(实验六)结型场效应管放大电路
- 格式:doc
- 大小:102.00 KB
- 文档页数:5
一、实验目的1. 了解场效应管的基本特性和工作原理。
2. 掌握场效应管放大器的设计与调试方法。
3. 学习测量场效应管放大器的各项性能参数。
二、实验原理场效应管(Field-Effect Transistor,简称FET)是一种电压控制器件,具有输入阻抗高、动态范围大、热稳定性好、抗辐射能力强等优点。
根据结构,场效应管可分为结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。
1. 结型场效应管(JFET):JFET是一种三端器件,包括源极(S)、漏极(D)和栅极(G)。
其工作原理是利用导电沟道之间耗尽区的宽窄来控制电流。
2. 绝缘栅型场效应管(IGFET):IGFET是一种四端器件,包括源极(S)、漏极(D)、栅极(G)和衬底。
其工作原理是利用感应电荷的多少来控制导电沟道的宽窄,从而控制电流的大小。
场效应管放大器主要由输入级、中间级和输出级组成。
输入级主要起信号放大作用,中间级主要起信号传递作用,输出级主要起功率放大作用。
三、实验仪器与设备1. 实验箱:包含电源、示波器、信号发生器等。
2. 场效应管:JFET、IGFET各一只。
3. 电阻、电容、电感等电子元件。
4. 接线板、导线等。
四、实验步骤1. 搭建场效应管放大电路,包括输入级、中间级和输出级。
2. 调整电路参数,使放大器处于正常工作状态。
3. 使用示波器观察放大器的输出波形,分析放大器的性能。
4. 测量放大器的各项性能参数,如增益、带宽、输入阻抗、输出阻抗等。
五、实验结果与分析1. 放大器输出波形通过示波器观察,放大器输出波形基本符合预期,说明放大器能够正常工作。
2. 放大器性能参数(1)增益:通过测量输入信号和输出信号的幅度,计算得到放大器的增益为20dB。
(2)带宽:通过测量放大器的-3dB带宽,得到放大器的带宽为1MHz。
(3)输入阻抗:通过测量放大器输入端电压和电流,计算得到放大器的输入阻抗为1kΩ。
(4)输出阻抗:通过测量放大器输出端电压和电流,计算得到放大器的输出阻抗为50Ω。
场效应管放大电路
一、实验要求
(1)建立场效应管放大电路。
(2)分析场效应管放大电路的性能
二、实验内容
(1)建立结型场效应管共源放大电路。
结型场效应管取理想模式。
用信号发生器产生频率为lkHz、幅值为10mV的正弦信号。
(2)打开仿真开关,用示波器观察场效应管放大电路的输入波形和输出波形。
测量输出波形的幅值,计算电压放大倍数。
(3)建立如图3-3所示的场效应管放大电路的直流通路。
打开仿真开关,利用电压表和电流表测量电路静态参数。
三、实验电路原理图
结型场效应管共源放大电路
场效应管放大电路的直流通路
四、实验结果及分析
1、函数信号发生器
输入信号输出信号波形:
分析:
共源放大电路的电压放大倍数为10。
输出波形的幅值为100mv。
2、场效应管放大电路的直流通路大电路的直流通路
分析:
根据实验数据可得,场效应管的漏源电压为15.076V,栅源电压为0.411V,漏极电流为0。
.05mA。
电压表和电流表测到的栅源电压,漏源电压,漏极电流。
五、实验结论
与双极型晶体管放大电路的共发射极、共集电极和共基极电路相对应,场效应管放大电路也有三种基本组态:共源电路、共漏电路、共栅电路。
其电路结构与分析方法与双极型晶体管放大电路类似。
一、实验目的1. 了解结型场效应管(JFET)的结构、原理及工作特性;2. 掌握结型场效应管的基本放大电路设计、搭建和调试方法;3. 学习结型场效应管放大电路动态参数的测试方法。
二、实验原理1. 结型场效应管(JFET)是一种单极型场效应管,其基本结构由p-n结栅极、源极和漏极组成。
JFET有n沟道和p沟道两种类型,其中n沟道JFET以N型半导体为衬底,p沟道JFET以P型半导体为衬底。
2. JFET的工作原理是:当栅极电压为负值时,p-n结反向偏置,形成导电沟道;当栅极电压为正值时,p-n结正偏置,导电沟道被夹断。
通过改变栅极电压,可以控制源极与漏极之间的电流。
3. JFET放大电路主要采用共源极放大电路,其特点是输入阻抗高、输出阻抗低、电压增益高。
JFET放大电路的动态参数包括:输入电阻、输出电阻、电压增益、输入电容、输出电容等。
三、实验仪器与设备1. 实验电路板:包括JFET、电阻、电容、电源、信号发生器、示波器等;2. 信号发生器:提供输入信号;3. 示波器:观察输出波形;4. 数字万用表:测量电压、电流等参数;5. 实验电源:提供稳定电压。
四、实验内容及步骤1. 搭建JFET共源极放大电路,如图所示。
2. 调整电路参数,使JFET工作在放大状态。
3. 测量电路的静态工作点,包括栅极电压VGS、漏极电压VDS和漏极电流ID。
4. 输入信号,调整信号幅度和频率,观察输出波形。
5. 测量电路的动态参数,包括输入电阻、输出电阻、电压增益、输入电容、输出电容等。
6. 分析实验结果,验证JFET放大电路的性能。
五、实验结果与分析1. 静态工作点测量结果:VGS = -2VVDS = 10VID = 2mA2. 动态参数测量结果:输入电阻Ri = 1.5kΩ输出电阻Ro = 5kΩ电压增益AV = 20输入电容Ci = 100pF输出电容Co = 500pF3. 分析:(1)JFET共源极放大电路在静态工作点附近具有良好的线性放大特性;(2)输入电阻较高,有利于信号源负载;(3)电压增益较高,适用于信号放大;(4)输入电容和输出电容较小,有利于高频信号放大。
场效应管放大器实验报告场效应管放大器实验报告引言:场效应管(Field Effect Transistor,简称FET)是一种广泛应用于电子设备中的三极管。
它具有高输入阻抗、低输出阻抗、低噪声和低失真等优点,因此在放大器电路中得到了广泛应用。
本实验旨在通过搭建场效应管放大器电路,探究其性能特点和工作原理。
一、实验目的本实验的主要目的是研究场效应管放大器的工作原理和性能特点,包括输入输出特性、放大倍数、频率响应等。
二、实验原理场效应管是一种三极管,由栅极、漏极和源极组成。
其工作原理是通过栅极电压的变化来控制漏极-源极之间的电流,从而实现信号的放大。
场效应管有不同的类型,包括MOSFET(金属氧化物半导体场效应管)和JFET(结型场效应管)。
本实验采用JFET作为放大器的核心元件。
三、实验器材和电路图实验器材包括JFET、电阻、电容、信号发生器、示波器等。
电路图如下所示。
(此处省略电路图的描述)四、实验步骤与结果1. 搭建电路:根据电路图连接JFET、电阻和电容等元件,接入信号发生器和示波器。
2. 测量输入输出特性:通过调节信号发生器的频率和幅度,测量不同输入电压下的输出电压并记录。
3. 测量放大倍数:固定输入电压,测量输出电压,并计算放大倍数。
4. 测量频率响应:在一定的输入电压下,改变信号发生器的频率,测量输出电压的变化,并绘制频率响应曲线。
根据实验步骤,我们进行了一系列的实验测量,并得到了以下结果。
(此处省略实验结果的具体数值和图表)五、实验分析与讨论通过实验测量,我们可以得到场效应管放大器的输入输出特性曲线、放大倍数曲线以及频率响应曲线。
根据实验结果,我们可以进行以下分析和讨论。
1. 输入输出特性曲线显示了场效应管放大器的非线性特点。
随着输入电压的增大,输出电压也会相应增大,但是当输入电压达到一定值后,输出电压将不再线性增大。
2. 放大倍数曲线显示了场效应管放大器的放大效果。
我们可以通过计算不同输入电压下的输出电压比值来得到放大倍数。
电路分析实验报告结型场效应管放大电路一、实验摘要通过对实验箱上结型场效应管的测试,认识N沟道JFET场效应管的电压放大特性和开关特性。
通过使用输出电压相等法对场效应管输入电阻进行测量。
二、实验环境模拟电路试验箱函数信号发生器示波器万用表电位器三、实验原理JFET是在同一块N形半导体上制作两个高掺杂的P区,并将它们连接在一起,所引出的电极称为栅极g,N型半导体两端分别引出两个电极,分别称为漏极d,源极s。
结型场效应晶体管是一种具有放大功能的三端有源器件。
N沟道结型场效应管当在漏极D和源极S之间加上电源后,则在N型沟道中产生从漏极流向源极的电流。
由PN结的特性可知,若在栅极G和源极S间加上负电压,PN结的宽度增加,且负电压越大,PN结就越宽,造成沟道变窄,沟道电阻变大,因此只要改变偏压便可控制漏极电流的大小。
四、实验步骤在模电试验箱对应模块上连接电路500mVpp,2kHz 调节信号发生器,调节电位器,使波形不失真和饱和失真外接一个大电阻,用输出电压相等法测量输入电阻五、实验数据不失真U in=520mV U out=3.9V 放大倍数7.5 V GS=-0.13061V V DS=4.3847V I D=0.43099mA饱和失真V GS=-0.06981V V DS=1.84925VI D=0.43092mA不接680kΩ电阻时:U in=500mV U out=3.43V接680kΩ电阻时:U in=780mV U out=3.43V输入电阻=1214.29kΩ=1.21MΩ六、实验总结在本次实验中了解到了结型场效应管放大特性。
掌握了用输出电压相等法测量输入电阻的方法。
场效应管放大器实验报告场效应管(FET)是一种常用的放大器元件,它具有高输入阻抗、低噪声、低失真等优点,因此在电子电路中得到了广泛的应用。
本实验旨在通过实际操作,了解场效应管放大器的工作原理、特性和参数测量方法,以及对放大器性能的影响。
下面将从实验目的、实验原理、实验步骤、实验数据处理和分析、实验结论等方面进行详细的报告。
实验目的。
1. 了解场效应管放大器的基本工作原理;2. 掌握场效应管放大器的参数测量方法;3. 理解不同参数对放大器性能的影响。
实验原理。
场效应管放大器是利用场效应管的放大特性来实现信号放大的电路。
场效应管由栅极、漏极和源极组成,通过控制栅极电压来调节漏极和源极之间的电流,从而实现信号放大。
在放大器电路中,场效应管通常作为放大器的输入级,其输入阻抗高,对输入信号不产生负载效应,能够有效地将输入信号传递到后级放大器,因此被广泛应用于各种电子设备中。
实验步骤。
1. 搭建场效应管放大器电路,连接电源和信号源;2. 调节栅极电压,测量输入输出电压和电流;3. 改变栅极电压,测量不同工作点下的电压增益、输入阻抗和输出阻抗;4. 记录实验数据,进行数据处理和分析。
实验数据处理和分析。
通过实验数据的记录和分析,我们得到了不同工作点下的电压增益、输入阻抗和输出阻抗的变化情况。
根据实验结果,我们可以看出,随着栅极电压的变化,电压增益呈现出不同的变化趋势,输入阻抗和输出阻抗也有所不同。
这些数据反映了场效应管放大器在不同工作点下的性能特点,为进一步了解其工作原理和优化设计提供了重要参考。
实验结论。
通过本次实验,我们深入了解了场效应管放大器的工作原理和参数测量方法,掌握了实际操作技能,对放大器性能的影响有了更清晰的认识。
实验结果表明,场效应管放大器具有较高的输入阻抗和电压增益,能够有效地实现信号放大,为电子电路设计和应用提供了重要的技术支持。
总结。
通过本次实验,我们对场效应管放大器有了更深入的了解,实践操作使我们更加熟悉了电子电路中的放大器元件,提高了我们的实际动手能力和技术水平。
一、实验目的1. 了解场效应管的基本特性和工作原理。
2. 掌握场效应管放大电路的设计、搭建和调试方法。
3. 学习场效应管放大电路动态参数的测试方法。
二、实验原理场效应管(Field-Effect Transistor,简称FET)是一种电压控制型半导体器件,具有输入阻抗高、噪声系数小、热稳定性好等优点。
场效应管分为结型场效应管(JFET)和金属氧化物半导体场效应管(MOSFET)两大类。
本实验主要研究结型场效应管放大电路。
结型场效应管放大电路主要由输入回路、输出回路和直流偏置电路组成。
输入回路将信号源与放大器输入端连接,输出回路将放大器输出端与负载连接,直流偏置电路为场效应管提供合适的静态工作点。
三、实验仪器与器材1. 实验仪器:函数信号发生器、示波器、数字多用表、直流稳压电源、场效应管、电阻、电容等。
2. 实验器材:实验板、导线、连接器等。
四、实验步骤1. 搭建实验电路:按照实验原理图搭建场效应管放大电路,包括输入回路、输出回路和直流偏置电路。
2. 调整静态工作点:根据实验要求,调整直流偏置电路中的电阻,使场效应管工作在合适的静态工作点。
3. 输入信号测试:使用函数信号发生器产生输入信号,通过输入回路输入到放大器中,观察放大器输出波形。
4. 放大电路性能测试:测试放大电路的电压放大倍数、输入电阻、输出电阻等动态参数。
5. 结果分析:根据实验数据,分析放大电路的性能,并与理论计算结果进行比较。
五、实验结果与分析1. 静态工作点调整:通过调整直流偏置电路中的电阻,使场效应管工作在合适的静态工作点。
调整过程中,观察场效应管输出特性曲线,确保静态工作点稳定。
2. 输入信号测试:使用函数信号发生器产生正弦波信号,通过输入回路输入到放大器中。
观察放大器输出波形,确保放大器能够正常工作。
3. 放大电路性能测试:根据实验数据,计算放大电路的电压放大倍数、输入电阻、输出电阻等动态参数。
将实验结果与理论计算结果进行比较,分析误差产生的原因。
场效应管放大器实验报告实验目的:1.熟悉场效应管的特性;2.掌握场效应管放大电路的实验测量方法;3.了解场效应管放大电路的放大特性和输出特性。
一、实验原理场效应管(MOSFET)是一种三端器件,由栅极、漏极和源极组成。
本实验中使用的场效应管为N沟道MOSFET,其增强型导通态,栅极电压(V_gs)正,使得源极-漏极电流(I_ds)增大。
场效应管放大器是将输入信号通过场效应管放大后,得到更大的输出信号。
输入信号通过耦合电容从输入端传入场效应管的栅极,输出信号经耦合电容从场效应管的漏极输出。
当输入信号变化时,场效应管的栅极电压会相应改变,从而控制漏极电流的变化,从而实现了信号的放大。
二、实验器材信号发生器、场效应管、电阻、电容、万用表、示波器等。
三、实验步骤1.搭建场效应管放大电路,连接如下图所示,其中RD为漏极负载电阻,VG、VS、VD分别为栅极、源极和漏极电压。
将示波器的探头用示波器的X/Y模式引出,连接到电路的输入和输出端口,方便观测输入和输出信号。
2.根据实验电路的参数和实际需要的放大倍数确定漏极负载电阻RD的大小。
设置发生器的频率和幅度(如1kHz的正弦波信号)。
3.打开电源,调节电位器,使场效应管的漏极电流为预期值。
4.调节信号发生器的频率和幅度,获得所需放大倍数的输出信号。
5.用万用表测量电路各节点的电压值,观察漏极电流变化对应的栅极电压。
6.记录数据,并根据测量数据绘制输入输出特性曲线和增益特性曲线。
四、实验结果及数据处理根据实验步骤记录实验数据,并将实验数据整理成表格。
根据测量数据绘制输入输出特性曲线和增益特性曲线,分析实验结果。
五、实验总结通过本次实验,我们熟悉了场效应管的特性,掌握了场效应管放大电路的实验测量方法。
实验过程中我们了解到了场效应管放大器的放大特性和输出特性,通过输入输出特性曲线和增益特性曲线的绘制和分析,我们进一步加深了对场效应管放大器的理解。
同时,我们还学会了使用信号发生器、示波器和万用表等仪器进行实验测量,锻炼了实验操作技能。
场效应管放大器实验报告实验报告:场效应管放大器一、实验目的1.了解场效应管的原理和特性。
2.学习场效应管的半导体制作工艺。
3.掌握场效应管放大电路的设计和调试方法。
二、实验原理1.场效应管的原理场效应管(Field Effect Transistor,FET)是一种电子管,利用金属-半导体界面的电势差作为控制电路的调节电量,从而实现信号放大、开关等功能。
根据控制电压的不同种类和作用方式,场效应管可以分为三种:JFET(结型场效应管)、MOSFET(金属氧化物半导体场效应管)和IGFET(绝缘栅场效应管)。
其中,JFET的控制电压是负电压,而MOSFET和IGFET的控制电压是正电压。
2.场效应管的特性(1)输入电阻大:场效应管的输入电阻比双极晶体管大几十倍,适用于输入信号电阻较高的场合。
(2)无电流干扰:场效应管有高阻输入,输入电阻大,输入电流小,不容易受其他电路的电流稳压管的电流影响,所以不会产生电流干扰。
(3)低噪声:场效应管有高输入电阻,且内部噪声小,在低频放大器中可得到较低的噪声。
(4)失真小:场效应管可以使失真因子保持在1以下。
(5)增益高:场效应管的内部电流放大系数较大,故增益高,一般比双极晶体管高好几倍。
(6)无相位变化:场效应管的内部反馈电容小,无相位变化。
三、实验仪器和设备1.场效应管试验箱2.双踪示波器3.信号源4.直流电源5.万用表四、实验步骤1.按照实验原理连接电路,调节直流电源,使其为2V,同时调节信号源,使其输出为频率为1kHz,幅度为0.1V的正弦波。
2.将示波器连接到场效应管的输入端和输出端,观察输入信号和输出信号的波形以及幅值。
3.调整场效应管电路中的电阻网络,达到预定的放大倍数和通频带范围。
4.对场效应管的静态特性进行测量,包括Idss(漏源极饱和电流)、VP(截止电压)、VGS(栅源电压)等指标的测量。
五、实验结果1.测量得到的Idss值为2.5mA。
2.测量得到的VP值为5V。
实验六 结型场效应管放大电路
一.实验摘要
通过对实验箱上结型场效应管的测试,认识N 沟道JFET 场效应管的电压放大特性和开关特性。
给MOS 管放大电路加输入信号为:正弦波,Vpp=200mV-500mV ,f=2Khz 。
测量输入电阻时,输入端的参考电阻Rs=680K 。
二.实验主要仪器
三极管,万用表,示波器,信号源及其他电子元件。
三.实验原理
场效应管放大器性能分析
图6-1为结型场效应管组成的共源级放大电路。
其静态工作点
2
P
GS DSS D )U U (1I I -
= 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D
式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U
(1U 2I g P
GS P DSS m --
= 计算。
但要注意,计算时U GS 要用静态工作点处之数值。
输入电阻的测量方法
场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。
其输入电阻的测量,从原理上讲,也可采
S
D DD g2
g1g1
S G GS R I U R R R U U U -+=
-=
用实验二中所述方法,但由于场效应管的R i 比较大,如直接测输入电压U S 和U i ,则限于测量仪器的输入电阻有限,必然会带来较大的误差。
因此为了减小误差,常利用被测放大器的隔离作用,通过测量输出电压U O 来计算输入电阻。
测量电路如图所示。
输入电阻测量电路
在放大器的输入端串入电阻R ,把开关K 掷向位置1(即使R =0),测量放大器的输出电压U 01=A V U S ;保持U S 不变,再把K 掷向2(即接入R ),测量放大器的输出电压U 02。
由于两次测量中A V 和U S 保持不变,故
V S i
i
i V 02A U R R R U A U +=
= 由此可以求出 R U U U R 02
O102
i -=
四.实验步骤
1.检测实验所用三极管及示波器是否能够正常使用;
2.由于电路图已经搭建好,接通信号源,连接示波器;
3.调节电路板上的旋钮,使波形先后处于截止,饱和的状态,测量此时的GS V 、
DS V 和3R V ;
4.调节电路板上的旋钮,使波形处于既不截止又不饱和的状态,测量输入电阻。
五.实验数据
截止失真状态
GS V DS V 3R V 0.711V
10.72V
15.3mV
饱和失真状态
GS V DS V 3R V 0.536V
3.40V
10.4mV
临界不失真状态
未接入取样电阻
输入 输出 Vpp/V 2.5V 8.48V 接入取样电阻
输入 输出 Vpp/V
4.4V 8.48V
Ω=*-=
894.74k 100
取样
输入R V V V R
六.实验总结
通过本次试验,对场效应管的的放大效应有了进一步的认识,同时对于场效应管与三极管输入电阻的比较有了一定的认识。