传动轴以及在不同传动比的齿轮组合。
各档位的传动比是通过选择不同大小的齿轮和传动轴长度来实现的。
三、档位切换方式档位切换主要通过操纵变速器操纵杆来实现。
变速器操纵杆通过机械机构连接到滑动齿轮,当操纵杆移动时,滑动齿轮会选择与操纵杆位置对应的齿轮组合,从而切换到不同的档位。
四、倒档机构倒档是通过一个特殊的倒档齿轮实现的。
倒档齿轮与输入轴连接,但与输出轴反向连接。
当需要倒档时,操纵杆使滑动齿轮选择倒档齿轮,实现车辆的倒退。
五、同步器同步器是两轴式变速器中的一个重要组成部分,它可以帮助实现档位的快速切换。
同步器主要通过摩擦力矩的作用,使齿轮在切换过程中与输入轴或输出轴同步,从而避免换挡过程中可能出现的打齿现象。
六、润滑与冷却两轴式变速器的润滑主要通过飞溅润滑实现。
润滑油从输入轴或输出轴上的油孔进入,飞溅到各个齿轮和轴承上,起到润滑作用。
同时,为了防止变速器过热,通常会配有冷却系统,将变速器的热量导出。
七、控制系统两轴式变速器的控制系统主要负责档位的自动切换以及倒档的切换。
控制系统通常由液压或电动系统驱动,根据车辆的运行状态和驾驶者的意图,自动控制变速器的档位切换。
八、故障诊断与排除对于两轴式变速器的故障诊断与排除,首先需要了解各个部件的工作原理和连接关系。
常见的故障包括档位切换不顺畅、变速器过热、噪音过大等。
对于这些故障,首先需要检查润滑系统是否正常,同时检查各个部件是否有磨损或损坏。
如果需要进一步的诊断,可能需要使用专门的检测设备和工具进行更深入的检查。
手动变速器是一种机械传动装置,它能够将发动机的转速和扭矩通过齿轮传递到车轮上。
手动变速器的主要功能是让车辆在不同的速度和负载条件下保持适当的转速和扭矩输出。
手动变速器的变速原理如下:
主轴和齿轮组成的传动系统
手动变速器的主轴连接着发动机,而齿轮则连接着车轮。
通过手动变速器内部的一组齿轮,可以将发动机的转速和扭矩传递到车轮上。
不同的齿轮组合可以实现不同的传动比,从而使车辆以不同的速度行驶。
齿轮的选用
手动变速器内部有多组齿轮,每组齿轮有不同的齿数和直径。
选择不同组合的齿轮可以改变变速器的传动比,使车辆以不同的速度行驶。
例如,选择小齿轮和大齿轮组合可以实现高速行驶,而选择大齿轮和小齿轮组合可以实现低速高扭矩行驶。
选择合适的齿轮
手动变速器需要手动操作换挡杆来选择合适的齿轮组合。
在不同的车速和负载条件下,需要选择不同的齿轮组合,以实现最佳的车辆性能和燃油经济性。
离合器
手动变速器还有一个离合器,用于连接和断开发动机和传动系统之间的联系。
当离合器踩下时,发动机的输出被断开,齿轮可以自由转动,以实现换挡。
当离合器松开时,发动机的输出与齿轮重新连接,以推动车辆前进。
总之,手动变速器的变速原理是通过主轴和齿轮组成的传动系统,选择不同的齿轮组合,并手动操作换挡杆来选择合适的齿轮组合,以实现车辆的不同速度和负载条件下的最佳性能和燃油经济性。