空间曲线的法平面
- 格式:docx
- 大小:11.04 KB
- 文档页数:2
求空间曲线在一点处的切线方程和法平面方程空间曲线的切线方程和法平面方程是研究空间曲线上某一点处几何性质的重要工具。
本文将介绍关于求解空间曲线的切线方程和法平面方程的基本原理和方法。
1. 空间曲线的切线方程设空间曲线为C,参数方程为:x = f(t)y = g(t)z = h(t)要求曲线在某一点P(t0)处的切线方程,可以通过以下步骤进行求解:(1)计算曲线在P(t0)处的切向量。
在曲线上选取一点P(t0),将参数t作适当的微小变化dt,得到曲线上另一点P(t0+dt)。
连接P(t0)和P(t0+dt)两点,得到曲线上的一小段切线段。
切向量是切线段的方向矢量,表示曲线在该点的切线的方向。
切向量的计算公式为:T = lim(dt→0) (P(t0+dt) - P(t0)) / dt(2)确定切线方向向量。
切线方向向量与切向量相同,方向与曲线的切线一致。
所以切线方向向量T即为切线向量。
(3)确定切线点坐标。
将参数t赋值为t0,得到切线过点P(t0)的坐标。
(4)写出切线方程。
以切线点为起点,以切线方向向量为方向,可得到切线方程的一般形式:(x - x0) / a = (y - y0) / b = (z - z0) / c其中,(x0, y0, z0) 为切线点坐标,(a, b, c)为切线方向向量。
2. 空间曲线的法平面方程设空间曲线为C,参数方程为:x = f(t)y = g(t)z = h(t)要求曲线在某一点P(t0)处的法平面方程,可以通过以下步骤进行求解:(1)计算曲线在P(t0)处的切向量。
切向量T已在求解切线方程时计算过。
(2)确定法平面的法向量。
法向量是垂直于切线向量的向量,在二维平面上与切线方向向量一致,在三维空间中由切线向量和一般的纵轴方向共同确定。
可以通过叉乘计算得到法向量:N = T × (0, 0, 1) 或 N = (0, 0, 1) × T其中,×表示向量的叉乘运算。
第六节 空间曲线的切线与空间曲面的切平面一、空间曲线的切线与法平面设空间的曲线C 由参数方程的形式给出:⎪⎩⎪⎨⎧===)()()(t z z t y y t x x ,),(βα∈t .设),(,10βα∈t t ,)(),(),((000t z t y t x A 、))(),(),((111t z t y t x B 为曲线上两点,B A ,的连线AB 称为曲线C 的割线,当A B →时,若AB 趋于一条直线,则此直线称为曲线C 在点A 的切线.如果)()()(t z z t y y t x x ===,,对于t 的导数都连续且不全为零即空间的曲线C 为光滑曲线,则曲线在点A 切线是存在的.因为割线的方程为也可以写为当A B →时,0t t →,割线的方向向量的极限为{})(),(),(000t z t y t x ''',此即为切线的方向向量,所以切线方程为)()()()()()(000000t z t z z t y t y y t x t x x '-='-='-.过点)(),(),((000t z t y t x A 且与切线垂直的平面称为空间的曲线C 在点)(),(),((000t z t y t x A 的法平面,法平面方程为如果空间的曲线C 由方程为且)(),(0'0'x z x y 存在,则曲线在点)(),(,(000x z x y x A 的切线是法平面方程为如果空间的曲线C 表示为空间两曲面的交,由方程组 确定时,假设在),,(000z y x A 有0),(),(≠∂∂=Az y G F J ,在),,(000z y x A 某邻域内满足隐函数组存在定理条件,则由方程组⎩⎨⎧==0),,(0),,(z y x G z y x F ,在点),,(000z y x A 附近能确定隐函数有)(),(0000x z z x y y ==,),(),(1,),(),(1x y G F J dx dz z x G F J dx dy ∂∂-=∂∂-=;于是空间的曲线C 在 点),,(000z y x A 的切线是 即法平面方程为类似地,如果在点),,(000z y x A 有0),(),(≠∂∂Ay x G F 或0),(),(≠∂∂Ax z G F 时,我们得到的切线方程和法平面方程有相同形式;所以,当向量时,空间的曲线C 在),,(000z y x A 的切线的方向向量为r例 求曲线θθθb z a y a x ===,sin ,cos 在点()πb a ,0,-处的切线方程. 解 当πθ=时,曲线过点()πb a ,0,-,曲线在此点的切线方向向量为{}{}b a b a a ,,0|,cos ,sin -=-=πθθθ,所以曲线的切线方程为bt z z a t y y t x x )()(0)(000-=--=-. 即 b b z a y a x π-=-=+0. 二、空间曲面的切平面与法线设曲面S 的一般方程为取),,(0000z y x P 为曲面S 上一点,设),,(z y x F 在),,(0000z y x P 的某邻域内具有连续偏导数,且0),,(),,(),,(000200020002≠++z y x F z y x F z y x F z y x ;设c 为曲面S 上过),,(0000z y x P 的任意一条光滑曲线:设)(),(),(000000t z z t y y t x x ===,我们有 上式对t 在0t t =求导得到因此,曲面S 上过),,(0000z y x P 的任意一条光滑曲线c 在),,(0000z y x P 点的切线都和向量 垂直,于是这些切线都在一个平面上,记为α,平面α就称为曲面S 在),,(0000z y x P 的切平面,向量n称为法向量;S 在),,(0000z y x P 的切平面方程是过点),,(0000z y x P 且与切平面α垂直的直线称为曲面S 在),,(0000z y x P 点法线,它的方程为 设曲面S 的方程为若),,(z y x F 在S 有连续偏导数且0),,(),,(),,(000200020002≠++z y x F z y x F z y x F z y x ,则称S 是光滑曲面;由上面讨论可以知道光滑曲面有切平面和法线;若曲面S 的方程的表示形式为 ),(y x f z =,这时,容易得到S 在),,(0000z y x P 的切平面方程为 法线方程为我们知道,函数),(y x f z =在点),(00y x 可微,则由Taylor 公式知))()((0))(,())(,(),(),(202000000000y y x x y y y x f x x y x f y x f y x f y x -+-+-+-=-也就是说,函数),(y x f z =在点),(00y x 附近可以用S 在),,(0000z y x P 的切平面近似代替,误差为2020)()(y y x x -+-的高阶无穷小;若曲面S 的方程表示为参数形式设),(),,(),,(000000000v u z z v u y y v u x x ===,),,(0000z y x P 为曲面上一点;假设在),,(0000z y x P 有0),(),(0≠∂∂=P v u y x J ,在),,(0000z y x P 某邻域内满足隐函数组存在定理条件,则由方程组⎩⎨⎧==),(),(v u y y v u x x ,在点),,(0000z y x P 附近能确定隐函数即x 和y 的逆映射 满足),(),,(000000y x v v y x u u ==;于是,曲面S 可以表示为由方程组⎩⎨⎧==),(),(v u y y v u x x ,两边分别同时对y x ,求偏导得到故所以,S 在),,(0000z y x P 的切平面方程为 法线方程为例 求曲面zxy z ln+=在点)1,1,1(的切平面和法线方程; 解 曲面方程为0ln ),,(=-+=z zxy z y x F ,易得}2,1,1{-=→n切面方程为 即02=-+z y x . 法线方程为习题1.求曲线t a z t a a y t a a x sin ,cos sin ,cos cos ===在点0t t =处的切线和法平面方程.2.求曲线⎩⎨⎧=++=++06222z y x z y x 在点)1,2,1(-处的切线和法平面方程.3.求曲面xy z arctan =在点)4/,1,1(π的切平面和法线方程;4;证明曲面)0(3>=a a xyz 上任意一点的切平面与坐标面形成的四面体体积为定值;5.证明曲面)(xy xf z =上任意一点的切平面过一定点;第七节 极值和最值问题一、无条件极值与一元函数极值类似,我们可以引入多元函数的极值概念;定义 n 元函数),,,(21n x x x f 在点),,,(002010n x x x P 的一个邻域⊂)(0P U n R 内有定义;若对任何点)(),,,(021P U x x x P n ∈ ,有)()(0P f P f ≥或)()(0P f P f ≤则称n 元函数),,,(21n x x x f 在),,,(002010n x x x P 取得极大或极小值, ),,,(002010n x x x P 称为函数),,,(21n x x x f 的极大或极小值点;极大值和极小值统称为极值,极大值点和极小值点统称为极值点;类似一元函数,我们称使得n 元函数),,,(21n x x x f 的各个一阶偏导数同时为零的点为驻点;我们有如下定理;定理 若),,,(002010n x x x P 为n 元函数),,,(21n x x x f 的极值点,且),,,(21n x x x f 在),,,(002010n x x x P 的一阶偏导数存在,则),,,(002010n x x x P 为n 元函数),,,(21n x x x f 的驻点;证 考虑一元函数)2,1)(,,,,()(001n i x x x f x ni i ==φ,则i x 是)(i x φ的极值点,Fermat 马定理告诉我们,可导函数在极值点的导数是零,于是和一元函数类似,反过来,驻点不一定是极值点;而偏导数不存在的点也有可能是极值点;判断多元函数的极值点要比一元函数复杂的多,下面我们仅对二元函数不加证明给出一个判别定理;定理 若),(000y x P 为二元函数),(y x f 的驻点,且),(y x f 在),(000y x P 的一个邻域⊂)(0P U 2R 中有二阶连续偏导数;令2B AC CB B A Q -==,则(1) 当0>Q 时,若0>A ,),(y x f 在),(000y x P 取极小值;若0<A ,),(y x f 在),(000y x P 取极大值;(2) 当0<Q 时,),(y x f 在),(000y x P 不取极值;(3) 当0=Q 时,),(y x f 在),(000y x P 可能取极值,也可能不取极值; 例 求函数)6(32y x y x z --=的极值; 解 解方程组得驻点为)3,2(0P 及直线0,0==y x 上的点;对)3,2(0P 点有0,144,108,1622>--=-=-=B AC C B A ,于是函数z 在)3,2(0P 取积大值108)(0=P z ; 容易判断,满足条件⎩⎨⎧<<=600y x 的点为函数z 的极小值点,极小值为0;满足条件的⎩⎨⎧<=00y x 和⎩⎨⎧>=6y x 的点为函数z 的极大值点,极大值为0; 一、 最值问题在社会生产各个领域我们都会遇上最值问题,即如何用最小的成本获取最大利益的问题,这些问题一般都可以归结为求某一函数在某一范围内的最大值和最小值的问题;我们称使得函数取得最大值和最小值的点为函数的最大值点和最小值点,统称为最值点;函数的最大值和最小值统称为最值;1、 一元函数设)(x f y =是定义在闭区间],[b a 上的连续函数,则)(x f 在],[b a 上一定有最大值和最小值;区间的两个端点a 和b 可能成为其最值点,而如果最值点在开区间),(b a 取得的话,则一定是)(x f 的极值点,即是)(x f 的驻点或是使导数)('x f 不存在的点;假设)(x f 的所有驻点是11211,,k x x x ,使导数)('x f 不存在的点是22221,,m x x x ,那么例 求抛物线x y 22=上与)4,1(最近的点;解 设),(y x 是抛物线x y 22=上的点,则),(y x 与)4,1(的距离是考虑函数2)(d y f =,由0)('=y f ,得到唯一驻点2=y ,于是抛物线x y 22=上与)4,1(最近的点是)2,2(2、多元函数类似一元函数,n 元函数),,,(21n x x x f 的最值问题就是求),,,(21n x x x f 在某个区域⊂D n R 上的最大值和最小值,我们只需求出),,,(21n x x x f 在D 内部的所有极值和边界上最值,从中比较就可以选出),,,(21n x x x f 在D 上的最值;例 求平面42=++z y x 与点)2,0,1(-的最短距离;解 设),,(z y x 是平面42=++z y x 上的点,则),,(z y x 与)2,0,1(-的距离是 考虑函数2),(d y x f =,由0,0'==y x f f ,得到唯一驻点)3/5,6/11(,于是平面42=++z y x 与点)2,0,1(-的最短距离是665)3/5,6/11(=d 三、条件极值问题和Lagrange 乘子法前面我们研究的极值和最值问题都是直接给出一个目标函数n 元函数),,,(21n x x x f ,然后求其极值或最值,是无条件极值问题,但是,更多的极值和最值问题是有约束条件的,即条件极值问题;一般来说,条件极值问题是指:求目标函数n 元函数),,,(21n x x x f y =在一组约束条件⎪⎪⎩⎪⎪⎨⎧<===)(,0),,(0),,(0),,(21212211n m x x x G x x x G x x x G n m nn 下的极值; 我们可以尝试对上面方程组用消元法解出m 个变量,从而转化为上一节的无条件极值问题来解决,但是,消元法往往比较困难甚至是不可能的,所以,我们需要给出一种新的方法来求条件极值;下面我们介绍拉格朗日乘子法;我们以二元函数为例来说明,即:求目标函数),(y x f z =在一个约束条件0),(=y x F 限制下的极值问题;假设点),(000y x P 为函数),(y x f z =在条件0),(=y x F 下的极值点,且0),(=y x F 满足隐函数存在定理的条件,确定隐函数)(x g y =,则0x x =是一元函数))(,(x g x f z =的极值点;于是 由隐函数存在定理得到 令λ=),(),(0000y x F y x f y y ,于是极值点),(000y x P 需要满足三个条件:因此,如果我们构造拉格朗日函数其中,λ称为拉格朗日乘子,则上面三个条件就是也就是说我们讨论的条件极值问题转化为拉格朗日函数的无条件极值问题;用这种方法去求可能的极值点的方法,称为拉格朗日乘子法;类似地,求目标函数n 元函数),,,(21n x x x f y =在一组约束条件⎪⎪⎩⎪⎪⎨⎧<===)(,0),,(0),,(0),,(21212211n m x x x G x x x G x x x G n m nn 下的极值时,我们可以构造相应的拉格朗日函数为于是,所求条件极值点满足方程组例横断面为半圆形的圆柱形的张口浴盆,其表面积等于S ,问其尺寸怎样时,此盆有最大的容积解 设圆半径为r ,高为h ,则表面积)0,0)((2>>+=h r rh r S π,容积h r V 221π=; 构造拉格朗日函数 解方程组 得到ππ32,300S h S r ==,这时33027πS V =; 由实际情况知道,V 一定达到最大体积,因此,当00232r Sh ==π时,体积最大; 习题1. 求函数xy y x z 333-+=的极值; 2. 求函数22442y xy x y x z ---+=的极值; 3.求椭圆4422=+y x 上与)0,1(最远的点 4.求平面1=-+z y x 与点)1,1,2(-的最短距离; 5.求曲面12+=xy z 上与)0,0,0(最近的点6.已知容积为V 的开顶长方浴盆,问其尺寸怎样时,此盆有最小的表面积7.求用平面0=++Cz By Ax 与椭圆柱面12222=+by a x 相交所成椭圆的面积;第八节 导数在经济学中的应用一、导数的经济意义 1.边际函数定义 设函数)(x f y =可导,则导函数)('x f 在经济学中称为边际函数; 在经济学中,我们经常用到边际函数,例如:边际成本函数、边际收益函数、边际利润函数等等,它们都是表示一种经济变量相对于另一种经济变量的变化率问题,都反映了导数在经济学中的应用;成本函数)(x C 表示生产x 个单位某种产品时的总成本;平均成本函数)(x c 表示生产x个单位某种产品时,平均每个单位的成本,即xx C x c )()(=;边际成本函数是成本函数)(x C 相对于x 的变化率,即)(x C 的导函数)('x C ;由微分近似计算公式我们知道令1=∆x ,我们有)()1()('x C x C x C -+≈,也就是说,边际成本函数)('x C 可以近似表示已经生产x 个单位产品后再生产一个产品所需要的成本;在生产中,我们当然希望平均成本函数)(x c 取得极小值,这时,我们可以得到0)('=x c即则0)()('=-x C x xC ,于是我们得到)()('x c x C =;因此,平均成本函数)(x c 取得极小值时,边际成本函数和平均成本函数相等;这在经济学中是一个重要原则,就是说在生产中,当边际成本函数低于平均成本函数时,我们应该提高产量,以降低平均成本;当边际成本函数高于平均成本函数时,我们应该减少产量,以降低平均成本; 例 设某种产品生产x 个单位时的成本为21.02250)(x x x C ++=;求(1) 当生产产品100单位时的边际成本和平均成本; (2) 当生产产品数量为多少时平均成本最低; 解 1边际成本函数和平均成本函数为 于是,5.14)100(,22)100('==c C2平均成本函数)(x c 取得极小值时,边际成本函数和平均成本函数相等,即 因此,当生产产品数量为50时平均成本最低; 类似边际成本函数我们可以讨论其它边际函数;需求函数)(x p 表示销售x 单位某种产品时的单个产品的价格;那么,)(x p 是x 的单调减少函数;收益函数是)()(x xp x R =,边际收益函数是)('x R ;利润函数是 边际利润函数是)('x P ;当利润函数取极大值时,0)()()('''=-=x C x R x P ,于是,)()(''x C x R =,也就是说取得最大利润的必要条件是边际利润等于边际成本;为了保证取得最大利润还需要下面条件即)()(''''x C x R <;所以,当)()(''x C x R =且)()(''''x C x R <时取得最大利润;例设某种产品生产x 个单位时的成本为320003.001.028.127)(x x x x C +-+=,需求函数x x p 01.028.10)(-=;当生产产品数量要达到多大时可以取得最大利润 解 收益函数是 由)()(''x C x R =得到 我们得到100=x ;容易验证对任意0>x 有)()(''''x C x R <;所以,当生产产品数量达到100单位水平可以取得最大利润;2.弹性在经济学中我们常常用到弹性的概念,弹性也是一种变化率问题,与导数概念密切相关;定义 设函数)(x f y =在点0x 可导,则称00x x yy ∆∆为函数)(x f y =在点0x 与x x ∆+0两点间的弹性;称00x x yy ∆∆在0→∆x 时的极限为函数)(x f y =在点0x 的弹性,记为x x ExEy =或)(0x f ExE即如果)(x f y =在),(b a x ∈可导,相应地,我们可以给出),(b a 上弹性函数的定义当x 很小时,我们有近似计算公式也就是说,函数的弹性是函数的相对改变量与自变量相对改变量之比,上式表示当x 从0x 产生001的改变时, )(x f y =改变000)(x f ExE需求函数)(p f Q =表示在价格为p 时,产品的需求量为Q ;需求函数)(p f Q =是单调减少函数,)(p f Q =的反函数也称为需求函数,就是我们前面提到的需求函数)(x p ;需求函数)(p f Q =对价格p 的导数称为边际需求函数;需求函数)(p f Q =的弹性为由于)(p f Q =是单调减少函数,因此0≤EpEf; 收益函数)()(p pf pQ p R ==,于是令EpEfE d =,我们有 若1<d E ,则需求变动幅度小于价格变动幅度,称为低弹性,这时,0)('>p R ,)(p R 是单调增加函数;也就是说当价格上涨时收益增加, 当价格下跌时收益减少;若1>d E ,则需求变动幅度大于价格变动幅度,称为高弹性,这时,0)('<p R ,)(p R 是单调减少函数;也就是说当价格上涨时收益减少, 当价格下跌时收益增加;若1=d E ,则需求变动幅度和价格变动幅度相同,称为单位弹性,这时,0)('=p R ;也就是说当价格改变时,收益没有变化;类似上面对需求弹性的研究,我们也可以讨论供给弹性;供给函数)(p Q ϕ=是指商品生产商的供给量Q 与价格p 之间的关系函数;)(p Q ϕ=是单调增加函数;边际供给函数是)(p Q ϕ=对价格p 的导数,供给弹性函数是例 设某种产品的需求函数为p Q 5100-=,其中价格)20,0(∈p ; 1求需求函数Q 的弹性EpEQ; 2用需求弹性说明价格在什么范围变化时,降低价格反而使收益增加; 解 1需求函数Q 的弹性20-=p pEp EQ ; 2容易得到当2010<<p 时,1>=EpEQE d ,这时,0)('<p R ,当价格下跌时收益增加;二、其它应用举例导数在经济学中有很多应用,下面举一些例题说明;首先,我们考虑连续复利率问题;假设初始资金为0A ,如果年利率为r ,那么,t 年后资金为t r A t A )1()(0+=;通常情况下是一年多次计息,假设一年n 次计息,那么 我们这里是连续复利率计算问题,令∞→n 得到 于是,我们得到连续复利率计算公式rt e A t A 0)(=;例某企业酿造了一批好酒,如果现在就出售,总收入为0R ,如果贮藏起来,t 年后出售,收入为520)(t eR t R =;如果银行年利率为r ,并且以连续复利率计算,问贮藏多少年后出售可以使收入的现值最大;解 由连续复利率计算公式,t 年后的总收入)(t R 的现值)(t X 为 由0)('=t X 得,2251r t =年;故贮藏2251r年出售,总收入的现值最大; 下面,我们再举一个其它应用题;例 某企业生产某型号仪器,年产量A 台,分几批生产,每批生产准备费为B 元,假设产品均匀投入市场,且上一批用完后立即生产下一批,平均库存量为批量的一半;设每年一台仪器的库存费为C 元;问如何选择批量,使一年中库存费与准备费之和最小;解 设批量为x 台,则库存费为C x 2,每年生产的批数为xA,生产准备费为B x A ,于是总费用为 令0)('=x f ,得到CABx 2=; 因此,批量为CABx 2=台时,一年中库存费与准备费之和最小; 多元函数的偏导数在经济学中也有非常广泛的应用;n 元函数),,,(21n x x x f y =的偏导数),,2,1)(,,(21n i x x x f x n i=∂∂称为对i x 的边际函数;我们可以类似一元函数引入边际成本函数、边际收益函数、边际利润函数等等;我们还可以类似一元函数引入函数的偏弹性概念;这里不再一一详细叙述;下面我们举几个多元函数应用题;例 假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是其中1p 和2p 为售价,1Q 和2Q 为销售量;总成本函数为1如果该企业实行价格差别策略,试确定两个市场上该产品的销售量和价格,使该企业获得最大利润;2如果该企业实行价格无差别策略,试确定两个市场上该产品的销售量和统一的价格,使该企业总利润最大化;并比较两种策略下的总利润大小;解 1总利润函数是 由得5,421==Q Q ,这时7,1021==p p ;因为这是一个实际问题,一定存在最大值,且驻点唯一,因此当7,1021==p p 时,取得最大利润(3) 若实行价格无差别策略,则21p p =,即有约束条件 构造拉格朗日函数 由得2,4,521===λQ Q ,这时821==p p ; 最大利润因此,企业实行价格差别策略所得利润要大于实行价格无差别策略的利润;例 假设某企业通过电视和报纸作广告,已知销售收入为 其中x 万元和y 万元为电视广告费和报纸广告费; 1在广告费用不限的情况下求最佳广告策略; 2如果广告费用限制为万元,求相应广告策略; 解 1利润函数为 由得到唯一驻点1,5.1==y x ;这时最大利润为41)1,5.1(=P 万元2构造拉格朗日函数为 由得到唯一驻点5.1,0==y x ;这时最大利润为39)5.1,0(=P 万元习题1.设某种产品生产x 个单位时的成本为230040000)(x x x C ++=;求 1当生产产品1000单位时的边际成本和平均成本; 2当生产产品数量为多少时平均成本最低;2.设某种产品生产x 个单位时的成本为32001.0361450)(x x x x C +-+=,需求函数x x p 01.060)(-=;当生产产品数量要达到多大时可以取得最大利润 3.设某种产品的需求函数为5p e Q -=,求6=p 时的需求弹性; 4. 设某种产品的需求函数为p Q 2100-=讨论其弹性的变化; 5;某产品的总收益函数和成本函数分别是 厂商追求最大利润,政府对产品征税,求:1求产品产量和价格为多少时,厂商能取得税前最大利润; 2征税收益的最大值及此时的税率; 3厂商纳税后的最大利润;6.假设某厂家在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是其中1p 和2p 为售价,1Q 和2Q 为销售量;总成本函数为试确定两个市场上该产品的销售价格,使该企业获得最大利润;第九节 曲率所谓曲率就是用来描述曲线的弯曲程度的.线有直线和非直线,如果一个人沿着直线行走,他不需要转动方向;但如果他沿着一条非直线行走时,他在每一点行进的方向是曲线的切线方向.因而他在每一点行进的方向大多是不一样的.人移动时,他要转动方向.当曲线的弯曲程度大一点时,人走相同的距离目光的转向要大一点.在直线上转向是没有的.因而我们就用曲线上单位距离切线方向即目光方向的转动角度来刻画曲线的弯曲程度.设光滑曲线方程为()x f y =,()b a x ,∈,()b a x x ,,21∈,()()111,x f x P ,()()222,x f x P 是曲线上的两点.当弧21P P 很小时,可以用21P P 的直线距离来近似.设曲线在点21,P P 的切线与x 轴正向的夹角分别是ααα∆+,,则()()()21tan ,tan x f x f '=∆+'=ααα,所以()()()21arctan ,arctan x f x f '=∆+'=ααα.而()()()()21221221x f x f x x P P -+-=,这时有1212limP P x x α∆→是刻画曲线在点1x 的弯曲程度的,通常记为k . 定义 若函数()x f y =具有两阶连续的导数,则曲线上单位长度的切线转动 称为函数()x f y =的曲率.显然曲率0≥k .例 求抛物线c bx ax y ++=2的曲率. 解:b ax y +='2,a y 2='', 所以曲率为()()232212b ax ak ++=.显然当02=+b ax 时,k 最大. 即在abx 2-=对称轴处,曲线弯曲程度最大. 例 求直线b kx y +=的曲率. 解:因为k y =',0=''y , 所以0=k .即直线没有弯曲.上面这种方法是对显函数而言的.如果曲线有参数方程()()⎩⎨⎧==t y y t x x 给出,求曲率的过程可以如下进行.先求()()t x t y dx dy ''=,()()()()()()322t x t y t x t x t y dx dy dx d dx y d ''''-'''=⎪⎭⎫ ⎝⎛=,代入前面求曲率的公式,得到()()()()()()()2322t y t x t y t x t x t y k '+''''-'''=.例 求半径为R 的圆的曲率. 解:可设圆方程为⎩⎨⎧==θθsin cos R y R x ,则θsin R x -=',θcos R y ='; θcos R x -='',θsin R y -='';代入上面的公式,得()()()RR R R R R R k 1sin cos sin sin cos cos 2322=+⋅-⋅-=θθθθθθ. 即圆的弯曲程度是其半径的倒数.R 越大,曲率越小.为此我们一般曲线上任意一点可以用一个圆弧来表示.相比较着一点的曲率的倒数,即k1称为该点的曲率半径,也就是说,该点的弯曲程度与半径为k1的圆的弯曲程度接近.此时在该点的法线上的的一侧一点O,使得k OP 1=,点O称为曲率中心.以O 为圆心,k1为半径的圆称为P 点的曲率圆.下面考虑隐函数曲率的求法.求隐函数的曲率,关键在于求y y ''',.举一个例子.例 求曲线12222=+b y a x ()0,0>>b a 上一点的曲率.解:对12222=+by a x 两边对x 求导,得到0121222='+y by a x. 所以 ya xb y 22-='.又对0121222='+y by a x两边对x 求导,得到 01212122222=''+'+y by y b a . 所以32422223242244221y a b a x b y y a b y x a b a b y y =⎪⎪⎭⎫ ⎝⎛+-=⎪⎪⎭⎫ ⎝⎛+-='', ()()232424442321xb y ab a y y k +='+''=.特别地,当R b a ==时,Rk 1=. 最后介绍极坐标系下,曲线的曲率的求法. 例 求阿基米德螺线θa r =的曲率.解:因为θθθcos cos a r x ==,θθθsin sin a r y ==,所以θθθsin cos a a x -=',θθθcos sin a a y +='. θθθcos sin 2a a x --='',θθθsin cos 2a a y --=''. 代入公式()()()()()()()2322t y t x t y t x t x t y k '+''''-'''=,得()()232223222222122θθθθ++=++=a a aa a k .曲率半径为k1.。
第六节空间曲线的切线与空间曲面的切平面一、空间曲线的切线与法平面工X 二x(t)设空间的曲线C由参数方程的形式给出:《y = y(t) , t€(o(,P).z = z(t)设tot C,J, A(x(t o), y(t o), z(t o)、B(x(t i), y(t i),z(t i))为曲线上两点,A, B 的连线AB称为曲线C的割线,当B > A时,若AB趋于一条直线,则此直线称为曲线C 在点A的切线.如果x = x(t), y = y(t), z = z(t)对于t的导数都连续且不全为零(即空间的曲线C为光滑曲线),则曲线在点A切线是存在的•因为割线的方程为x — x(t°)y — y(t°) z—z(t°)x(tj — x(t o) y(tj — y(t o) z(t i) — z(t o)也可以写为x — x(t。
)_ y — y(t。
)_ z — z(t。
)x(tj - x(t。
) y(tj - y(t。
) z(tj —z(t。
)t -t o t - t o t - t o当B > A时,t > t o,割线的方向向量的极限为fx(t o), y(t o), z(t o)1,此即为切线的方向向量,所以切线方程为X — x(t o) _ y — y(t o) _ z _z(t o)x(t。
)「y(t。
)「z(t o).过点A(x(t o), y(t o), z(t o)且与切线垂直的平面称为空间的曲线C在点A(x(t o), y(t o), z(t o)的法平面,法平面方程为x'(t o)(x-X o) y (t o)(y - y o) z'(t°)(z - z°) = 0如果空间的曲线C由方程为y = y(x),z = z(x)且y'(x o),z'(x°)存在,则曲线在点A(x°, y(X o), z(x°)的切线是X -X o _ y - y(X o) _ z -z(X o)1 y"(x o) z"(x o)法平面方程为(x-X o) y (X o)(y - y(X o)) z'(X o)(z-z(X o)) =o如果空间的曲线C表示为空间两曲面的交,由方程组;F(x, y,z)=0,c:丿[G(x, y, z) = o确定时,假设在A(x o, y o ,z o)有J =班F,G)式o,在A( x o, y o, z o)某邻域内满足隐函数点(y,z)A组存在定理条件,则由方程组丿F(x, y,z)-0,在点A(x o,y o,z o)附近能确定隐函数©(X, y,z) = 0y = y(x),z 二z(x)七/ 、/ 、 dy1 c(F,G) dz 1 F(F,G)有y o = y(x o ), Z o =z(x o ) — = ------------------------ ,一 = ---------------- 。
空间曲线的切线与法平面方程空间曲线是三维坐标系中的曲线,其切线和法平面方程是重要的概念。
在数学中,切线是曲线上一点的局部近似线性近似。
而法平面是指通过曲线上某一点且垂直于该点的切线的平面。
一、空间曲线的切线切线是空间曲线在某一点上的线性近似,可以用来描述曲线在该点附近的变化趋势。
以参数方程表示的空间曲线可以通过微分来求解切线。
设空间曲线的参数方程为:x = f(t)y = g(t)z = h(t)首先,我们需要求得曲线上某一点的切向量。
切向量的方向与曲线的切线方向一致,而模长则表征了曲线在该点上变化的快慢。
切向量的计算公式为:r'(t) = dx/dt * i + dy/dt * j + dz/dt * k其中i, j, k分别表示笛卡尔坐标系的基本单位向量。
然后,我们取曲线上的某一点P,求得该点的切向量r'(t0)。
这个切向量就是曲线在点P处的切向量。
最后,利用点法式方程求解切线方程。
设切线上的一点为P(x, y, z),坐标为(x0, y0, z0)。
切线的方向向量为r'(t0) = (dx/dt0, dy/dt0, dz/dt0)。
切线方程的计算公式为:(x - x0)/dx = (y - y0)/dy = (z - z0)/dz二、空间曲线的法平面方程法平面是通过曲线上某一点且垂直于该点的切线的平面。
法平面可以用点法式方程来描述。
设曲线上某点P(x0, y0, z0),曲线的切向量为r'(t0) = (dx/dt0, dy/dt0, dz/dt0)。
法平面的法向量为切向量r'(t0)。
利用点法式方程可以求解法平面的方程。
法平面方程的计算公式为:r'(t0)·(x - x0, y - y0, z - z0) = 0其中·表示点积运算。
综上所述,空间曲线的切线与法平面方程可以用参数方程表示曲线,通过求解切向量和法向量得到切线方程和法平面方程。
空间曲线法平面空间曲线法平面(Space Curve Method Plane)是一种在数学和几何学中应用广泛的方法,它为我们解决各种问题提供了有力的工具。
本文将生动、全面地介绍空间曲线法平面的概念、应用及其指导意义。
首先,让我们来了解一下什么是空间曲线法平面。
空间曲线法平面是利用空间曲线来构建一个平面,以解决不同类型的问题。
它不同于传统的平面几何,能够更好地处理复杂的空间问题。
空间曲线法平面的应用非常广泛。
在物理学中,我们可以利用空间曲线法平面来分析物体的运动轨迹。
比如,当我们需要研究一个自由落体物体在空间中的运动规律时,空间曲线法平面能够帮助我们清晰地描述物体的路径。
在工程学领域,空间曲线法平面也扮演着重要的角色。
通过建立空间曲线法平面,我们可以更好地设计和优化复杂的建筑结构、管道网络等。
同时,空间曲线法平面还能在航空航天领域中应用,帮助我们研究飞机或卫星的轨道运动。
此外,空间曲线法平面还在计算机图形学中发挥着重要作用。
以三维建模为例,利用空间曲线法平面,我们可以更加准确地绘制球面、圆柱面等复杂几何图形。
这对于虚拟现实、游戏开发等行业来说,具有重要的意义。
对于学习者而言,掌握空间曲线法平面对于理解和解决问题具有重要的指导意义。
例如,当我们在解决一个复杂的几何题目时,可以尝试将问题转化为空间曲线法平面来进行分析,以得到更清晰的解题思路。
此外,空间曲线法平面的应用还能够培养我们的逻辑思维和抽象思维能力,提高我们的问题解决能力。
总而言之,空间曲线法平面是一种在数学和几何学中非常有用的方法。
它的广泛应用领域涉及物理学、工程学、计算机图形学等多个领域。
对于学习者而言,掌握空间曲线法平面可以提高解决问题的能力,并促进思维能力的发展。
因此,我们应该重视并深入研究空间曲线法平面的理论与应用。
空间曲线法平面空间曲线法平面是一种在三维空间中描述图形的方法,它通过将一条曲线沿着一个平面展开,然后在平面上绘制该曲线的投影来表达三维图形的形状和结构。
该方法常被运用于工程设计、建筑设计以及艺术创作中。
在使用空间曲线法平面时,首先需要选定一个平面,这个平面可以是任意的,在实际应用中一般会选择与曲线相关的几何特点,比如曲线的主轴或者曲线上的某些特殊点作为平面的基准。
选择好平面之后,曲线会与平面相交,并且会有一部分曲线位于平面之上,另一部分则位于平面之下。
接下来的步骤是将曲线展开到所选平面上。
展开的过程相当于将曲线从三维空间变为了二维平面,这样使得曲线的形状和结构更容易理解和描述。
展开时,需要保持曲线上的点之间的相对位置和曲线的弧长不变。
可以通过将曲线上的各个点与平面相交的垂线绘制在平面上来实现展开,从而得到曲线在平面上的投影。
在展开后的平面上,可以清楚地看到曲线的形状和结构。
可以根据需要,对投影进行一些调整,比如进行一些放大或缩小,以便更好地展示曲线的细节。
同时,在平面上绘制一些辅助线段和标记,可以更准确地表达曲线的形状和位置。
空间曲线法平面的应用非常广泛。
在工程设计中,它常被用于绘制工件的不同视图或截面图,从而帮助工程师更好地理解和分析工件的结构和特点。
在建筑设计中,空间曲线法平面可以用于绘制建筑物的平面布置图、立面图等,使得建筑师对建筑物的形状和空间关系有更清晰的认识。
在艺术创作中,空间曲线法平面可以用于绘制三维物体的透视图、剖视图等,使得观众能够更好地欣赏和理解艺术作品的空间感。
空间曲线法平面的优点是简洁明了,直观易懂。
通过展开曲线到平面上,可以将原本复杂的空间结构转化为简单的二维图形,使得人们更容易理解和分析曲线的形状和特点。
同时,这种方法还可以提供更多的信息,比如曲线上的长度、角度、曲率等,有助于更全面地了解曲线的性质和特征。
空间曲线法平面也有一些局限性。
首先,展开的过程会导致曲线的某些特性丢失,比如曲线的立体感和曲线上的一些曲率变化。
空间曲线的法平面
什么是空间曲线的法平面?
在三维空间中,曲线可以被描述为一条沿着某个路径延伸的线段。
对于每个点,我们可以通过该点上切向量的方向来确定曲线在该点的切线。
然而,在曲线上某一点处,除了切向量之外,还存在一个与曲线垂直的向量,这个向量被称为法向量。
法平面是由该点上的切向量和法向量所确定的平面。
法平面与切线、法向量之间的关系
在三维空间中,一个曲线上任意一点处都有一个与其相对应的切向量和法向量。
这两个矢量共同决定了该点处的法平面。
切向量
切向量表示了曲线在某一点处沿着其路径方向变化最快的方向。
它是一个与曲线相切且方向指示了曲线变化方向的矢量。
法向量
法向量是与切向量垂直且指示了曲线弯曲方向的矢量。
它垂直于切线所在平面,并且指示了该点处曲率半径为多大。
法平面
法平面是由切向量和法向量所确定的平面。
它与曲线相切于该点,并且垂直于切线所在平面。
可以将法平面看作是曲线在某一点处的局部近似平面。
如何计算空间曲线的法平面?
要计算空间曲线的法平面,我们需要以下步骤:
1.确定曲线上某一点处的位置和方向。
2.计算该点处的切向量。
3.计算该点处的法向量。
4.使用切向量和法向量来构建法平面。
确定位置和方向
要计算曲线上某一点处的位置和方向,可以使用参数化方程或者隐式方程。
参数化方程可以将曲线表示为一个参数关于坐标的函数形式,而隐式方程则将坐标表示为一个关于参数的函数形式。
计算切向量
计算切向量需要求取曲线在某一点处的导数。
对于参数化方程,可以通过对参数求导来得到切向量。
对于隐式方程,可以通过求取偏导数来得到切向量。
计算法向量
计算法向量通常需要使用二阶导数。
对于参数化方程,二阶导数可以通过对参数再次求导来得到。
对于隐式方程,可以通过求取混合偏导数来得到法向量。
构建法平面
使用切向量和法向量可以构建法平面。
通过将切向量作为法平面上的一条边,将法向量作为垂直于该边的另一条边,可以确定法平面的位置和方向。
应用:曲线在曲率半径变化处的应用
空间曲线的法平面在很多领域都有广泛的应用,其中之一是在计算曲线的曲率半径变化处。
曲率半径表示了曲线在某一点处弯曲的程度,而曲线在不同点处的曲率半径可能会发生变化。
通过计算空间曲线的法平面,并分析该点处的法向量,我们可以确定该点处曲线弯曲方向以及弯曲程度。
这对于设计道路、轨道等具有弯道部分的工程项目非常重要。
总结
空间曲线的法平面是由切向量和法向量所确定的平面。
它与曲线相切于某一点,并且垂直于切线所在平面。
计算空间曲线的法平面需要确定位置和方向、计算切向量、计算法向量,并使用它们构建法平面。
空间曲线的法平面在计算曲线的曲率半径变化处具有重要应用。