环境工程第四章放射性废水处理(ppt)
- 格式:ppt
- 大小:458.00 KB
- 文档页数:25
放射性废水处理方法放射性废水的介绍自1895年伦琴发现X射线和1898年居里发现镭元素以来,核科学技术一直在不断的发展成熟,并深刻的改变着世界。
但是,在核科学给人类带来巨大利益的同时,也带来了严重的安全隐患。
比如,核能发电,尽管能满足人类对能源的需要,却又引起人们对切尔诺贝利核事故悲剧是否会重演的忧虑。
现在,放射性元素在军事、能源、工业、农业、医学以及其他科学研究中的应用已经机器广发。
于此同时,在整个开发利用过程中所产生的放射性废气、废液和固态废弃物的数量也越来越多,危害也越来越大,这不能不引起人们更加深切的关注。
在放射性“三废”中,放射性废水所占的比例相当大,因此对放射性废水的处理尤其应当重视。
放射性废水是指核燃料前处理和后处理,原子能发电站,应用放射性同位素的研究、医院、工厂等排出的废水。
按废水所含放射性废水浓度分为高水平、中水平与低水平放射性废水。
按废水中所含射线种类,还可以分为α、β、γ三类放射性废水。
放射性废水的来源及特点在核工业部门、一些科研部门,如核电站反应堆、铀钍的湿法冶金厂、医院、同位素试验堆及生产堆等都会产生放射性废水,表1—1归纳了部分主要的放射性废水的来源。
在核电站运行和停运过程中,都会形成放射性活度不同的废水。
这些废水的特点是组分复杂、浓度和水量的变化幅度较大,这种变化与核电站反应堆类型、电站的管理水平以及水化学工况等有关。
放射性废水因含有放射性元素或裂变产物,会损坏人的身体健康,一旦进入人体,极易在器官内沉积,乃至危害生命,所以要经过严格处理,才能排放。
放射性废水的处理方法放射性废水具有重金属元素种类多和浓度高、具有放射性、对人和动物危害大的特点。
从根本上讲,放射性元素只能靠自然衰变来降低以及消除其放射性。
故其处理方法从根本上说,无非是贮存和扩散两种。
对于高水平放射性废物,一般妥善的贮藏起来,与环境隔离;对中低水平的放射性废物,则用适当的方法处理后,将大部分的放射性废物转移到小体积的浓缩(压缩)物中,并加以贮藏,而使大体积废物中生育的放射性小于最大允许排放浓度后,将其排于环境中进行稀释、扩散。
放射性废水处理放射性废水中的放射性物质应尽可能作出安全的处理并转移到安全的地方,使它对人和其他生物的危害减轻到最低限度。
放射性废水按所含的放射性浓度可分为两类,一类为高水平放射性废液,一类为低水平放射性废水。
前者主要是核燃料后处理第一循环产生的废液,而后者则产生于核燃料前处理(包括铀矿开采、水冶、精炼、核燃料制造等过程中产生的含铀、镭等的废水)、核燃料后处理的其他工序,以及原子能发电站,应用放射性同位素的研究机构、医院、工厂等排出的废水。
国际原子能机构(IAEA)建议按放射性浓度水平将放射性废水分为五类,其处理方法以及处理装置屏蔽要求见表。
放射性核素用任何水处理方法都不能改变其固有的放射性衰变特性,其处理一般按两个基本原则:①将放射性废水排入水域(如海洋、湖泊、河流、地下水),通过稀释和扩散达到无害水平。
这一原则主要适用于极低水平的放射性废水的处理。
②将放射性废水及其浓缩产物与人类的生活环境长期隔离,任其自然衰变。
这一原则对高、中、低水平放射性废水都适用。
浓缩处理有化学沉淀、离子交换、蒸发、生物化学、膜分离、电化学等方法,常用的方法是前三种。
放射性废水的处理效果,通常用去污系数(DF)和浓缩系数(CF)表示。
前者的定义是废水原有的放射性浓度C0与其处理后剩余放射性浓度C之比,即DF=C0/C;后者的定义是废水的原有体积与其处理后浓缩产物的体积之比,即CF=V原水/V浓缩。
蒸发法、离子交换法和化学沉淀法的代表性去污系数的数量级分别为104~106、10~103和10。
化学沉淀法使沉淀剂与废水中微量的放射性核素发生共沉淀作用的方法。
最通用的沉淀剂有铁盐、铝盐、磷酸盐、高锰酸盐、石灰、苏打等。
对铯、钌、碘等几种难以去除的放射性核素要用特殊的化学沉淀剂。
例如,放射性铯可用亚铁氰化铁、亚铁氰化铜或亚铁氰化镍共沉淀去除;也可用粘土混悬吸附──絮凝沉淀法去除。
放射性钌可用硫化亚铁、仲高碘酸铅共沉淀法等去除。
放射性碘可用磺化钠和硝酸银反应形成碘化银沉淀的方法去除;也可用活性炭吸附法去除。
放射性废⽔处理的⽅法放射性废⽔处理的⽅法放射性废⽔的主要去除对象是具有放射性的重⾦属元素,由于放射性元素的衰变周期不可改变,因此处理放射性废⽔⼀般遵循2个基本原则:(1)通过稀释和扩散处理达到⽆害⽔平,这主要适⽤于极低浓度的放射性废⽔;(2)将放射性废⽔浓缩并与⼈类⽣活环境隔离后,任其⾃然衰减,这⼀点适⽤于任何浓度的放射性废⽔。
与此相关的处理技术,包括化学沉淀法、⽓浮法、⽣物处理法、蒸发法、离⼦交换法、吸附法、膜法、磁-分⼦法、惰性固化法、零价铁渗滤反应墙技术等。
1、絮凝沉淀法絮凝沉法法依靠絮凝剂使溶液中的溶质、胶体或悬浮物颗粒凝聚为⼤的絮凝体,从⽽实现固液分离。
由于其经济⾼效的特点,⽬前已⼴泛⽤于废⽔处理、⾷品、化⼯、发酵⼯业等诸多领域。
向废⽔中投放⼀定量的絮凝剂(如硫酸钾铝、铝酸钠、硫酸铁、氯化铁等),通过絮凝剂的吸附架桥、电中和等物理化学作⽤与废液中微量放射性核素及其他有害元素发⽣共沉淀,或凝聚成细⼩的可沉淀的颗粒,并与⽔中的悬浮物结合为疏松绒粒,从⽽吸附⽔中的放射性核素。
2、⽣物处理法⽣物处理法包括植物修复法和微⽣物法。
植物修复是指利⽤绿⾊植物及其根际⼟著微⽣物共同作⽤以清除环境中的污染物的⼀种新的原位治理技术。
从现有的研究成果看,适⽤于植物修复技术的低放核素主要有137Cs,90sr,3H,238Pu,239Pu,240Pu,241Pu及U 的放射性核素,适⽤的⽣物修复技术类型主要有⼈⼯湿地技术、根际过滤技术、植物萃取技术、植物固化技术、植物蒸发技术。
⼏乎⽔体中所有的铀都能富集于植物的根部。
适⽤的⽣物修复技术类型主要有⼈⼯湿地技术、根际过滤技术、植物萃取技术、植物固化技术、植物蒸发技术。
3、吸附法吸附法是⽤多孔性的固体吸附剂处理放射性废⽔,使其中所含的⼀种或数种元素吸附在吸附剂的表⾯上,从⽽达到去除的⽬的。
在对放射性废液的处理中,常⽤的吸附剂有活性炭、沸⽯、膨润⼟等。
其中沸⽯价格低廉,安全易得,与其他⽆机吸附剂相⽐,沸⽯具有较⼤的吸附能⼒和较好的净化效果,沸⽯的净化能⼒⽐其他⽆机吸附剂⾼达10倍。
放射性废水处理方法物理方法是通过物理过程来去除放射性物质。
其中,沉淀是最常用的方法之一、沉淀是通过加入沉淀剂,使废水中的放射性物质与沉淀剂结合生成固体沉淀物,从而达到去除放射性物质的目的。
常用的沉淀剂包括氢氧化钙、氧化铁等。
沉淀法可以结合其他物理方法如过滤来提高去除效果。
化学方法是通过化学过程来去除放射性物质。
离子交换是其中的一种常用方法。
离子交换是指将含放射性物质的废水通过交换树脂,使放射性物质从废水中吸附于树脂上,达到去除的目的。
一般采用的是强酸型或强碱型的树脂。
然后,通过再生树脂来获得放射性物质的固体废物。
此外,膜分离技术也是一种常见的化学方法,通过特定的膜材料来分离废水中的放射性物质。
生物方法是通过生物学过程来去除放射性物质。
植物吸收法是其中的一种常用方法。
这种方法利用植物对放射性物质具有较高的吸收能力,通过植物根系吸收放射性物质,从而达到去除的目的。
此外,放射性物质还可以通过微生物的作用进行去除。
通过合适的微生物和特定的生物反应器,可以使废水中的放射性物质通过生物过程转化为沉积或可分离的形式。
除了以上常见的处理方法,还有一些其他的放射性废水处理方法。
如电化学法,利用电化学电解、电沉积等反应来去除放射性物质;气浮法,利用微细气泡来吸附放射性物质并使其随气泡升浮上来,进而被刮除并收集。
综上所述,放射性废水的处理方法主要包括物理方法、化学方法和生物方法。
不同的方法可以根据废水的特性和处理要求进行选择和组合,以达到效果的最大化和成本的最低化。
随着科技的进步和研究的深入,放射性废水的处理技术也在不断地发展和完善,为更有效地保护环境和公众健康提供了更多的选择。