高等数学D 空间直角坐标系
- 格式:pdf
- 大小:733.22 KB
- 文档页数:3
高数下册常用常见知识点高等数学下册常用知识点第八章:空间解析几何与向量代数一、向量及其线性运算1.向量的概念及基本性质:包括向量相等、单位向量、零向量、向量平行、共线、共面等基本概念。
2.向量的线性运算:包括加减法和数乘。
3.空间直角坐标系:包括坐标轴、坐标面、卦限和向量的坐标分解式等。
4.利用坐标进行向量的运算:设向量a=(ax。
ay。
az),向量b=(bx。
by。
bz),则a±b=(ax±bx。
ay±by。
az±bz),λa=(λax。
λay。
λaz)。
5.向量的模、方向角、投影:包括向量的模、两点间的距离公式、方向角、方向余弦和投影等。
二、数量积和向量积1.数量积:包括数量积的概念、性质和计算公式等。
2.向量积:包括向量积的概念、性质和计算公式等。
三、曲面及其方程1.曲面方程的概念:包括曲面方程的定义和基本性质等。
2.旋转曲面:包括旋转曲面的定义、方程和旋转后方程的计算等。
3.柱面:包括柱面的特点、方程和母线的概念等。
4.二次曲面:包括椭圆锥面的方程和图形等。
2.椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$3.旋转椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$4.单叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$5.双叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1$6.椭圆抛物面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=z$7.双曲抛物面(马鞍面):$\frac{x^2}{a^2}-\frac{y^2}{b^2}=z$8.椭圆柱面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$9.双曲柱面:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$10.抛物柱面:$2x=ay^2$空间曲线及其方程:1.参数方程:$\begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases}$,如螺旋线:$\begin{cases}x=a\cos t\\y=a\sin t\\z=bt\end{cases}$2.一般方程:$F(x,y,z)=0$,消去$z$,得到曲线在面$xoy$上的投影。
第七章向量代数与空间解析几何空间解析几何是多元函数微积分学必备的基础知识.本章首先建立空间直角坐标系,然后引进有广泛应用的向量代数,以它为工具,讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第一节空间直角坐标系平面解析几何是我们已经熟悉的,所谓解析几何就是用解析的,或者说是代数的方法来研究几何问题.坐标法把代数与几何结合起来.代数运算的基本对象是数,几何图形的基本元素是点.正如我们在平面解析几何中所见到的那样,通过建立平面直角坐标系使几何中的点与代数的有序数之间建立一一对应关系.在此基础上,引入运动的观点,使平面曲线和方程对应,从而使我们能够运用代数方法去研究几何问题.同样,要运用代数的方法去研究空间的图形——曲面和空间曲线,就必须建立空间内点与数组之间的对应关系.一、空间直角坐标系空间直角坐标系是平面直角坐标系的推广.过空间一定点O,作三条两两互相垂直的数轴,它们都以O为原点.这三条数轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称坐标轴.它们的正方向按右手法则确定,即以右手握住z轴,右手的四个手指指向x轴的正向以π2角度转向y轴的正向时,大拇指的指向就是z轴的正向(图7-1),这样的三条坐标轴就组成了一空间直角坐标系Oxyz,点O叫做坐标原点.图7-1三条坐标轴两两分别确定一个平面,这样定出的三个相互垂直的平面:xOy,yOz,zOx,统称为坐标面.三个坐标面把空间分成八个部分,称为八个卦限,上半空间(z>0)中,从含有x 轴、y轴、z轴正半轴的那个卦限数起,按逆时针方向分别叫做Ⅰ,Ⅱ,Ⅲ,Ⅳ卦限,下半空间(z<0)中,与Ⅰ,Ⅱ,Ⅲ,Ⅳ四个卦限依次对应地叫做Ⅴ,Ⅵ,Ⅶ,Ⅷ卦限(图7-2).图7-2确定了空间直角坐标系后,就可以建立起空间点与数组之间的对应关系.设M为空间的一点,过点M作三个平面分别垂直于三条坐标轴,它们与x轴、y轴、z 轴的交点依次为P、Q、R(图7-3).这三点在x轴、y轴、z轴上的坐标依次为x,y,z.这样,空间的一点M就惟一地确定了一个有序数组(x,y,z),它称为点M的直角坐标,并依次把x,y和z叫做点M的横坐标,纵坐标和竖坐标.坐标为(x,y,z)的点M通常记为M(x,y,z).图7-3反过来,给定了一有序数组(x,y,z),我们可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴,y轴与z 轴的垂直平面,这三个平面的交点M就是具有坐标(x,y,z)的点(图7-3).从而对应于一有序数组(x,y,z),必有空间的一个确定的点M.这样,就建立了空间的点M和有序数组(x,y,z)之间的一一对应关系.如图7-3所示x轴,y轴和z轴上的点的坐标分别为P(x,0,0),Q(0,y,0),R(0,0,z);xOy面,yOz面和zOx面上的点的坐标分别为A(x,y,0),B(0,y,z),C(x,0,z);坐标原点O的坐标为O(0,0,0).它们各具有一定的特征,应注意区分.二、空间两点间的距离设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d,我们过M1,M2各作三个分别垂直于三条坐标轴的平面.这六个平面围成一个以M1,M2为对角线的长方体(图7-4).根据勾股定理,有图7-4|M 1M 2|2=|M 1N |2+|NM 2|2=|M 1P |2+|M 1Q |2+|M 1R |2.由于|M 1P |=|P 1P 2|=|x 2-x 1|,|M 1Q |=|Q 1Q 2|=|y 2-y 1|,|M 1R |=|R 1R 2|=|z 2-z 1|,所以d =|M 1M 2|=212212212)()()(z z y y x x -+-+-,这就是两点间的距离公式.特别地,点M (x,y,z )与坐标原点O (0,0,0)的距离为d =|OM |=222z y x ++。
大学高等数学知识点框架
一、微积分
1.导数与微分
2.积分与不定积分
3.定积分与曲线下面积
4.微分方程
二、级数
1.数列与级数的概念
2.收敛与发散
3.数项级数
4.幂级数
三、微分方程
1.一阶微分方程
2.二阶线性齐次微分方程
3.二阶线性非齐次微分方程
4.变量分离法与齐次微分方程
四、空间解析几何
1.三维空间直角坐标系
2.平面与直线的方程
3.空间曲面与二次曲线
4.空间直线与平面的位置关系
五、多元函数微分学
1.多元函数的极限
2.偏导数与全微分
3.多元复合函数的求导法则
4.隐函数与参数方程的求导
六、重积分与曲线曲面积分
1.重积分的概念与性质
2.二重积分的计算
3.三重积分的计算
4.曲线曲面积分的计算
七、常微分方程
1.一阶常微分方程
2.二阶常微分方程
3.高阶常微分方程
4.常微分方程的解析解与数值解
八、线性代数
1.线性方程组与矩阵
2.矩阵的运算与性质
3.矩阵的秩与逆
4.特征值与特征向量
九、概率论与数理统计
1.基本概念与概率空间
2.随机变量及其分布律
3.多维随机变量与联合分布
4.参数估计与假设检验
以上是大学高等数学的主要知识点框架,涵盖了微积分、级数、微分方程、空间解析几何、多元函数微分学、重积分与曲线曲面积分、常微分方程、线性代数以及概率论与数理统计等内容。
通过深入学习这些知识点,可以建立起扎实的数学基础,为进一步学习相关学科打下坚实的基础。
大一空间解析几何知识点总结大一空间解析几何是大学数学的一门基础课程,主要研究几何对象在空间中的性质和相互关系。
以下是大一空间解析几何的一些主要知识点总结,供参考学习:1. 空间直角坐标系:空间直角坐标系是三维空间中最常用的坐标系,它由三条相互垂直的坐标轴构成,通常用x、y、z表示。
空间中的点可以由它们在三个坐标轴上的坐标表示。
2. 点的坐标计算:在空间直角坐标系中,给定一个点P,可以通过测量与三个坐标轴的距离,计算出点P的坐标。
例如,点P在x轴上的坐标为x,点P在y轴上的坐标为y,点P在z轴上的坐标为z。
3. 点、线、面的方程:通过坐标计算,可以得到点、线、面的方程。
例如,对于点P(x, y, z),点P的坐标就可以通过方程x = x,y = y,z = z来表示。
对于直线l,可以通过两点的坐标计算直线的方程。
对于平面,可以通过三点的坐标计算平面的方程。
4. 空间中的距离:空间中两点之间的距离可以通过勾股定理计算。
设点P(x1, y1, z1)和点Q(x2, y2, z2)为两点,它们之间的距离为d,表示为d = √[(x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2]。
5. 点、线的位置关系:在空间解析几何中,点和线的位置关系有几种情况:点在直线上、点在直线外、点在直线的延长线上等。
可以通过点和线的坐标来判断它们的位置关系。
6. 直线的方向向量和参数方程:在空间直角坐标系中,直线可以用方程式表示,其中的参数t表示直线上的任意一点P的位置。
直线的方向向量可以用一个行向量表示,例如,直线l可以表示为l:(x, y, z) = (x0, y0, z0) + t(a, b, c),其中,(x0, y0, z0)表示直线上一点,(a, b, c)表示直线的方向向量。
7. 平面的法向量和一般方程:在空间直角坐标系中,平面可以用方程式表示。
平面的一般方程为Ax + By + Cz + D = 0,其中(A, B, C)为平面的法向量,D为常数。