2014-2015学年吉林省长春市东北师大附中高一(下)期中数学试卷(理科)
- 格式:doc
- 大小:279.50 KB
- 文档页数:12
2014年吉林省五校第一次联合考试化学试卷可能用到的原子量:H 1 C 12 N 14 O 16 S 32 Fe 56一、选择题(单选,共22题,每题2分,共44分)1.下列说法正确的是A.煤是化石燃料,其气化过程是物理变化B.油脂、蛋白质都是天然高分子C.蚕丝、羊毛完全燃烧只生成CO2和H2OD.甲苯、植物油均能使酸性KMnO4溶液褪色2.以下实验不能获得成功的是A.将铜丝在酒精灯上加热后,立即伸入无水乙醇中,铜丝恢复成原来的红色B.提取溶解在水中的少量碘时加入CCl4,分液,取出有机层再分离C.用适量苯和液溴混合制溴苯时,只需加铁屑,不必加热D.除去溴苯中的少量Br2时加入KI溶液,充分反应后,弃去水溶液3.工业上合成氨时一般采用500℃左右的温度,其原因是①适当提高NH3的合成速率②适当提高H2或N2的转化率③提高NH3的产率④催化剂在500℃左右活性最大A ①B ①④C ②③D ①②③④4.把下列四种X 溶液分别加入四个盛有10mL 2 mol•L-1盐酸的烧杯中,均匀加水稀释到50mL。
此时X 和盐酸缓缓地进行反应。
其中反应速率最大的是A.20mL 3 mol•L-1的X 溶液B.20mL 2 mol•L-1的X 溶液C.10mL 4 mol•L-1的X 溶液D.l0mL 2 mol•L-1的X 溶液5.把Ca(OH)2固体放入一定量的蒸馏水中,一定温度下达到平衡:Ca(OH)2(s)Ca2+(aq)+2OH-(aq),当向悬浊液中加入少量生石灰后,若温度保持不变,下列判断正确的是A.溶液中Ca2+数目不变B.溶液中Ca2+数目增大C.溶液pH值不变D.溶液pH值增大6.下列各组微粒,按半径由大到小顺序排列的是A.Mg、Ca、K、Na B.S2-、Cl-、K+、Na+C.Br-、Br、Cl、S D.Na+、Al3+、Cl-、F-7.下列实验设计及其对应离子方程式均正确的是A.等物质的量的Ba(OH)2与NaHSO4溶液反应:Ba2++OH-+H++SO2-4===BaSO4↓+H2OB.向足量的溴化亚铁溶液中通入少量的氯气:2Fe2++4Br-+3Cl2===2Fe3++2Br2+6Cl-C.将氯气溶于水制备次氯酸:Cl2+H2O===2H++Cl-+ClO-D.用浓盐酸酸化的KMnO4与H2O2反应,证明H2O2具有还原性:2MnO-4+6H++5H2O2===2Mn2++5O2↑+8H2O8.有人设想合成具有以下结构的四种烃分子,下列有关说法不正确的是A .lmol 甲分子内含有l0mol 共价键B .由乙分子构成的物质不能发生氧化反应C .丙分子的二氯取代产物只有三种D .分子丁显然是不可能合成的9.下列试剂在空气中久置会变质。
吉林省东北师大附中2014-2015学年高一下学期期末数学试卷一、选择题:(每小题4分,共48分)1.设a,b是非零实数,若a<b,则下列不等式成立的是()A.a2<b2B.a b2<a2b C.D.2.在等比数列{a n}中,已知a1a3a11=8,那么a2a8等于()A.4B.6C.12 D.163.直线l1:mx+(1﹣m)y=3;l2:(m﹣1)x+(2m+3)y=2互相垂直,则m的值为()A.﹣3 B.1C.0或D.1或﹣34.不等式<0的解集为()A.{x|x<﹣2或0<x<3} B.{x|﹣2<x<0或x>3} C.{x|x<﹣2或x>0} D.{x|x<0或x>3}5.点M(x0,y0)在圆x2+y2=R2外,则直线与圆的位置关系是()A.相切B.相交C.相离D.不确定6.在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+lnn B.2+(n﹣1)lnn C.2+nlnn D.1+n+lnn7.当点M(x,y)在如图所示的三角形ABC内(含边界)运动时,目标函数z=kx+y取得最大值的一个最优解为(1,2),则实数k的取值范围是()A.(﹣∞,﹣1]∪[1,+∞)B.[﹣1,1]C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,1)8.已知等差数列前n项和为S n.且S13<0,S12>0,则此数列中绝对值最小的项为()A.第5项B.第6项C.第7项D.第8项9.若直线y=kx+1与圆x2+y2=1相交与P,Q两点,且此圆被分成的两段弧长之比为1:2,则k的值为()A.或B.C.或D.10.下列函数中,y的最小值为4的是()A.B.C.D.y=e x+4e﹣x11.过直线x+y=0上一点P作圆(x+1)2+(y﹣5)2=2的两条切线l1,l2,A,B为切点,当直线l1,l2关于直线y=﹣x对称时,∠APB=()A.30°B.45°C.60°D.90°12.若a,b,c>0且a2+2ab+2ac+4bc=12,则a+b+c的最小值是()A.B.3C.2D.二、填空题:(每小题4分,共16分)13.不等式组表示的平面区域的面积等于.14.点(x,y)在直线x+3y﹣2=0上移动时,z=2x+8y的最小值为.15.等比数列{a n}的前n项和是S n,若S30=13S10,S10+S30=140,则S20的值是.16.直线y=x+b与曲线恰有一个公共点,则b的取值范围是.三、解答题:(共56分)17.已知等差数列{a n}中a2=9,a5=21.(1)求数列{a n}的通项公式;(2)若,求数列{log2b n}的前n项和S n.18.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?19.已知关于x的一元二次不等式(a+1)x2+ax+a>b(x2+x+1)对任意实数x都成立,试比较实数a,b的大小.20.已知平面区域恰好被面积最小的圆C:(x﹣a)2+(y﹣b)2=r2及其内部所覆盖.(1)试求圆C的方程.(2)若斜率为1的直线l与圆C交于不同两点A,B满足CA⊥CB,求直线l的方程.21.如图,直角三角形ABC的顶点坐标A(﹣2,0)、B(0,),顶点C在x轴上,点P为线段OA的中点,设圆M是△ABC的外接圆,若DE是圆M的任意一条直径,试探究是否是定值?若是,求出定值;若不是,请说明理由.四.附加题22.以数列{a n}的任意相邻两项为坐标的点P n(a n,a n+1)(n∈N*)都在一次函数y=2x+k的图象上,数列{b n}满足.(1)求证:数列{b n}是等比数列;(2)设数列{a n},{b n}的前n项和分别为S n,T n,且S6=T4,S5=﹣9,求k的值.吉林省东北师大附中2014-2015学年高一下学期期末数学试卷一、选择题:(每小题4分,共48分)1.设a,b是非零实数,若a<b,则下列不等式成立的是()A.a2<b2B.a b2<a2b C.D.考点:一元二次不等式的应用;不等关系与不等式.专题:综合题.分析:由不等式的相关性质,对四个选项逐一判断,由于a,b为非零实数,故可利用特例进行讨论得出正确选项解答:解:A选项不正确,因为a=﹣2,b=1时,不等式就不成立;B选项不正确,因为a=1,b=2时,不等式就不成立;C选项正确,因为⇔a<b,故当a<b时一定有;D选项不正确,因为a=1,b=2时,不等式就不成立;选项正确,因为y=2x是一个增函数,故当a>b时一定有2a>2b,故选C.点评:本题考查不等关系与不等式,解题的关键是熟练掌握不等式的有关性质,且能根据这些性质灵活选用方法进行判断,如本题采用特值法排除三个选项,用单调性判断正确选项.2.在等比数列{a n}中,已知a1a3a11=8,那么a2a8等于()A.4B.6C.12 D.16考点:等比数列的性质.专题:计算题.分析:根据等比数列的通项公式化简a1a3a11=8后,得到关于第5项的方程,求出方程的解即可得到第5项的值,然后根据等比数列的性质得到a2a8等于第5项的平方,把第5项的值代入即可求出所求式子的值.解答:解:a1•a3•a11=a13•q12=(a1q4)3=a53=8,∴a5=2,则a2•a8=a52=4.故选:A点评:此题考查学生灵活运用等比数列的通项公式化简求值,掌握等比数列的性质,是一道综合题.3.直线l1:mx+(1﹣m)y=3;l2:(m﹣1)x+(2m+3)y=2互相垂直,则m的值为()A.﹣3 B.1C.0或D.1或﹣3考点:直线的一般式方程与直线的垂直关系.专题:计算题;直线与圆.分析:根据两条直线垂直的条件,结合题意建立关于m的方程,解之即可得到实数m的值.解答:解:∵直线l1:mx+(1﹣m)y=3;l2:(m﹣1)x+(2m+3)y=2互相垂直,∴m(m﹣1)+(1﹣m)(2m+3)=0,解之得m=﹣3或1故选:D点评:本题给出两条直线互相垂直,求实数m的值.着重考查了直线的方程和直线的位置关系等知识,属于基础题.4.不等式<0的解集为()A.{x|x<﹣2或0<x<3} B.{x|﹣2<x<0或x>3} C.{x|x<﹣2或x>0} D.{x|x<0或x>3}考点:其他不等式的解法.专题:计算题;转化思想.分析:将“不等式<0”转化为:“x(x+2)(x+3)<0”,用穿根法求解.解答:解:依题意:原不等式转化为:x(x+2)(x+3)<0解得:x<﹣2或0<x<3故选A点评:本题主要考查分式不等式的解法,一般是转化为整式不等式,再用穿根法求解.5.点M(x0,y0)在圆x2+y2=R2外,则直线与圆的位置关系是()A.相切B.相交C.相离D.不确定考点:点与圆的位置关系.专题:直线与圆.分析:由已知得x02+y02>R2,从而圆心(0,0)到直线x0x+y0y=R2的距离d<R,由此推导出直线x0x+y0y=R2与圆相交.解答:解:∵点M(x0,y0)在圆x2+y2=R2外,∴x02+y02>R2,∴圆心(0,0)到直线x0x+y0y=R2的距离:d=<R,∴直线x0x+y0y=R2与圆相交.故选:B.点评:本题考查直线与圆的位置关系的判断,是基础题,解题时要认真审题.6.在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+lnn B.2+(n﹣1)lnn C.2+nlnn D.1+n+lnn考点:数列的概念及简单表示法.专题:点列、递归数列与数学归纳法.分析:把递推式整理,先整理对数的真数,通分变成,用迭代法整理出结果,约分后选出正确选项.解答:解:∵,,…∴=故选:A.点评:数列的通项a n或前n项和S n中的n通常是对任意n∈N成立,因此可将其中的n换成n+1或n﹣1等,这种办法通常称迭代或递推.解答本题需了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项.7.当点M(x,y)在如图所示的三角形ABC内(含边界)运动时,目标函数z=kx+y取得最大值的一个最优解为(1,2),则实数k的取值范围是()A.(﹣∞,﹣1]∪[1,+∞)B.[﹣1,1]C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,1)考点:简单线性规划的应用.专题:计算题.分析:先根据约束条件的可行域,再利用几何意义求最值,z=kx+y表示直线在y轴上的截距,﹣k表示直线的斜率,只需求出k的取值范围时,直线z=kx+y在y轴上的截距取得最大值的一个最优解为(1,2)即可.解答:解:由可行域可知,直线AC的斜率=,直线BC的斜率=,当直线z=kx+y的斜率介于AC与BC之间时,C(1,2)是该目标函数z=kx+y的最优解,所以k∈[﹣1,1],故选B.点评:本题主要考查了简单的线性规划,以及利用几何意义求最值的方法反求参数的范围,属于基础题.8.已知等差数列前n项和为S n.且S13<0,S12>0,则此数列中绝对值最小的项为()A.第5项B.第6项C.第7项D.第8项考点:等差数列的前n项和;数列的应用.专题:等差数列与等比数列.分析:由等差数列的性质可得a6+a7>0,a7<0,进而得出|a6|﹣|a7|=a6+a7>0,可得答案.解答:解:∵S13===13a7<0,S12===6(a6+a7)>0∴a6+a7>0,a7<0,∴|a6|﹣|a7|=a6+a7>0,∴|a6|>|a7|∴数列{a n}中绝对值最小的项是a7故选C.点评:本题考查等差数列的前n项和以及等差数列的性质,解题的关键是求出a6+a7>0,a7<0,属中档题.9.若直线y=kx+1与圆x2+y2=1相交与P,Q两点,且此圆被分成的两段弧长之比为1:2,则k的值为()A.或B.C.或D.考点:直线与圆相交的性质.专题:综合题;直线与圆.分析:根据直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),求出圆心到直线的距离;再根据点到直线的距离公式即可求出k的值.解答:解:因为直线y=kx+1与圆x2+y2=1相交于P、Q两点,且此圆被分成的两段弧长之比为1:2,所以∠POQ=120°(其中O为原点),如图可得∠OPE=30°;OE=OPsin30°=,即圆心O(0,0)到直线y=kx+1的距离d==,所以k=.故选:A.点评:本题考查直线和圆的位置关系,点到直线的距离公式,考查计算能力,求出圆心(0,0)到直线的距离是解题的关键.10.下列函数中,y的最小值为4的是()A.B.C.D.y=e x+4e﹣x考点:基本不等式.专题:不等式的解法及应用.分析:由基本不等式求最值的规则,逐个选项验证可得.解答:解:选项A错误,因为x可能为负数;选项B错误,化简可得y=2(+)由基本不等式可得取等号的条件为=即x2=﹣1,显然没有实数满足x2=﹣1;选项C错误,由基本不等式可得取等号的条件为sinx=2,但由三角函数的值域可知sinx≤1;选项D,由基本不等式可得当e x=2即x=ln2时,y取最小值4.故选:D.点评:本题考查基本不等式求最值,涉及基本不等式取等号的条件,属基础题.11.过直线x+y=0上一点P作圆(x+1)2+(y﹣5)2=2的两条切线l1,l2,A,B为切点,当直线l1,l2关于直线y=﹣x对称时,∠APB=()A.30°B.45°C.60°D.90°考点:圆的切线方程.专题:直线与圆.分析:判断圆心与直线的关系,在直线上求出特殊点,利用切线长、半径以及该点与圆心连线构成直角三角形,求出∠APB的值.解答:解:显然圆心C(﹣1,5)不在直线y=﹣x上.由对称性可知,只有直线y=﹣x上的特殊点,这个点与圆心连线垂直于直线y=﹣x,从这点做切线才能关于直线y=﹣x对称.所以该点与圆心连线所在的直线方程为:y﹣5=x+1即y=6+x,与y=﹣x联立,可求出该点坐标为(﹣3,3),所以该点到圆心的距离为=2,由切线长、半径以及该点与圆心连线构成直角三角形,又知圆的半径为.所以两切线夹角的一半的正弦值为=,所以夹角∠APB=60°故选C.点评:本题是中档题,考查直线与圆的位置关系,直线与圆相切的关系的应用,考查计算能力,常考题型.12.若a,b,c>0且a2+2ab+2ac+4bc=12,则a+b+c的最小值是()A.B.3C.2D.考点:基本不等式在最值问题中的应用.专题:压轴题.分析:因为a+b+c的平方与已知等式有关,现将(a+b+c)2用已知等式表示,根据一个数的平方大于等于0得不等式,然后解不等式得范围.解答:解:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=(a2+2ab+2ac+4bc)+b2+c2﹣2bc=12+(b ﹣c)2≥12,当且仅当b=c时取等号,∴a+b+c≥故选项为A点评:若要求的代数式能用已知条件表示,得不等式,通过解不等式求代数式的范围.二、填空题:(每小题4分,共16分)13.不等式组表示的平面区域的面积等于25.考点:二元一次不等式(组)与平面区域.专题:计算题.分析:画出约束条件表示的可行域,求出交点坐标,然后求出三角形面积,即可求解解答:解:作出不等式组所表示的平面区域,如图所示的三角形ABC由由题意可得A(﹣2,2),B(3,7),C(3,﹣3)∴BC=10,A到直线BC的距离d=5∴S△ABC==25故答案为:25点评:本题考查二元一次不等式(组)与平面区域,考查学生作图能力,计算能力,是基础题.14.点(x,y)在直线x+3y﹣2=0上移动时,z=2x+8y的最小值为4.考点:基本不等式.专题:不等式.分析:根据基本不等式的性质进行计算即可.解答:解:∵x+3y﹣2=0,∴x+3y=2,∴z=2x+23y≥2=2=2=4,当且仅当x=3y,即x=1,y=时,“=”成立,故答案为:4.点评:本题考查了基本不等式的性质,应用性质是注意满足条件;一正二定三相等,本题是一道基础题.15.等比数列{a n}的前n项和是S n,若S30=13S10,S10+S30=140,则S20的值是40.考点:等比数列的性质.专题:计算题.分析:首先根据题意求出S10=10,S30=130,再根据S n,S2n﹣S n,S3n﹣S2n也是等比数列,得到S20=40,或者S20=﹣30,然后利用等比数列的求和公式得到答案.解答:解:因为S30=13S10,S10+S30=140,所以S10=10,S30=130.∵数列{a n}为等比数列,∴S n,S2n﹣S n,S3n﹣S2n也是等比数列,即S10,S20﹣S10,S30﹣S20也是等比数列,所以S20=40,或者S20=﹣30,因为S20=S10(1+q10),所以S20=40.故答案为40.点评:本题主要考查了等比数列的性质和数列的求和.解题的关键是利用了等比数列中S n,S2n﹣S n,S3n﹣S2n也是等比数列的性质.16.直线y=x+b与曲线恰有一个公共点,则b的取值范围是﹣3<b≤3或.考点:函数的零点.专题:计算题.分析:先整理C的方程可知曲线C的图象为半圆,要满足仅有一个公共点,有两种情况,一种是与半圆相切,根据原点到直线的距离为半径3求得b,一种是与半圆相交但只有一个交点,根据图象可分别求得b的上限和下限,最后综合可求得b的范围.解答:解:依题意可知曲线C的方程可整理成y2+x2=9(x≥0)要使直线l与曲线c仅有一个公共点,有两种情况:如下图:(1)直线与半圆相切,原点到直线的距离为3,切于A点,d==3,因为b<0,可得b=﹣3,满足题意;(2)直线过半圆的下顶点(0,﹣3)和过半圆的上顶点(3,0)之间的直线都满足,y=x+b过点(0,﹣3),可得b=﹣3,有两个交点,y=x+b过点(0,3),可得b=3,有一个交点,∴﹣3<b<3,此时直线y=x+b与曲线恰有一个公共点;综上:﹣3<b≤3或;故答案为:﹣3<b≤3或;点评:本题主要考查了直线与圆的位置关系,考查了学生对数形结合思想,分类讨论思想,转化和化归的思想的综合运用,是一道好题;三、解答题:(共56分)17.已知等差数列{a n}中a2=9,a5=21.(1)求数列{a n}的通项公式;(2)若,求数列{log2b n}的前n项和S n.考点:数列的求和;等差数列的通项公式.专题:等差数列与等比数列.分析:(1)利用a5﹣a2=3d计算可得公差,进而可得结论;(2)通过对数的性质化简可知数列是以4为首项、4为公差的等差数列,进而计算可得结论.解答:解:(1)∵a2=9,a5=21,∴a5﹣a2=3d,∴d=4,∴a n=a2+(n﹣2)•d=4n+1;(2)∵a n=4n+1,∴,∴log2==4n,∴数列是以4为首项、4为公差的等差数列,∴.点评:本题考查数列的通项及前n项和,考查运算求解能力,涉及对数的性质等基础知识,注意解题方法的积累,属于中档题.18.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?考点:基本不等式在最值问题中的应用.专题:应用题.分析:设矩形栏目的高为acm,宽为bcm,则依题意可知ab=9000,代入广告的面积中,根据基本不等式的性质求得广告面积的最小值.根据等号成立的条件确定广告的高和宽.解答:解:设矩形栏目的高为acm,宽为bcm,则ab=9000.①广告的高为a+20,宽为2b+25,其中a>0,b>0.广告的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18500+25a+40b≥18500+2=18500+2.当且仅当25a=40b时等号成立,此时b=,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24500.故广告的高为140cm,宽为175cm时,可使广告的面积最小.点评:本题主要考查了基本不等式在最值问题中的应用.基本不等式在解决生活问题中常被用到,也是2015届高考应用题中热点,平时应用注意这方面的训练.19.已知关于x的一元二次不等式(a+1)x2+ax+a>b(x2+x+1)对任意实数x都成立,试比较实数a,b的大小.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:把不等式化为关于x的一元二次不等式,由不等式恒成立列出条件,求出a、b的大小关系.解答:解:不等式(a+1)x2+ax+a>b(x2+x+1)可变形为(a﹣b+1)x2+(a﹣b)x+a﹣b>0,…又不等式对任意的实数x都成立,则,…即,解得a﹣b>0;所以a>b.…点评:本题考查了一元二次不等式的恒成立问题,是基础题目.20.已知平面区域恰好被面积最小的圆C:(x﹣a)2+(y﹣b)2=r2及其内部所覆盖.(1)试求圆C的方程.(2)若斜率为1的直线l与圆C交于不同两点A,B满足CA⊥CB,求直线l的方程.考点:直线和圆的方程的应用;直线的一般式方程;圆的标准方程.专题:计算题.分析:(1)根据题意可知平面区域表示的是三角形及其内部,且△OPQ是直角三角形,进而可推断出覆盖它的且面积最小的圆是其外接圆,进而求得圆心和半径,则圆的方程可得.(2)设直线l的方程是:y=x+b.根据CA⊥CB,可知圆心C到直线l的距离,进而求得b,则直线方程可得.解答:解:(1)由题意知此平面区域表示的是以O(0,0),P(4,0),Q(0,2)构成的三角形及其内部,且△OPQ是直角三角形,所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),半径是,所以圆C的方程是(x﹣2)2+(y﹣1)2=5.(2)设直线l的方程是:y=x+b.因为,所以圆心C到直线l的距离是,即=解得:b=﹣1.所以直线l的方程是:y=x﹣1.点评:本题主要考查了直线与圆的方程的应用.考查了数形结合的思想,转化和化归的思想.21.如图,直角三角形ABC的顶点坐标A(﹣2,0)、B(0,),顶点C在x轴上,点P为线段OA的中点,设圆M是△ABC的外接圆,若DE是圆M的任意一条直径,试探究是否是定值?若是,求出定值;若不是,请说明理由.考点:圆方程的综合应用;平面向量数量积的运算.专题:综合题;直线与圆.分析:先求出圆M的方程,再设过圆心M的任意一直线为x=my+1与圆的方程联立,利用向量的数量积公式,即可得出结论.解答:解:由题意,△AOB∽△BOC,∴=,∴|CO|=4 …∴C(4,0),AC中点为M(1,0),半径为3∴圆M的方程(△ABC的外接圆)为(x﹣1)2+y2=32…设过圆心M的任意一直线为x=my+1,…∴∴(m2+1)y2=9…设直线x=my+1与圆(x﹣1)2+y2=9的两个交点为D(x1,y1),E(x2,y2)则=(x1+1,y1),=(x2+1,y2),∴•=(x1+1)(x2+1)+y1y2=(my1+2)(my2+2)+y1y2=(m2+1)y1y2+4…由(m2+1)y2=9,得代入上式•=﹣9+4=﹣5…当ED为横轴时,D(﹣2,0),E(4,0),=(﹣1,0),=(5,0)∴•=﹣5…点评:本题考查圆的方程,考查直线与圆的位置关系,考查向量的数量积公式,考查学生分析解决问题的能力,属于中档题.四.附加题22.以数列{a n}的任意相邻两项为坐标的点P n(a n,a n+1)(n∈N*)都在一次函数y=2x+k的图象上,数列{b n}满足.(1)求证:数列{b n}是等比数列;(2)设数列{a n},{b n}的前n项和分别为S n,T n,且S6=T4,S5=﹣9,求k的值.考点:数列的求和;等比关系的确定.专题:等差数列与等比数列.分析:(1)通过将点代入y=2x+k可知a n+1=2a n+k,利用b n+1=a n+2﹣a n+1计算即得结论;(2)通过b n=(a1+k)•2n﹣1=a n+1﹣a n可知a2﹣a1=(k+a1)•20、a3﹣a2=(k+a1)•21、…、a n﹣a n﹣1=(k+a1)•2n﹣2,累加整理得b n﹣a n=k,计算即得结论.解答:(1)证明:∵点都在一次函数y=2x+k图象上,∴a n+1=2a n+k,∴b n+1=a n+2﹣a n+1=(2a n+1+k)﹣(2a n+k)=2(a n+1﹣a n)=2b n,∴=2,故{b n}是以b1=a2﹣a1=2a1+k﹣a1=k+a1为首项、2为公比的等比数列;(2)解:∵b n=(a1+k)•2n﹣1=a n+1﹣a n,∴a2﹣a1=(k+a1)•20,a3﹣a2=(k+a1)•21,…a n﹣a n﹣1=(k+a1)•2n﹣2,累加得:a n﹣a1=(k+a1)•=(k+a1)•(2n﹣1﹣1),整理得:a n=(a1+k)•2n﹣1﹣k,∴b n﹣a n=[(a1+k)•2n﹣1]﹣[(a1+k)•2n﹣1﹣k]=k,又S6=T4,即a1+a2+…+a6=b1+b2+b3+b4,∴a5+a6=4k,即,∴,∴,又S5=﹣9,∴,∴k=8.点评:本题考查等比数列的判定以及数列的求和,考查运算求解能力,注意解题方法的积累,属于中档题.。
东北师大附中2015届高三年级数学[理科]第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N =( ) A .{0} B .{0,1} C .{-1,1} D .{-1,0,1} 2.命题p :0∀>x ,都有sinx ≥-1,则( )A .p ⌝:0∃>x ,使得sin 1x <- B. p ⌝:0∀>x ,都有sinx <-1 C. p ⌝:0∃>x ,使得sin 1x >- D. p ⌝:0x ∀>,都有sinx ≥-1 3.已知向量)0,3(),1,2(-=-=,则在方向上的投影为( )A .5-B .5C .-2D .24. 在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( )A. 58B. 88C.143D.1765. 设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 6.同时具有性质①最小正周期是π;②图像关于直线3π=x 对称;③在]3,6[ππ-上是增函数的一个函数是( )A .)62sin(π+=x y B .)32cos(π+=x y C .)62sin(π-=x y D .cos()26x y π=- 7.双曲线)0(122≠=-mn ny m x 的离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( ) A .38 B .83 C .316 D .163 8. 已知函数()()31log 13xf x x ⎛⎫=-- ⎪⎝⎭有两个零点12,x x ,则( )A.121x x <B.1212x x x x >+C.1212x x x x <+D.1212x x x x =+ 9.与直线04=--y x 和圆02222=-++y x y x 都相切的半径最小的圆的方程是( ) A. 22(1)(1)2x y +++= B. 22(1)(1)4x y +++= C. 2)1()1(22=++-y x D. 4)1()1(22=++-y x10. 已知)(x f ,)(x g 都是定义在R 上的函数,且满足以下条件:①)(x f =x a 〃)(x g (1,0≠>a a );②)(x g 0≠; ③)()()()(x g x f x g x f ⋅'>'⋅; 若25)1()1()1()1(=--+g f g f ,则a 等于( ) A .21 B .2 C .45D .2或2111.已知()2sin(+)f x x ωϕ= , (ω>0 , 22πϕπ<<-) , A 、B 为图象上两点,B 是图象的最高点,C为B 在x 轴上射影,且点C 的坐标为),0,12(π则AB 〃BC =( ). A.4π4+ B. 4π4- C. 4 D. 4-12.已知定义在R 上的奇函数()f x 满足()()4f x f x -=-,且[]0,2x ∈时,()()2log 1f x x =+,甲,乙,丙,丁四位同学有下列结论:甲:()31f =;乙:函数()f x 在[]6,2--上是增函数;丙:函数()f x 关于直线4x =对称;丁:若()0,1m ∈,则关于x 的方程()0f x m -=在[]8,8-上所有根之和为-8,其中正确的是( )A.甲,乙,丁B.乙,丙C.甲,乙,丙D.甲,丁第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,,则此抛物线的焦点坐标是___________。
高三理科高考总复习阶段测试卷(2014.9.15)一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确的代号填在指定位置上.1.函数y =的定义域为A .(4,1)--B .(4,1)-C .(1,1)-D .(1,1]-2.用min{a,b,c}表示a,b,c 三个数中的最小值,设()f x =min{2x , x+2,10-x} (x ≥ 0),则()f x 的最大值为(A )4 (B )5 (C )6 (D )73.函数2x +2x-3,x 0x)=-2+ln x,x>0f ⎧≤⎨⎩(的零点个数为 ( ) A.0 B.1 C.2 D.34.已知函数224,0()4,0x x x f x x x x ⎧+≥=⎨-<⎩若2(2)(),f a f a ->则实数a 的取值范围是A (,1)(2,)-∞-⋃+∞B (1,2)-C (2,1)-D (,2)(1,)-∞-⋃+∞5.已知以4T =为周期的函数(1,1]()12,(1,3]x f x x x ⎧∈-⎪=⎨--∈⎪⎩,其中0m >。
若方程3()f x x =恰有5个实数解,则m 的取值范围为( )A.8()33B.(3C .48(,)33D.4(36.单位圆中弧AB 长为x ,()f x 表示弧AB 与弦AB 所围成弓形面积的2倍。
则函数()f x 的图像是( )C7.(07福建)已知函数()x f 为R 上的减函数,则满足()11f x f <⎪⎪⎭⎫ ⎝⎛的实数x 的取值范围是( )A.()1,1-B.()1,0C.()()1,00,1 -D.()()+∞-∞-,11,8.(07重庆)已知定义域为R 的函数()x f 在区间()+∞,8上为减函数,且函数()8+=x f y 为偶函数,则( )A.()()76f f >B. ()()96f f >C. ()()97f f >D. ()()107f f >9.(07山东)已知集合{}1,1-=M ,⎭⎬⎫⎩⎨⎧<<∈=+42211x Z x N ,则=N M ( ) A.{}1,1- B. {}1- C. {}0 D.{}0,1-10.(07山东)设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α的值为( )A.1,3B.-1,1C.-1,3D.-1,1,311.(07江西)四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是()A .h 2>h 1>h 4B .h 1>h 2>h 3C .h 3>h 2>h 4D .h 2>h 4>h 1 12.(07安徽)若对任意∈x R,不等式x≥ax 恒成立,则实数a 的取值范围是A. a <-1B.a≤1 C.a<1 D.a ≥1二、填空题:本大题共5个小题,每小题4分,共20分.把答案填在题中横线上.13.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=14. (07湖北)为了预防流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为at y -⎪⎭⎫ ⎝⎛=161(a 为常数),如图所示,根据图中提供的信息,回答下列问题:(Ⅰ)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 .(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室. 15.(07山东)函数())1,0(13l o g≠>-+=a a x y a 的图象恒过定点A,若点A 在直线01=++ny mx 上,其中0>mn ,则n m 21+的最小值为 .16.(07重庆)若函数()1222-=--aax xx f 的定义域为R ,则实数a 的取值范围 。
某某省东北师X 大学附属中学2014-2015学年高中数学 .5集合复习小结训练试题(2)新人教A 版必修18.解:(1)a 是集合S 的元素,因为a =a +0×2∈S.(2)不妨设x 1=m +n 2,x 2=p +q 2,m 、n 、p 、q∈Z .则x 1+x 2=(m +n 2)+(p +q 2)=(m +p)+(n +q)2,m 、n 、p 、q∈Z .∴x 1+x 2∈S;x 1·x 2=(m +n 2)·(p+q 2)=(mp +2nq)+(mq +np)2,m 、n 、p 、q∈Z . ∴x 1·x 2∈S.综上,x 1+x 2、x 1·x 2都属于S.课后检测解析:1.B 化简集合A ={0,1},显然0∈A.2.B ∵x∈N ,且(8-x)∈N ,∴x=0,1,2,3,4,5,6,7,8,共9个数.3.B ∵z=x·y,x∈A,y∈B,∴z 的取值有:1×0=0,1×2=2,2×0=0,2×2=4,故A*B ={0,2,4}.∴集合A*B 的所有元素之和为0+2+4=6.4.C 由题意得,a≠0,b≠0,所以a +b =0,a =-b.于是,{1,0,a}={0,-1,-a}.显然,a =-1,b =1,b -a =2.5.D 由3,52,73,94可得,31,52,73,94从中发现规律,关键要分清起始数并限定X 围.6.(1){-1,1} (2){0,3,4,5}(3){x|(x -2)(x -4)(x -6)(x -8)=0}或{大于1小于9的偶数}等(4){x|x =1n,n≤4且n∈N *} 7.0或2 当x =1时,x 2=1,这与集合中元素的互异性相矛盾,故x≠1;当x =2时,x 2=4符合题意;当x =x 2时x =0或x =1(舍去).综上可知x =0或2.8.{-1,3} 当ab<0时,y =a |a|+b |b|+ab |ab|=-1; 当ab>0时,则a>0,b>0或a<0,b<0,若a>0,b>0,则有y =a |a|+b |b|+ab |ab|=3;若a<0,b<0,则有y =a |a|+b |b|+ab |ab|=-1. 所以y =a |a|+b |b|+ab |ab|的所有值组成的集合元素共有两个元素-1和3,用列举法表示为{-1,3}.9.解:集合A 为单元素集,即方程ax 2+2x +1=0有唯一解或两个相等的实数解.由于此方程二次项的系数不确定,所以要对a 分类讨论.①a=0时,x =-12; ②a≠0时,Δ=4-4a =0,所以a =1,此时x =-1.10.解:∵a=3∈M,∴1+a 1-a =1+31-3=-2∈M. ∴1-21+2=-13∈M.∴1-131+13=12∈M. ∴1+121-12=3∈M. 再把3代入将重复上面的运算过程,由集合中元素的互异性可知M ={3,-2,-13,12}. 点评:集合中的元素是互异的,即同一集合中的元素是互不相同的.它通常被用作检验所求未知数的值是否符合题意.只要构成两个集合的元素是一样的,这两个集合就是相等的,与两个集合中元素的排列顺序无关.11.解:f(x)-x =0,即x 2-(a +1)x +b =0.∵A={1,-3},∴由韦达定理,得⎩⎪⎨⎪⎧1+(-3)=a +1,1×(-3)=b. ∴⎩⎪⎨⎪⎧a =-3,b =-3.∴f(x)=x 2+3x -3. f(x)-ax =0,亦即x 2+6x -3=0.∴B={x|x 2+6x -3=0}={-3-23,-3+23}.点评:列举法和描述法是表示集合的两种常用方法.用列举法时要注意:元素间用逗号隔开;元素不重复;可不考虑元素间的顺序;若元素的个数较多需要省略时,必须把元素间的规律显示清楚后方可使用省略号.用描述法时要注意:写清元素的一般符号及取值X 围;明确集合中元素的特征;不能出现未被说明的字母;准确使用“且”与“或”等.五.高考题小试牛刀1.【2014某某 理科卷】已知集合{1,0,1}M =-,{0,1,2}N =,则M N =(B)A.{1,0,1}-B.{1,0,1,2}-C.{1,0,2}-D.{0,1}2. 【2014高考理】已知集合A={x|},B={0,1,2},则AB=( )A{0}. B .{0,1}. C . {0,2}. D .{0,1,2}.[答案C]【解析】:集合A={x|}={0,2},则AB={0,2},故选C ,考点:交集的运算,容易题。
辽师大附中2014-2015学年下学期第一次模块考试高一数学试卷考试时间:90分钟第Ⅰ卷(共 60 分)一.选择题(每小题5分,共60分) 1. ⎪⎭⎫ ⎝⎛-π 623sin 的值等于 ( ) A. 21 B. 21- C. 23 D. 23- 2. 已知扇形AOB 的周长是6cm ,其圆心角是1rad ,则该扇形的面积为( )A.2 2cmB.3 2cmC. 292cm D.52cm 3. 如果21)sin(-=+A π,那么)23cos(A -π等于 ( ) A. 21 B. 21- C.23 D.23- 4. 若α是三角形的一个内角,且32cos sin =+αα,则这个三角形是 ( ) A.正三角形 B.直角三角形 C. 锐角三角形 D.钝角三角形5.某程序框图如图所示,若该程序运行后输出的值是34, 则①处应填( ) A .k<3B .k<4C .k>3 .D .k>46. 函数 1sin 22-=x y 的值域是 ( ) A.),2[]32,(+∞--∞ B.]2,32[- C.]2,0()0,32[ - D.),0()0,(+∞-∞ 7.执行如图所示的算法框图,输出的k 值是( )A . 4 B. 5 C . 6 D .78.已知51cos sin =-x x )0(π<<x , 则tanx 的值等于 ( ) A.43 B. 34 C. 43 或 34 D.43- 或34- 9.在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于362cm 与812cm 之间的概率() A .56 B .12 C .13 D .1610. 若απcos 21)21lg(sin ,0-+-=<<x y x 则函数的定义域是 ( ) A [ππ32,3) B )65,6(ππ C )65,3[ππ D ),65(ππ 11.如果sin m θ=,1m <,180270θ︒<<︒,那么tan θ的值为 ( )A.B.C.D. m - 12. 若关于x 的方程04sin co s 42=-++m x x 恒有实数解,则实数m 的取值范围是( )A. ]8,0[B. ]8,1[-C. ]5,0[D. ),1[+∞-第Ⅱ卷(非选择题,共60分)二、填空题(每题5分,共20分)13. 已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为 14.已知53)6sin(-=+x π,则)65sin()3(sin 2x x ---ππ的值 15. 在区间[]1,1- 内随机取一个数k ,则直线)2(+=x k y 与圆122=+y x 有公共点的概率为16.若以连续掷两枚骰子,分别得到的点数,m n 作为点P 的坐标,则点P 落在圆2216x y +=外的概率是____________三、解答题(共4道小题,共40分)17. (本小题满分10分)对某个品牌的U 盘进行寿命追踪调查,所得情况如下面频率分布直方图所示.(1)图中纵坐标0y 处刻度不清,根据图表所提供的数据还原0y ;(2)根据图表的数据按分层抽样,抽取20个U 盘,寿命为1030万次之间的应抽取几个;(3)从(2)中抽出的寿命落在1030万次之间的元件中任取2个元件,求事件“恰好有一个寿命为1020万次,,一个寿命为2030万次”的概率.(第17题图)频率/40 10 20 30 50 60 y 万次18.(10分)某外语学校英语班有A 1、A 2两位同学,日语班有B 1、B 2、B 3、B 4四位同学,俄语班有C 1、C 2两位同学共8人报名奥运会志愿者,现从中选出懂英语、日语、俄语的志愿者各1人,组成一个小组.(1)写出一切可能的结果组成的基本事件空间并求出B 4被选中的概率;(2)求A 1和C 1不全被选中的概率.19.(10分) 已知关于x 的方程20)13(2=++-m x x 的两个根分别为)2,0(,cos sin πθθθ∈和.求:(1)θθθθtan 1cos cot 1sin -+-的值; (2)m 的值;(3)方程的两个根及此时θ的值。
2014-2015学年吉林省吉林市实验中学高一(下)期中数学试卷一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上)1.(5分)下列命题中,正确的是()A.||=||⇒=B.||>||⇒>C.||=||⇒∥D.||=0⇒=2.(5分)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58B.88C.143D.1763.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.5.(5分)已知△ABC的内角A,B,C所对的边长分别为a,b,c,若a,b,c 成等差数列,且c=a,则cosB=()A.B.C.D.6.(5分)一船向正北方向航行,看见它的正西方向有相距10海里的两个灯塔恰好与它在一条直线上.船继续航行半小时后,看见这两个灯塔恰好与它在一条直线上.船继续航行半个小时后,看见这两个灯塔中,一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时()A.5海里B.5 海里C.10海里D.10海里7.(5分)在等比数列{a n}中,a9+a10=a(a≠0),a19+a20=b,则a99+a100等于()A.B.C.D.8.(5分)已知数列{a n}是等差数列,a1=f(x+1),a2=0,a3=f(x﹣1),其中f(x)=log2x,则a4=()A.﹣log2(3+2)B.﹣log2(+1)C.log2(3+2)D.log2(+1)9.(5分)已知每项均大于零的数列{a n}中,首项a1=1且前n项的和S n满足=()(n∈N*,且n≥2),则aA.638B.639C.640D.64110.(5分)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC 上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.11.(5分)已知,是单位向量,,若向量满足,则的取值范围为()A.B.C.D.12.(5分)已知函数f(x)=(a>0,a≠1),数列{a n}满足a n=f(n)(n∈N*),且数列{a n}是递增数列,则实数a的取值范围是()A.[7,8)B.(1,8)C.(4,8)D.(4,7)二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上)13.(5分)已知向量,满足||=3,且•=﹣12,则向量在向量方向上的投影.14.(5分)已知△ABC中,∠ABC=45°,AB=,BC=3,则sin∠BAC=.15.(5分)若点O是△ABC所在平面内的一点,且满足|﹣|=|+﹣2 |,则△ABC的形状为.16.(5分)已知数列{a n}满足:++…+=(32n﹣1),n∈N*.若b n=log3,则++…+=.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)(Ⅰ)若等差数列{a n}满足:a1=20,a n=54,前n项和S n=999,求公差d及项数n;(Ⅱ)若等比数列{a n}满足:a1=﹣1,a4=64,求公比q及前n项和S n.18.(12分)已知:、、是同一平面内的三个向量,其中=(1,2)(1)若||=2,且∥,求的坐标;(2)若||=,且+2与2﹣垂直,求与的夹角θ.19.(12分)在△ABC中,角A、B、C的对边分别为a、b、c,若•=•=1.(Ⅰ)求证:A=B;(Ⅱ)求边长c的值;(Ⅲ)若|+|=,求△ABC的面积.20.(12分)已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=π,在△ABC中,角A、B、C所对的边分别是a、b、c.(Ⅰ)若a、b、c依次成等差数列,且公差为2.求c的值;(Ⅱ)若c=,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.21.(12分)设公比大于零的等比数列{a n}的前n项和为S n,且a1=1,S4=5S2,数列{b n}的前n项和为T n,满足b1=1,,n∈N*.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)设C n=(S n+1)(nb n﹣λ),若数列{C n}是单调递减数列,求实数λ的取值范围.22.(12分)已知f(x)=log m x(m为常数,m>0且m≠1),设f(a1),f(a2),…,f(a n)(n∈N+)是首项为4,公差为2的等差数列.(1)求证:数列{a n}是等比数列;(2)若b n=a n f(a n),记数列{b n}的前n项和为S n,当时,求S n;(3)若c n=a n lga n,问是否存在实数m,使得{c n}中每一项恒小于它后面的项?若存在,求出实数m的取值范围.2014-2015学年吉林省吉林市实验中学高一(下)期中数学试卷参考答案与试题解析一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上)1.(5分)下列命题中,正确的是()A.||=||⇒=B.||>||⇒>C.||=||⇒∥D.||=0⇒=【解答】解:对于A,||=||时,与不一定相等,因为它们的方向不一定相同,∴A错误;对于B,向量、既有方向,又有大小,∴与不能比较大小,B错误;对于C,||=||时,与不一定平行,因为它们的方向不一定相同或相反,∴C错误;对于D,||=0时,=,因为零向量的模长等于0,∴D正确.故选:D.2.(5分)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58B.88C.143D.176【解答】解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,故选:B.3.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)【解答】解:根据,选项A:(3,2)=λ(0,0)+μ(1,2),则3=μ,2=2μ,无解,故选项A不能;选项B:(3,2)=λ(﹣1,2)+μ(5,﹣2),则3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2,μ=1,故选项B能.选项C:(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C不能.选项D:(3,2)=λ(2,﹣3)+μ(﹣2,3),则3=2λ﹣2μ,2=﹣3λ+3μ,无解,故选项D不能.故选:B.4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2﹣3=(2k﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=0'∴2(2k﹣3)+1×(﹣6)=0,解得,k=3.故选:C.5.(5分)已知△ABC的内角A,B,C所对的边长分别为a,b,c,若a,b,c 成等差数列,且c=a,则cosB=()A.B.C.D.【解答】解:若a,b,c成等差数列,则a+c=2b,由c=a,可得b=a,由余弦定理可得,cosB===.故选:C.6.(5分)一船向正北方向航行,看见它的正西方向有相距10海里的两个灯塔恰好与它在一条直线上.船继续航行半小时后,看见这两个灯塔恰好与它在一条直线上.船继续航行半个小时后,看见这两个灯塔中,一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时()A.5海里B.5 海里C.10海里D.10海里【解答】解:如图,依题意有∠BAC=60°,∠BAD=75°,所以∠CAD=∠CDA=15°,从而CD=CA=10,在直角三角形ABC中,得AB=5,于是这艘船的速度是=10(海里/小时).故选:D.7.(5分)在等比数列{a n}中,a9+a10=a(a≠0),a19+a20=b,则a99+a100等于()A.B.C.D.【解答】解:由等比数列的性质可得a9+a10,a19+a20,a29+a30,a39+a40,…成等比数列,公比为=,∴a99+a100=(a9+a10)=a×=,故选:A.8.(5分)已知数列{a n}是等差数列,a1=f(x+1),a2=0,a3=f(x﹣1),其中f(x)=log2x,则a4=()A.﹣log2(3+2)B.﹣log2(+1)C.log2(3+2)D.log2(+1)【解答】解:因为数列{a n}是等差数列,所以a1+a3=2a2,即f(x+1)+f(x﹣1)=0,又f(x)=log2x,所以log2(x+1)+log2(x﹣1)=0,整理得x2﹣1=1,解得x1=,或x2=﹣.当x1=时,a1=f(x+1)=f(+1)=log2(+1),d=a2﹣a1=0﹣log2(+1)=log2(﹣1),∴a4=log2(+1)+(4﹣1)×log2(﹣1)=log2(+1)•=﹣log2(3+2)故选:A.9.(5分)已知每项均大于零的数列{a n}中,首项a1=1且前n项的和S n满足=()(n∈N*,且n≥2),则aA.638B.639C.640D.641【解答】解:∵,∴=2(n∈N*,且n≥2),∵a 1=1,∴=1∴{}是以1为首项,2为公差的等差数列∴=1+2(n﹣1)=2n﹣1∴S n=4n2﹣4n+1.∴n≥2时,a n=S n﹣S n﹣1=(4n2﹣4n+1)﹣[4(n﹣1)2﹣4(n﹣1)+1]=8n﹣8.∴a81=8×81﹣8=640故选:C.10.(5分)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.【解答】解:由题意可得若•=(+)•(+)=++ +=2×2×cos120°++λ•+λ•μ=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)==(1﹣λ)•(1﹣μ)=(1﹣λ)•(1﹣μ)=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣λ﹣μ+λμ=﹣②.由①②求得λ+μ=,故选:C.11.(5分)已知,是单位向量,,若向量满足,则的取值范围为()A.B.C.D.【解答】解:令,,,如图所示:则,又,所以点C在以点D为圆心、半径为1的圆上,易知点C与O、D共线时达到最值,最大值为+1,最小值为﹣1,所以的取值范围为[﹣1,+1].故选:A.12.(5分)已知函数f(x)=(a>0,a≠1),数列{a n}满足a n=f(n)(n∈N*),且数列{a n}是递增数列,则实数a的取值范围是()A.[7,8)B.(1,8)C.(4,8)D.(4,7)【解答】解:根据题意,a n=f(n)=,要使{a n}是递增数列,必有:,解得,4<a<8.故选:C.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上)13.(5分)已知向量,满足||=3,且•=﹣12,则向量在向量方向上的投影﹣4.【解答】解:由已知=﹣4;故答案为:﹣4.14.(5分)已知△ABC中,∠ABC=45°,AB=,BC=3,则sin∠BAC=.【解答】解:∵∠ABC=45°,AB=,BC=3,∴由余弦定理可得:AC2=AB2+BC2﹣2AB•BC•cos∠ABC=2+9﹣2×=5,可得AC=,∴由正弦定理可得:sin∠BAC===.故答案为:.15.(5分)若点O是△ABC所在平面内的一点,且满足|﹣|=|+﹣2 |,则△ABC的形状为直角三角形.【解答】解:∵,,∴,即||=∵,∴,由此可得以AB、AC为邻边的平行四边形为矩形,∴∠BAC=90°,得△ABC的形状是直角三角形.故答案为:直角三角形.16.(5分)已知数列{a n}满足:++…+=(32n﹣1),n∈N*.若b n=log3,则++…+=.【解答】解:当n=1时,=3,当n≥2,n∈N*时,++…+=(32n﹣1)①,++…+=(32n﹣2﹣1)②;①﹣②得,=(32n﹣1﹣(32n﹣2﹣1))=32n﹣1,=3也成立,故=32n﹣1,故=31﹣2n,故b n=log3=log331﹣2n=1﹣2n,故==(﹣);故++…+=(1﹣+﹣+…+﹣)=(1﹣)=.故答案为:.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)(Ⅰ)若等差数列{a n}满足:a1=20,a n=54,前n项和S n=999,求公差d及项数n;(Ⅱ)若等比数列{a n}满足:a1=﹣1,a4=64,求公比q及前n项和S n.【解答】解:(Ⅰ)S n=•n=999,即37n=999,解得,n=27;由a n=a1+(n﹣1)d=54,即20+(27﹣1)d=54,解得,d=;(Ⅱ)a4=a1•q3=64,即﹣1•q3=64,解得,q=﹣4;故S n==.18.(12分)已知:、、是同一平面内的三个向量,其中=(1,2)(1)若||=2,且∥,求的坐标;(2)若||=,且+2与2﹣垂直,求与的夹角θ.【解答】解:(1)设,∵||=2,且∥,∴,…(3分)解得或,…(5分)故或.…(6分)(2)∵,∴,即,…(8分)∴,整理得,…(10分)∴,…(12分)又∵θ∈[0,π],∴θ=π.…(14分)19.(12分)在△ABC中,角A、B、C的对边分别为a、b、c,若•=•=1.(Ⅰ)求证:A=B;(Ⅱ)求边长c的值;(Ⅲ)若|+|=,求△ABC的面积.【解答】解:(Ⅰ)∵•=•.∴bccosA=accosB,即bcosA=acosB由正弦定理得sinBcosA=sinAcosB∴sin(A﹣B)=0∵﹣π<A﹣B<π∴A﹣B=0,∴A=B(Ⅱ)∵•=1,∴bccosA=1由余弦定理得bc•=1,即b2+c2﹣a2=2∵由(Ⅰ)得a=b,∴c2=2,∴c=(Ⅲ)∵|+|=,∴||2+||2+2|•|=6即c2+b2+2=6∴c2+b2=4∵c2=2∴b2=2,b=∴△ABC为正三角形∴S=×()2=△ABC20.(12分)已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=π,在△ABC中,角A、B、C所对的边分别是a、b、c.(Ⅰ)若a、b、c依次成等差数列,且公差为2.求c的值;(Ⅱ)若c=,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.【解答】解:(Ⅰ)∵a、b、c成等差,且公差为2,∴a=c﹣4、b=c﹣2.又∵,,∴,∴,恒等变形得c2﹣9c+14=0,解得c=7,或c=2.又∵c>4,∴c=7.…(6分)(Ⅱ)在△ABC中,由正弦定理可得,∴,AC=2sinθ,.∴△ABC的周长f(θ)=|AC|+|BC|+|AB|===,…(10分)又∵,∴,∴当,即时,f(θ)取得最大值.…(12分)21.(12分)设公比大于零的等比数列{a n}的前n项和为S n,且a1=1,S4=5S2,数列{b n}的前n项和为T n,满足b1=1,,n∈N*.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)设C n=(S n+1)(nb n﹣λ),若数列{C n}是单调递减数列,求实数λ的取值范围.【解答】(本题满分14分)解:(Ⅰ)由S4=5S2,q>0,得…(3分)又T n=T n﹣1+b n,(n>1),则得所以,当n=1时也满足.…(7分)(Ⅱ)因为,所以,使数列{C n}是单调递减数列,则对n∈N*都成立,…(10分)即,…(12分),当n=1或2时,,所以.…(14分)22.(12分)已知f(x)=log m x(m为常数,m>0且m≠1),设f(a1),f(a2),…,f(a n)(n∈N+)是首项为4,公差为2的等差数列.(1)求证:数列{a n}是等比数列;(2)若b n=a n f(a n),记数列{b n}的前n项和为S n,当时,求S n;(3)若c n=a n lga n,问是否存在实数m,使得{c n}中每一项恒小于它后面的项?若存在,求出实数m的取值范围.【解答】解:(1)由题意f(a n)=4+2(n﹣1)=2n+2,即log m a n=2n+2,∴a n=m2n+2∴∵m>0且m≠1,∴m2为非零常数,∴数列{a n}是以m4为首项,m2为公比的等比数列(2)由题意b n=a n f(a n)=m2n+2log m m2n+2=(2n+2)•m2n+2,当∴S n=2•23+3•24+4•25+…+(n+1)•2n+2①①式乘以2,得2S n=2•24+3•25+4•26+…+n•2n+2+(n+1)•2n+3②②﹣①并整理,得S n=﹣2•23﹣24﹣25﹣26﹣…﹣2n+2+(n+1)•2n+3=﹣23﹣[23+24+25+…+2n+2]+(n+1)•2n+3==﹣23+23(1﹣2n)+(n+1)•2n+3=2n+3•n(3)由题意c n=a n lga n=(2n+2)•m2n+2lgm,要使c n﹣1<c n对一切n≥2成立,即nlgm<(n+1)•m2•lgm对一切n≥2成立,①当m>1时,n<(n+1)m2对n≥2成立;②当0<m<1时,n>(n+1)m2∴对一切n≥2成立,只需,解得,考虑到0<m<1,∴0<m<.综上,当0<m<或m>1时,数列{c n}中每一项恒小于它后面的项。
2009—2010学年东北师大附中 高一年级数学试卷 下学期期中考试命题人: 邢昌振注意:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分,考试时间120分钟.请将选择题答案填涂在答题卡相应位置,将非选择题答案填写在答题纸相应位置.第Ⅰ卷(选择题 共48分)一、选择题(共12小题,每小题4分,共48分) 1.已知直线l :1+=x y ,则该直线的倾斜角为( ) A.45 B.60 C.135 D. 1502.已知空间中两点(123)A ,,,),24(a B ,,且||AB =10,则=a ( )A. 2B. 4C. 0D. 2或4 3.斜率是2-,在y 轴上的截距是4的直线方程为( ) A. 042=-+y x B. 042=--y x C. 042=-+y x D. 042=+-y x 4.已知直线b a ,和平面βα,.给定下列四个命题: ①若a ∥b ,αα⊄⊂b a ,,那么b ∥α; ②若αα⊄⊂b a ,,且b a ⊥,则α⊥b ; ③若βα⊂⊂b a ,,且b a ⊥,则αβ⊥; ④若αα⊂⊂b a ,,且a ∥β,b ∥β,则α∥β. 其中真命题的序号是( )A. ①和②B. ①C. ①④D. ③5.若直线x y =在第一象限上有一点Q 到)20(,P 的距离为2,则点Q 的坐标为( )A. )00(,B. )11(,C. )22(,D. )22(,6.已知球O 的体积为π36,则该球的表面积是( ) A. π36B. π18C. π24D. π327.若直线10x y --=和0x ky -=的交点在第三象限,则k 的取值范围是( ) A. 210<<k B. 10<<k C. 1>k D. 0<k 8.在正方体1111ABCD A B C D -中,点E 是11A C 的中点,则二面角C AB E --的正切值为 ( ) A.3 B. 3C. D. 29.有一个几何体的三视图及其尺寸如下(单位:cm ),则该几何体的表面积为( )A.2)21648(cm +B. 2)21664(cm +C. 2)21632(cm +D. 2)21616(cm +10.如图,⊥PA 平面ACB ,BC AC ⊥,M 为PB 的中点, 则MA 与MC 的大小关系是( )A. MC MA >B. MC MA =C. MC MA <D. 不确定11.已知圆的方程是0423322222=-++--+a a ay ax y x ,则当圆的半径最小时,圆心的坐标是( )A. )31(-,B. )31(,C. )00(,D. )31(,-12.已知直线)0(:1:21≠+=+=a a x y l ax y l ,,则在同一坐标系中21l l 与的图像只可能是( )主视图侧视图俯视图4PABCM第Ⅱ卷(非选择题 共72分)二.填空题(共4小题,每小题4分,共16分)13.圆心为点)35(,-M ,且过点)18(--,A 的圆的标准方程是 . 14.过)0,3(P 做圆1)1()1(22=+++y x 的切线,切点为点,A 则=PA . 15.半径为2的球的内接三棱柱111C B A ABC -的底面是等腰直角三角形,⊥1AA 底面ABC ,21=AA ,则此三棱柱的体积为 .16.以下四个命题中:①垂直于同一条直线的两条直线平行;②空间中如果一个角的两边分别垂直于另一个角的两边,那么这两个角相等或互补; ③已知b a ,是异面直线,直线d c ,分别与b a ,相交于两点,则d c ,是异面直线; ④到任意一个三棱锥的四个顶点距离相等的平面有且只有7个. 其中不正确...的.命题的序号是 . 三、解答题(共6小题,共56分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分8分)求经过直线1:10l x y --=与2:30l x y +-=的交点,且在两坐标轴上的截距相等的直线l 的方程.18.(本题满分8分)如图,在正方体1111ABCD A B C D -中,E 是1DD 的中点,求证:(1)1BD ∥平面EAC ;(2)求异面直线1BD 与CE 所成角的余弦值.19.(本题满分10分)如图,四棱锥ABCD V -中,底面ABCD 是边长为2的正方形, 其余四个侧面都是侧棱长为5的等腰三角形,且O BD AC = . (1)求证:⊥VO 平面ABCD ;(2)E 是VC 的中点,求BE 与平面ABCD 所成角的正切值.20.(本题满分10分)求圆心在直线03=-y x 上,与x 轴相切,且截直线0=-y x 所得的弦长为72的圆的方程.21.(本题满分10分)如图,在四边形ABCD 中,OD 垂直平分OD BC AB //,,且12===BC OD AB ,,现将四边形ABCD 沿OD 折成直二面角, 求:(1)求二面角O CD A --的正弦值; (2)求三棱锥AOC D -的体积.22.(本题满分10分)VA BCD OEA BCDOA OB CD折叠在平面直角坐标系xOy 中,O 为坐标原点,点)0,1(-M ,动点),(y x P 2=.(1)求点P 的轨迹方程;(2)过原点O 且互相垂直的两条直线AB 和CD 与点P 的轨迹分别交于A 、B 和C 、D ,求四边形ACBD 的面积S 的取值范围.2009—2010学年东北师大附中 高一年级数学试卷(答案)下学期期中考试二、填空题:本大题共4小题,每小题4分,共16分13.25)3()5(22=-++y x ;14. 4 ;15. 2 ;16 ①②③ .三、解答题:本大题共6小题,共56分.解答题应写出文字说明,证明过程或演算步骤.17.(本题满分8分) 解: 由条件解1030x y x y --=⎧⎨+-=⎩,可得21x y =⎧⎨=⎩,即两条直线交点的坐标是(21),.设所求直线的方程为)2(1-=-x k y ,令;21,0k y x -==则再令.12,0kx y -==则 由k k 1221-=-,得0122=-+k k 。
2014-2015学年度下学期高一年级期中考试数 学 试 卷 (理)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
其中第Ⅰ卷满分60分,第Ⅱ卷满分90分。
本试卷满分150分,考试时间为120分钟。
2、答卷前,考生务必将自己的姓名、班级、写在答题卡上。
3、将第Ⅰ卷选出答案后,和第二卷答案都写在答题卡相应标号位置,答错位置不得分。
第Ⅰ卷一.选择题(共12题,每题5分,共60分)1.在△ABC 中,角A 、B 、C 成等差数列,则角B 为( ) (A) 30° (B) 60° (C) 90° (D) 120° 2.下列不等式中,对任意x ∈R 都成立的是 ( ) (A ).244x x +≤1 ( B ).x 2+1>2x (C ).lg(x 2+1)≥lg (2x )(D ).2111x <+ 3.在等比数列{}n a ,37232a a ==,,则q =( )(A) 2(B) -2(C) ±2(D) 44.在△ABC 中,若222c a b ab =++,则∠C=( )(A) 60° (B) 90° (C) 150° (D) 120°5.等差数列{}n a 中,若24568450a a a a a ++++=则28a a +=( ) (A) 180 (B) 75(C) 45(D) 306.等差数列{}n a 中,已知1215a a +=,3435a a +=则56a a +=( )(A) 65 (B) 55 (C) 45 (D) 25 7.设b a >,d c >,则下列不等式成立的是( )A.d b c a ->-B.bd ac >C.bdc a > D.c ad b +<+8.如果方程02)1(22=-+-+m x m x 的两个实根一个小于‒1,另一个大于1,那么实数m 的取值范围是( ) (A ).)22(,- (B ).(-2,0) (C ).(-2,1) (D ).(0,1) 9.在各项均为正数的等比数列{}n b 中,若783b b ⋅=,则3132log log b b ++……314log b +等于()(A) 5 (B) 6 (C) 7 (D)810.在ABC ∆中,80,100,45a b A ︒===,则此三角形解的情况是( ) (A )、一解 ( B )、两解 (C )、一解或两解 ( D )、无解 11.已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是(A )21 (B )20 (C )19 (D ) 18 12.直线L 过原点(0,0),且不过第三象限,那么L 的倾斜角α的取值范围是( )(A ).[]︒︒900, (B ). [)︒︒18090, (C ). [)︒︒18090,或α=0°(D ). []︒︒13590,第Ⅱ卷二.填空题(每题5分,共20分)13.在△ABC 中,a =b =1cos 3C =,则ABC S =△_______14.若经过点A (1-t , 1+t )和点B (3, 2t )的直线的倾斜角为钝角,则实数t 的取值范围是 .15.1111...233445(1)(2)n n ++++=⨯⨯⨯+⨯+ ; 16.若R b a ∈,,且3=+b a ,则b a 22+的最小值是 ______.三.解答题(17题10分,18、19、20、21、22题每题12分)17.已知△ABC 的顶点坐标为A (5,-1),B (1,1),C (2,m ),若△ABC 为直角三角形,试求m 的值.18. 解下列关于x 的不等式:56x 2-ax -a 2<0.19.已知{}n a 是各项为正数的等比数列,且64,105342=⋅=+a a a a ,n S 为{}n a 的前n 项和.(Ⅰ)求数列{}n a 通项公式;(Ⅱ)设n n na b 2=,求数列{}n b 的前n 项和n T .20. 已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若.2,sin 2sin sin b a C B A ==+.(Ⅰ)求A cos 的值; (Ⅱ)若ABC ∆的面积1543=S ,求△ABC 三边的长。
2014-2015高二下学期期中考试一、选择题:1.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( B ) A 、1440种 B 、3600种 C 、4820种 D 、4800种2、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( )A .96种B .180种C .240种D .280种 3、五种不同的商品在货架上排成一排,其中a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则 不同的选排方法共有( )A .12种B .20种C .24种D .48种 4、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( )A . 10种 B. 20种 C. 30种 D . 60种 5、如图所示,程序框图(算法流程图)的输出结果是( )A .16B .2524 C .34D .11126、在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分.积分多的前两名可出线(积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为( ) A .22种 B .23种 C .24种 D .25种7、令1)1(++n n x a 为的展开式中含1-n x项的系数,则数列}1{na 的前n 项和为 ( )A .2)3(+n n B .2)1(+n n C .1+n n D .12+n n8、若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( )A .32B .1C .-1D .-329、二项式2323nx x ⎛⎫- ⎪⎝⎭*()n N ∈展开式中含有常数项,则n 的最小取值是 ( )A 5B 6C 7D 810、四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有( )A .150种B .147种C .144种D .141种 11、两位到北京旅游的外国游客要与2008奥运会的吉祥物福娃(5个)合影留念,要求排成一排,两位游客相邻且不排在两端,则不同的排法共有 ( ) A .1440 B .960 C .720 D .480 12、若x ∈A 则x 1∈A ,就称A 是伙伴关系集合,集合M={-1,0,31,21,1,2,3,4} 的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25二、填空题13. 对于给定的两个变量的统计数据,下列说法正确的是________.(填序号)①都可以分析出两个变量的关系;②都可以用一条直线近似地表示两者的关系; ③都可以作出散点图;④都可以用确定的表达式表示两者的关系.14. 由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于-1,那么对于样本1,x 1,-x 2,x 3,-x 4,x 5的中位数可以表示为________.15. 某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人分别应抽取的人数是________.16. 四封信投入3个不同的信箱,其不同的投信方法有_________种. 二、解答题:17.某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:组别频数频率145.5~149.580.16149.5~153.560.12153.5~157.5140.28157.5~161.5100.20161.5~165.580.16165.5~169.5m n合计M N(1)求出表中字母m、n、M、N所对应的数值;(2)在给出的直角坐标系中画出频率分布直方图;(3)估计该校高一女生身高在149.5~165.5 cm范围内有多少人?18.农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)甲:9,10,11,12,10,20乙:8,14,13,10,12,21.(1)在右面给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.19.编号分别为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:运动员编号A1A2A3A4A5A6A7A8得分1535212825361834运动员编号A9A10A11A12A13A14A15A16得分1726253322123138(1)将得分在对应区间内的人数填入相应的空格.区间[10,20)[20,30)[30,40]人数(2)从得分在区间[20,30)内的运动员中随机抽取2人,①用运动员编号列出所有可能的抽取结果;②求这2人得分之和大于50的概率.20.甲乙两人玩一种游戏,每次由甲、乙各出1到5根手指,若和为偶数算甲赢,否则算乙赢.(1)若以A表示和为6的事件,求P(A);(2)现连玩三次,若以B表示甲至少赢一次的事件,C表示乙至少赢两次的事件,试问B与C是否为互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.21.7位同学站成一排.问:(1)甲、乙两同学必须相邻的排法共有多少种?(2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种?答案:一、选择题 1.B 2、C 3、C 4、B 5、 D 6、C 7、 D 8、 A 9、 C 10、D 11、B 12、A 具有伙伴关系的元素组有-1,1,21、2,31、3共四组,它们中任一组、二组、三组、四组均可组成非空伙伴关系集合,个数为C 14+ C 24+ C 34+ C 44=15, 选A .二、填空:13.③; 14.12(1+x 5) ; 15.6,12,18; 6.④ 7.③④ ; 8.①简单随机抽样,②系统抽样,③分层抽样 9.5 10.399.5 11.0.53 12.70% 13.乙 14.58.5 15.④ 16.34 三、解答题:17.解 (1)由题意M =80.16=50,落在区间165.5~169.5内数据频数m =50-(8+6+14+10+8)=4, 频率为n =0.08,总频率N =1.00. (2)频率分布直方图如图.(3)该所学校高一女生身高在149.5~165.5 cm 之间的比例为0.12+0.28+0.20+0.16=0.76,则该校高一女生在此范围内的人数为450×0.76=342(人). 18.解 (1)茎叶图如图所示:(2)x 甲=9+10+11+12+10+206=12,x 乙=8+14+13+10+12+216=13,s 2甲=16×[(9-12)2+(10-12)2+(11-12)2+(12-12)2+(10-12)2+(20-12)2]≈13.67, s 2乙=16×[(8-13)2+(14-13)2+(13-13)2+(10-13)2+(12-13)2+(21-13)2]≈16.67. 因为x 甲<x 乙,所以乙种麦苗平均株高较高,又因为s 2甲<s 2乙,所以甲种麦苗长的较为整齐.19.解 (1)4,6,6.(2)①得分在区间[20,30)内的运动员编号为A 3,A 4,A 5,A 10,A 11,A 13,从中随机抽取2人,所有可能的抽取结果有:{A 3,A 4},{A 3,A 5},{A 3,A 10},{A 3,A 11},{A 3,A 13},{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 4,A 13},{A 5,A 10},{A 5,A 11},{A 5,A 13},{A 10,A 11},{A 10,A 13},{A 11,A 13},共15种.②“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B )的所有可能结果有:{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 5,A 10},{A 10,A 11},共5种.所以P (B )=515=13.20.解 (1)甲、乙出手指都有5种可能,因此基本事件的总数为5×5=25,事件A 包括甲、乙出的手指的情况有(1,5)、(5,1)、(2,4)、(4,2)、(3,3)共5种情况, ∴P (A )=525=15.(2)B 与C 不是互斥事件.因为事件B 与C 可以同时发生,如甲赢一次,乙赢两次的事件即符合题意.(3)这种游戏规则不公平.由(1)知和为偶数的基本事件数为13个.(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5). 所以甲赢的概率为1325,乙赢的概率为1225.所以这种游戏规则不公平.21.解 (1)先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有种方法;再将甲、乙两个同学“松绑”进行排列有种方法.所以这样的排法一共有种.(2)方法同上,一共有种.(3)将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有种方法;将剩下的4个元素进行全排列有种方法;最后将甲、乙两个同学“松绑”进行排列有种方法.所以这样的排法一共有种方法.(4)将甲、乙、丙三个同学“捆绑”在一起看成一个元素,另外四个人“捆绑”在一起看成一个元素时.一共有2个元素,∴一共有排法种数: (种).。
2014-2015学年吉林省吉林一中高一(下)期中数学试卷(奥训班)一、选择题(本大题共12小题,每小题5分,共60分.)1.(5分)函数的导数是()A.B.C.D.2.(5分)函数y=f(x),x∈(a,b),则“f′(x)>0”是“函数y=f(x)为增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)曲线与曲线的()A.焦距相等B.离心率相等C.焦点相同D.准线相同4.(5分)如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为()A.B.C.D.5.(5分)函数f(x)=e x﹣ex在[0,2]上的最大值为()A.0B.1C.e﹣2D.e(e﹣2)6.(5分)若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为()A.2B.3C.6D.87.(5分)定义在R上的函数f(x)满足f(1)=1,且对任意x∈R都有f′(x),则不等式f(x2)>的解集为()A.(1,2)B.(0,1)C.(1,+∞)D.(﹣1,1)8.(5分)已知点P是抛物线y2=2x上的动点,点P到准线的距离为d,且点P 在y轴上的射影是M,点A(,4),则|PA|+|PM|的最小值是()A.B.4C.D.59.(5分)已知R上可导函数f(x)的图象如图所示,则不等式(x2﹣2x﹣3)f′(x)>0的解集为()A.(﹣∞,﹣2)∪(1,+∞)B.(﹣∞,﹣2)∪(1,2)C.(﹣∞,﹣1)∪(﹣1,0)∪(2,+∞)D.(﹣∞,﹣1)∪(﹣1,1)∪(3,+∞)10.(5分)已知定义在实数集R上的函数f(x)满足:①f(2﹣x)=f(x);②f(x+2)=f(x﹣2);③当x1,x2∈[1,3]时,>0,则f(2014)、f(2015)、f(2016)满足()A.f(2014)>f(2015)>f(2016)B.f(2016)>f(2015)>f(2014)C.f(2016)=f(2014)>f(2015)D.f(2016)=f(2014)<f(2015)11.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.12.(5分)已知函数f(x)=x2+2ax,g(x)=3a2lnx+b,设两曲线y=f(x),y=g (x)有公共点,且在该点处的切线相同,则a∈(0,+∞)时,实数b的最大值是()A.e B.e6C.e6D.e二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)如图所示,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中点,cos<,>=,若以DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为.14.(5分)已知F1,F2是椭圆的两焦点,P为椭圆上一点,若∠F1PF2=60°,则离心率e的范围是.15.(5分)函数f(x)=lnx﹣x﹣a有两个不同的零点,则实数a的取值范围是.16.(5分)已知定义在R上的偶函数g(x)满足:当x≠0时,xg′(x)<0(其中g′(x)为函数g(x)的导函数);定义在R上的奇函数f(x)满足:f(x+2)=﹣f(x),在区间[0,1]上为单调递增函数,且函数y=f(x)在x=﹣5处的切线方程为y=﹣6.若关于x的不等式g[f(x)]≥g(a2﹣a+4)对x∈[6,10]恒成立,则a的取值范围是.三.解答题:(本大题共6道小题,共70分.)17.(10分)如图,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.(Ⅰ)若在边BC上存在一点Q,使PQ⊥QD,求a的取值范围;(Ⅱ)当边BC上存在唯一点Q,使PQ⊥QD时,求二面角A﹣PD﹣Q的余弦值.18.(12分)已知函数f(x)=mx﹣,g(x)=2lnx.(Ⅰ)当m=1时,判断方程f(x)=g(x)在区间(1,+∞)上有无实根.(Ⅱ)若x∈(1,e]时,不等式f(x)﹣g(x)<2恒成立,求实数m的取值范围.19.(12分)如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.20.(12分)已知直三棱柱ABC﹣A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.(I)求证:DE∥平面ABC;(Ⅱ)求证:B1F⊥平面AEF;(Ⅲ)求二面角B1﹣AE﹣F的余弦值.21.(12分)已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F(﹣,0),且右顶点为D(2,0).设点A的坐标是(1,).(1)求该椭圆的标准方程;(2)过原点O的直线交椭圆于点B、C,求△ABC面积的最大值.22.(12分)已知函数.(I)当a=1时,求f(x)在x∈[1,+∞)最小值;(Ⅱ)若f(x)存在单调递减区间,求a的取值范围;(Ⅲ)求证:(n∈N*).2014-2015学年吉林省吉林一中高一(下)期中数学试卷(奥训班)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.)1.(5分)函数的导数是()A.B.C.D.【解答】解:∵,∴=,故选:B.2.(5分)函数y=f(x),x∈(a,b),则“f′(x)>0”是“函数y=f(x)为增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:根据导数的性质可知若f′(x)>0,则函数y=f(x)为增函数成立.函数f(x)=x3在(﹣1,1)是增函数,但f′(x)=3x2≥0,则f′(x)>0不一定成立,故“f′(x)>0”是“函数y=f(x)为增函数”的充分不必要条件,故选:A.3.(5分)曲线与曲线的()A.焦距相等B.离心率相等C.焦点相同D.准线相同【解答】解:由知该方程表示焦点在x轴上的椭圆,由知该方程表示焦点在y轴上的双曲线,排除C,D;椭圆的离心率小于1,双曲线离心率大于1排除B,故选:A.4.(5分)如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为()A.B.C.D.【解答】解:分别以CA、CC1、CB为x轴、y轴和z轴建立如图坐标系,∵CA=CC1=2CB,∴可设CB=1,CA=CC1=2∴A(2,0,0),B(0,0,1),B1(0,2,1),C1(0,2,0)∴=(0,2,﹣1),=(﹣2,2,1)可得•=0×(﹣2)+2×2+(﹣1)×1=3,且=,=3,向量与所成的角(或其补角)就是直线BC1与直线AB1夹角,设直线BC1与直线AB1夹角为θ,则cosθ==故选:A.5.(5分)函数f(x)=e x﹣ex在[0,2]上的最大值为()A.0B.1C.e﹣2D.e(e﹣2)【解答】解:f′(x)=e x﹣e,令f′(x)>0,解得:x>1,令f′(x)<0,解得:0≤x<1,∴函数f(x)在[0,1)递减,在(1,2]递增,∴函数f(x)的最大值是f(0)或f(2),而f(0)=1<f(2)=e2﹣2e=e(e﹣2),故选:D.6.(5分)若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为()A.2B.3C.6D.8【解答】解:由题意,F(﹣1,0),设点P(x0,y0),则有,解得,因为,,所以=,此二次函数对应的抛物线的对称轴为x0=﹣2,因为﹣2≤x0≤2,所以当x0=2时,取得最大值,故选:C.7.(5分)定义在R上的函数f(x)满足f(1)=1,且对任意x∈R都有f′(x),则不等式f(x2)>的解集为()A.(1,2)B.(0,1)C.(1,+∞)D.(﹣1,1)【解答】解:∵f′(x),∴f′(x)﹣<0,设h(x)=f(x)﹣,则h′(x)=f′(x)﹣<0,∴h(x)是R上的减函数,且h(1)=f(1)﹣=1﹣=.不等式f(x2)>,即为f(x2)x2>,即h(x2)>h(1),得x2<1,解得﹣1<x<1,∴原不等式的解集为(﹣1,1).故选:D.8.(5分)已知点P是抛物线y2=2x上的动点,点P到准线的距离为d,且点P 在y轴上的射影是M,点A(,4),则|PA|+|PM|的最小值是()A.B.4C.D.5【解答】解:抛物线焦点F(,0),准线x=﹣,延长PM交准线于N,由抛物线定义|PF|=|PN|,∵|PA|+|PM|+|MN|=|PA|+|PN|=|PA|+|PF|≥|AF|=5,而|MN|=,∴PA|+|PM|≥5﹣=,当且仅当A,P,F三点共线时,取“=”号,此时,P位于抛物线上,∴|PA|+|PM|的最小值为:,故选:C.9.(5分)已知R上可导函数f(x)的图象如图所示,则不等式(x2﹣2x﹣3)f′(x)>0的解集为()A.(﹣∞,﹣2)∪(1,+∞)B.(﹣∞,﹣2)∪(1,2)C.(﹣∞,﹣1)∪(﹣1,0)∪(2,+∞)D.(﹣∞,﹣1)∪(﹣1,1)∪(3,+∞)【解答】解:由图象可得:当f′(x)>0时,函数f(x)是增函数,所以f′(x)>0的解集为(﹣∞,﹣1),(1,+∞),当f′(x)<0时,函数f(x)是减函数,所以f′(x)<0的解集为(﹣1,1).所以不等式f′(x)<0即与不等式(x﹣1)(x+1)<0的解集相等.由题意可得:不等式(x2﹣2x﹣3)f′(x)>0等价于不等式(x﹣3)(x+1)(x+1)(x﹣1)>0,所以原不等式的解集为(﹣∞,﹣1)∪(﹣1,1)∪(3,+∞),故选:D.10.(5分)已知定义在实数集R上的函数f(x)满足:①f(2﹣x)=f(x);②f(x+2)=f(x﹣2);③当x1,x2∈[1,3]时,>0,则f(2014)、f(2015)、f(2016)满足()A.f(2014)>f(2015)>f(2016)B.f(2016)>f(2015)>f(2014)C.f(2016)=f(2014)>f(2015)D.f(2016)=f(2014)<f(2015)【解答】解:因为f(2﹣x)=f(x),所以该函数的对称轴为x=,由f(x+2)=f(x﹣2),令t=x﹣2,代入原式得f(t+4)=f(t),所以该函数周期为4,因为当x1,x2∈[1,3]时,>0,所以该函数在[1,3]上是增函数.则f(2014)=f(4×503+2)=f(2),f(2015)=f(4×503+3)=f(3),f(2016)=f(4×504)=f(0)=f(2﹣0)=f(2).所以f(2014)=f(2016)=f(2)<f(3)=f(2015),故选:D.11.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2c=2,∴双曲线C2的离心率e===.故选:D.12.(5分)已知函数f(x)=x2+2ax,g(x)=3a2lnx+b,设两曲线y=f(x),y=g (x)有公共点,且在该点处的切线相同,则a∈(0,+∞)时,实数b的最大值是()A.e B.e6C.e6D.e【解答】解:设曲线y=f(x)与y=g(x)在公共点(x0,y0)处的切线相同,因为f′(x)=x+2a,g′(x)=,且f′(x0)=g′(x0),所以x0+2a=,化简得,解得x0=a或﹣3a,又x0>0,且a>0,则x0=a,因为f(x0)=g(x0),所以,则b(a)=(a>0),所以b′(a)=5a﹣3(2alna+a)=2a﹣6alna=2a(1﹣3lna),由b′(a)=0得,a=,所以当0<a<时,b′(a)>0;当a>时,b′(a)<0,即b(a)在(0,)上单调递增,b(a)在(,+∞)上单调递减,所以当a=时,实数b的取到极大值也是最大值b()=.故选:A.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)如图所示,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中点,cos<,>=,若以DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为(1,1,1).【解答】解:设PD=a(a>0),则A(2,0,0),B(2,2,0),P(0,0,a),E(1,1,),∴=(0,0,a),=(﹣1,1,),∵cos<,>=,∴=a•,∴a=2.∴E的坐标为(1,1,1).故答案为:(1,1,1)14.(5分)已知F1,F2是椭圆的两焦点,P为椭圆上一点,若∠F1PF2=60°,则离心率e的范围是.【解答】解:设椭圆方程为(a>b>0),|PF1|=m,|PF2|=n.在△PF1F2中,由余弦定理可知,4c2=m2+n2﹣2mncos60°.∵m+n=2a,∴m2+n2=(m+n)2﹣2mn=4a2﹣2mn,∴4c2=4a2﹣3mn.即3mn=4a2﹣4c2.又mn≤=a2(当且仅当m=n时取等号),∴4a2﹣4c2≤3a2,∴,即e≥.∴e的取值范围是[,1).故答案为15.(5分)函数f(x)=lnx﹣x﹣a有两个不同的零点,则实数a的取值范围是(﹣∞,﹣1).【解答】解:函数f(x)=lnx﹣x﹣a有两个不同的零点,∴f(x)=lnx﹣x﹣a=0有两个不同的根,∴lnx=x+a,令g(x)=lnx,h(x)=x+a,在同一坐标系中画出两个函数的图象,如图,当直线y=x+a,与曲线y=lnx相切时,设切点为(x0,x0+a),∴k=1=g′(x0)=∴x0=1,∴g(x0)=0=1+a,∴a=﹣1,故当a<﹣1函数g(x),h(x)的图象有两个不同的交点,实数a的取值范围为(﹣∞,﹣1).故答案为:(﹣∞,﹣1).16.(5分)已知定义在R上的偶函数g(x)满足:当x≠0时,xg′(x)<0(其中g′(x)为函数g(x)的导函数);定义在R上的奇函数f(x)满足:f(x+2)=﹣f(x),在区间[0,1]上为单调递增函数,且函数y=f(x)在x=﹣5处的切线方程为y=﹣6.若关于x的不等式g[f(x)]≥g(a2﹣a+4)对x∈[6,10]恒成立,则a的取值范围是a≤﹣1或a≥2.【解答】解:∵当x≠0时,xg′(x)<0,∴当x>0时,g′(x)<0,当x<0时,g′(x)>0,即g(x)在(﹣∞,0)上递增,在(0,+∞)上递减,∵不等式g[f(x)]≥g(a2﹣a+4)对x∈[6,10]恒成立,∴|f(x)|≤|a2﹣a+4|对x∈[6,10]恒成立,由f(x+2)=﹣f(x)得,f(x+4)=﹣f(x+2)=f(x),则函数f(x)是以4为周期的周期函数,又∵f(x)是R上的奇函数,∴f(x+2)=﹣f(x)=f(﹣x),则函数f(x)的对称轴是x=1,∵在x=﹣5处的切线方程为y=﹣6,∴f(﹣5)=﹣6,即f(﹣1)=f(3)=﹣6,f(1)=6,再结合f(x)在区间[0,1]上为单调递增函数,且f(0)=0,画出大致图象:由上图得,当x∈[6,10]时,f(x)∈[﹣6,6],由|f(x)|≤|a2﹣a+4|对x∈[6,10]恒成立,得6≤|a2﹣a+4|,即a2﹣a+4≥6或a2﹣a+4≤﹣6,化简得a2﹣a﹣2≥0或a2﹣a+10≤0,解得a≤﹣1或a≥2,故答案为:a≤﹣1或a≥2.三.解答题:(本大题共6道小题,共70分.)17.(10分)如图,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.(Ⅰ)若在边BC上存在一点Q,使PQ⊥QD,求a的取值范围;(Ⅱ)当边BC上存在唯一点Q,使PQ⊥QD时,求二面角A﹣PD﹣Q的余弦值.【解答】解:法1:(Ⅰ)如图,连AQ,由于PA⊥平面ABCD,则由PQ⊥QD,必有AQ⊥DQ.(2分)设BQ=t,则CQ=a﹣t,在Rt△ABQ中,有AQ=.在Rt△CDQ中,有DQ=.(4分)在Rt△ADQ中,有AQ2+DQ2=AD2.即t2+4+(a﹣t)2+4=a2,即t2﹣at+4=0.∴a=t+≥4.故a的取值范围为[4,+∞).(6分)(Ⅱ)由(Ⅰ)知,当t=2,a=4时,边BC上存在唯一点Q(Q为BC边的中点),使PQ⊥QD.(8分)过Q作QM∥CD交AD于M,则QM⊥AD.∵PA⊥平面ABCD,∴PA⊥QM.∴QM⊥平面PAD.过M作MN⊥PD于N,连接NQ,则QN⊥PD.∴∠MNQ是二面角A﹣PD﹣Q的平面角.(10分)在等腰直角三角形PAD中,可求得MN=,又MQ=2,进而NQ=.(12分)∴cos∠MNQ=.故二面角A﹣PD﹣Q的余弦值为(14分)法2:(Ⅰ)以为x、y、z轴建立如图的空间直角坐标系,则B(0,2,0),C(a,2,0),D(a,0,0),P(0,0,4),(2分)设Q(t,2,0)(t>0),则=(t,2,﹣4),=(t﹣a,2,0).(4分)∵PQ⊥QD,∴=t(t﹣a)+4=0.即t2﹣at+4=0.∴a=t+≥4.故a的取值范围为[4,+∞).(6分)(Ⅱ)由(Ⅰ)知,当t=2,a=4时,边BC上存在唯一点Q,使PQ⊥QD.此时Q(2,2,0),D(4,0,0).(8分)设n=(x,y,z)是平面PQD的法向量,由,得.取z=1,则n=(1,1,1)是平面PQD的一个法向量.(10分)而是平面PAD的一个法向量,(12分)由cos<.∴二面角A﹣PD﹣Q的余弦值为.(14分)18.(12分)已知函数f(x)=mx﹣,g(x)=2lnx.(Ⅰ)当m=1时,判断方程f(x)=g(x)在区间(1,+∞)上有无实根.(Ⅱ)若x∈(1,e]时,不等式f(x)﹣g(x)<2恒成立,求实数m的取值范围.【解答】解:(Ⅰ)m=1时,令,…(1分),…(4分)∴h(x)在(0,+∞)上为增函数…(5分)又h(1)=0,∴f(x)=g(x)在(1,+∞)内无实数根…(6分)(Ⅱ)恒成立,即m(x2﹣1)<2x+2xlnx恒成立,又x2﹣1>0,则当x∈(1,e]时,恒成立,…(8分)令,只需m小于G(x)的最小值,,…(10分)∵1<x≤e,∴lnx>0,∴当x∈(1,e]时,G′(x)<0,∴G(x)在(1,e]上单调递减,∴G(x)在(1,e]的最小值为,则m的取值范围是…(12分)19.(12分)如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.【解答】解:(1)设M(x1,y1),N(x2,y2),则x1+x2=8﹣p,|MF|=x1+,|NF|=x2+,∴|MF|+|NF|=x1+x2+p=8;(2)p=2时,y2=4x,若直线MN斜率不存在,则B(3,0);若直线MN斜率存在,设A(3,t)(t≠0),M(x1,y1),N(x2,y2),则代入利用点差法,可得y12﹣y22=4(x1﹣x2)∴k MN=,∴直线MN的方程为y﹣t=(x﹣3),∴B的横坐标为x=3﹣,直线MN代入y2=4x,可得y2﹣2ty+2t2﹣12=0△>0可得0<t2<12,∴x=3﹣∈(﹣3,3),∴点B横坐标的取值范围是(﹣3,3].20.(12分)已知直三棱柱ABC﹣A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.(I)求证:DE∥平面ABC;(Ⅱ)求证:B1F⊥平面AEF;(Ⅲ)求二面角B1﹣AE﹣F的余弦值.【解答】解:方法1:如图建立空间直角坐标系O﹣xyz,令AB=AA1=4,则A(0,0,0),E(0,4,2),F(2,2,0),B(4,0,0),B1(4,0,4),D(2,0,2),(2分)(I)=(﹣2,4,0),面ABC的法向量为=(0,0,4),∵,DE⊄平面ABC,∴DE∥平面ABC.(4分)(II),=0=0(6分)∴,∴B1F⊥AF∵AF∩FE=F,∴B1F⊥平面AEF(8分)(III)平面AEF的法向量为,设平面B1AE的法向量为,∴,即(10分)令x=2,则Z=﹣2,y=1,∴∴=∴二面角B1﹣AE﹣F的余弦值为(12分)方法2:(I)方法i:设G是AB的中点,连接DG,则DG平行且等于EC,(2分)所以四边形DECG是平行四边形,所以DE∥GC,从而DE∥平面ABC.(4分)方法ii:连接A1B、A1E,并延长A1E交AC的延长线于点P,连接BP.由E为C1C的中点,A1C1∥CP,可证A1E=EP,(2分)∵D、E是A1B、A1P的中点,∴DE∥BP,又∵BP⊂平面ABC,DE⊄平面ABC,∴DE∥平面ABC(4分)(II)∵△ABC为等腰直角三角形,F为BC的中点,∴BC⊥AF,又∵B1B⊥平面ABC,可证B1F⊥AF,(6分)设AB=AA 1=2,则∴B1F⊥EF,∴B1F⊥平面AEF;(8分)(III)过F做FM⊥AE于点M,连接B1M,∵B1F⊥平面AEF,由三垂线定理可证B1M⊥AE,∴∠B1MF为二面角B1﹣AE﹣F的平面角,C1C⊥平面ABC,AF⊥FC,可证EF⊥AF,在Rt△AEF中,可求,(10分)在Rt△B1FM中,∠B1FM=90°,∴∴二面角B1﹣AE﹣F的余弦值为(12分)21.(12分)已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F(﹣,0),且右顶点为D(2,0).设点A的坐标是(1,).(1)求该椭圆的标准方程;(2)过原点O的直线交椭圆于点B、C,求△ABC面积的最大值.【解答】解:(Ⅰ)由已知得椭圆的半长轴a=2,半焦距c=,则半短轴b=1.又椭圆的焦点在x轴上,∴椭圆的标准方程为(II)当BC垂直于x轴时,BC=2,S△ABC=1当BC不垂直于x轴时,设该直线方程为y=kx,代入解得B(),C(),则,又点A到直线BC的距离d=,=∴△ABC的面积S△ABC=于是S△ABC要使△ABC面积的最大值,则k<0≤,其中,当k=时,等号成立.由≥﹣1,得S△ABC的最大值是∴S△ABC22.(12分)已知函数.(I)当a=1时,求f(x)在x∈[1,+∞)最小值;(Ⅱ)若f(x)存在单调递减区间,求a的取值范围;(Ⅲ)求证:(n∈N*).【解答】解:(I),定义域为(0,+∞).∵,∴f(x)在(0,+∞)上是增函数.当x≥1时,f(x)≥f(1)=1;(3分)(Ⅱ)∵,∵若f(x)存在单调递减区间,∴f′(x)<0有正数解.即ax2+2(a﹣1)x+a<0有x>0的解.(5分)①当a=0时,明显成立.②当a<0时,y=ax2+2(a﹣1)x+a为开口向下的抛物线,ax2+2(a﹣1)x+a<0总有x>0的解;③当a>0时,y=ax2+2(a﹣1)x+a开口向上的抛物线,即方程ax2+2(a﹣1)x+a=0有正根.因为x1x2=1>0,所以方程ax2+2(a﹣1)x+a=0有两正根.,解得.综合①②③知:.(9分)(Ⅲ)(法一)根据(Ⅰ)的结论,当x>1时,,即.令,则有,∴.∵,∴.(12分)(法二)当n=1时,ln(n+1)=ln2.∵3ln2=ln8>1,∴,即n=1时命题成立.设当n=k时,命题成立,即.∴n=k+1时,.根据(Ⅰ)的结论,当x>1时,,即.令,则有,则有,即n=k+1时命题也成立.因此,由数学归纳法可知不等式成立.(12分)。
2014-2015学年吉林省长春十一中高一(下)期中数学试卷(理科)一、选择题(每小题4分,共48分)1.(4分)下列不等式中成立的是()A.若a>b,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则>2.(4分)数列1,3,6,10,…的一个通项公式是()A.a n=n2﹣(n﹣1)B.a n=n2﹣1C.a n=D.3.(4分)已知A,B是以O为圆心的单位圆上的动点,且||=,则•=()A.﹣1B.1C.﹣D.4.(4分)已知平面向量与的夹角为,且||=1,|+2|=2,则||=()A.1B.C.3D.25.(4分)已知数列{a n}为等比数列,若a4+a6=10,则a7(a1+2a3)+a3a9的值为()A.10B.20C.100D.2006.(4分)等差数列{a n}中,已知a1=﹣12,S13=0,使得a n<0的最大正整数n 为()A.6B.7C.8D.97.(4分)给出下列图形:①角;②三角形;③平行四边形;④梯形;⑤四边形.其中表示平面图形的个数为()A.2B.3C.4D.58.(4分)若两个等差数列{a n}、{b n}前n项和分别为A n,B n,且满足=,则的值为()A.B.C.D.9.(4分)设数列{a n}是以2为首项,1为公差的等差数列,{b n}是以1为首项,2为公比的等比数列,则=()A.1033B.1034C.2057D.205810.(4分)在等比数列{a n}中,若a1=2,a2+a5=0,{a n}的n项和为S n,则S2015+S2016=()A.4032B.2C.﹣2D.﹣4030 11.(4分)已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m、a n,使得a m a n=16a12,则+的最小值为()A.B.C.D.不存在12.(4分)已知数列{a n}中,a n>0,a1=1,a n+2=,a100=a96,则a2014+a3=()A.B.C.D.二、填空题(每小题4分,共16分)13.(4分)在等差数列{a n}中,a7=m,a14=n,则a28=.14.(4分)已知数列{a n}为等比数列,且a1a13+2a72=5π,则cos(a5a9)的值为.15.(4分)若函数f(x)=x+(x>2)在x=a处取最小值,则a=.16.(4分)数列{a n}中,a1=2,a2=7,a n+2是a n a n+1的个位数字,S n是{a n}的前n 项和,则S242﹣10a6=.三.解答题:(本大题共5小题,共66分)17.(10分)已知向量、满足:||=1,||=4,且、的夹角为60°.(1)求(2﹣)•(+);(2)若(+)⊥(λ﹣2),求λ的值.18.(10分)在△ABC中,,BC=1,.(Ⅰ)求sinA的值;(Ⅱ)求的值.19.(12分)在三角形ABC中,∠A,∠B,∠C的对边分别为a、b、c且b2+c2=bc+a2(1)求∠A;(2)若,求b2+c2的取值范围.20.(12分)已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+log a n,S n=b1+b2+…+b n,求S n.21.(12分)数列{a n}的前n项和为S n,a n是S n和1的等差中项,等差数列{b n}满足b1+S4=0,b9=a1.(1)求数列{a n},{b n}的通项公式;(2)若c n=,求数列{c n}的前n项和W n.附加题(本小题满分10分,该题计入总分)22.(10分)已知数列{a n}的前n项和S n=,且a1=1.(1)求数列{a n}的通项公式;(2)令b n=lna n,是否存在k(k≥2,k∈N*),使得b k、b k+1、b k+2成等比数列.若存在,求出所有符合条件的k值;若不存在,请说明理由.2014-2015学年吉林省长春十一中高一(下)期中数学试卷(理科)参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)下列不等式中成立的是()A.若a>b,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则>【解答】解:对于A,若a>b,c=0,则ac2=bc2,故A不成立;对于B,若a>b,比如a=2,b=﹣2,则a2=b2,故B不成立;对于C,若a<b<0,比如a=﹣3,b=﹣2,则a2>ab,故C不成立;对于D,若a<b<0,则a﹣b<0,ab>0,即有<0,即<,则>,故D成立.故选:D.2.(4分)数列1,3,6,10,…的一个通项公式是()A.a n=n2﹣(n﹣1)B.a n=n2﹣1C.a n=D.【解答】解:设此数列为{ a n},则由题意可得a1=1,a2=3,a3=6,a4=10,…仔细观察数列1,3,6,10,15,…可以发现:1=1,3=1+2,6=1+2+3,10=1+2+3+4,…∴第n项为1+2+3+4+…+n=,∴数列1,3,6,10,15…的通项公式为a n=,故选:C.3.(4分)已知A,B是以O为圆心的单位圆上的动点,且||=,则•=()A.﹣1B.1C.﹣D.【解答】解:由A,B是以O为圆心的单位圆上的动点,且||=,即有||2+||2=||2,可得△OAB为等腰直角三角形,则,的夹角为45°,即有•=||•||•cos45°=1××=1.故选:B.4.(4分)已知平面向量与的夹角为,且||=1,|+2|=2,则||=()A.1B.C.3D.2【解答】解:由已知,|+2|2=12,即,所以||2+4||||×+4=12,所以||=2;故选:D.5.(4分)已知数列{a n}为等比数列,若a4+a6=10,则a7(a1+2a3)+a3a9的值为()A.10B.20C.100D.200【解答】解:∵数列{a n}为等比数列,∴a7(a1+2a3)+a3a9=a7a1+2a7a3+a3a9===102=100,故选:C.6.(4分)等差数列{a n}中,已知a1=﹣12,S13=0,使得a n<0的最大正整数n 为()A.6B.7C.8D.9【解答】解:设等差数列{a n}的公差为d,∵a1=﹣12,S13=0,∴,解得a13=12.∴12=a13=a1+12d=﹣12+12d,解得d=2.∴a n=﹣12+2(n﹣1)=2n﹣14,令a n=0,解得n=7.∴使得a n<0的最大正整数n=6.故选:A.7.(4分)给出下列图形:①角;②三角形;③平行四边形;④梯形;⑤四边形.其中表示平面图形的个数为()A.2B.3C.4D.5【解答】解:根据平面图形的定义,知①角,②三角形,③平行四边形,④梯形,都是平面图形;⑤四边形,不一定是平面图形.所以,以上表示平面图形的个数为4.故选:C.8.(4分)若两个等差数列{a n}、{b n}前n项和分别为A n,B n,且满足=,则的值为()A.B.C.D.【解答】解:等差数列{a n}、{b n}前n项和分别为A n,B n,且=,得=.故选:B.9.(4分)设数列{a n}是以2为首项,1为公差的等差数列,{b n}是以1为首项,2为公比的等比数列,则=()A.1033B.1034C.2057D.2058【解答】解:∵数列{a n}是以2为首项,1为公差的等差数列,∴a n=2+(n﹣1)×1=n+1,∵{b n}是以1为首项,2为公比的等比数列,∴b n=1×2n﹣1,依题意有:=1+2+23+25+…+29+10=1033,故选:A.10.(4分)在等比数列{a n}中,若a1=2,a2+a5=0,{a n}的n项和为S n,则S2015+S2016=()A.4032B.2C.﹣2D.﹣4030【解答】解:设等比数列{a n}的公比为q,∵a1=2,a2+a5=0,∴2q(1+q3)=0,解得q=﹣1,∴S2015=2,S2016=0∴S2015+S2016=2故选:B.11.(4分)已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m、a n,使得a m a n=16a12,则+的最小值为()A.B.C.D.不存在【解答】解:设正项等比数列{a n}的公比为q,且q>0,由a7=a6+2a5得:a6q=a6+,化简得,q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),因为a m a n=16a12,所以=16a12,则q m+n﹣2=16,解得m+n=6,所以=(m+n)()=(10+)≥=,当且仅当时取等号,此时,解得,因为m n取整数,所以均值不等式等号条件取不到,则>,验证可得,当m=2、n=4时,取最小值为,故选:C.12.(4分)已知数列{a n}中,a n>0,a1=1,a n+2=,a100=a96,则a2014+a3=()A.B.C.D.【解答】解:∵a1=1,a n+2=,∴,由a100=a96,得,即,解得(a n>0).∴.则a2014+a3=.故选:C.二、填空题(每小题4分,共16分)13.(4分)在等差数列{a n}中,a7=m,a14=n,则a28=3n﹣2m.【解答】解:等差数列{a n}中,由性质可得:a28=a1+27d,3a14﹣2a7=3(a1+13d)﹣2(a1+6d)=a1+27d,∴a28=3a14﹣2a7,∵a7=m,a14=n,∴a28=3n﹣2m.故答案为:3n﹣2m.14.(4分)已知数列{a n}为等比数列,且a1a13+2a72=5π,则cos(a5a9)的值为.【解答】解:∵a1a13+2a72=5π,∴a72+2a72=5π,即3a72=5π,则a72=,则cos(a5a9)=cos(a72)=cos=cos(2π)=cos=,故答案为:.15.(4分)若函数f(x)=x+(x>2)在x=a处取最小值,则a=3.【解答】解:f(x)=x+=x﹣2++2≥4当x﹣2=1时,即x=3时等号成立.∵x=a处取最小值,∴a=3故答案为:316.(4分)数列{a n}中,a1=2,a2=7,a n+2是a n a n+1的个位数字,S n是{a n}的前n 项和,则S242﹣10a6=909.【解答】解:∵a1=2,a2=7,a n+2是a n a n+1的个位数字,∴a1a2=14,∴a3=4.∴a2a3=28,∴a4=8,a3a4=32,∴a5=2,a4a5=16,∴a6=6,a5a6=12,∴a7=2,a6a7=12,∴a8=2,a7a8=4,∴a9=4,a8a9=8,∴a10=8,…以此类推可得:a6n=a k(k∈N*,k≥3).+k∴S242=a1+a2+40(a3+a4+a5+a6+a7+a8)=2+7+40×(4+8+2+6+2+2)=969,∴S242﹣10a6=969﹣10×6=909.故答案为:909.三.解答题:(本大题共5小题,共66分)17.(10分)已知向量、满足:||=1,||=4,且、的夹角为60°.(1)求(2﹣)•(+);(2)若(+)⊥(λ﹣2),求λ的值.【解答】解:(1)由题意得,∴.(2)∵,∴,∴,∴λ+2(λ﹣2)﹣32=0,∴λ=12.18.(10分)在△ABC中,,BC=1,.(Ⅰ)求sinA的值;(Ⅱ)求的值.【解答】解:(1)在△ABC中,由,得,又由正弦定理:得:.(2)由余弦定理:AB2=AC2+BC2﹣2AC•BC•cosC得:,即,解得b=2或(舍去),所以AC=2.所以,=BC•CA•cos(π﹣C)=即.19.(12分)在三角形ABC中,∠A,∠B,∠C的对边分别为a、b、c且b2+c2=bc+a2(1)求∠A;(2)若,求b2+c2的取值范围.【解答】解:(1)由余弦定理知:cosA==,又A∈(0,π)∴∠A=(2)由正弦定理得:∴b=2sinB,c=2sinC∴b2+c2=4(sin2B+sin2C)=2(1﹣cos2B+1﹣cos2C)=4﹣2cos2B﹣2cos2(﹣B)=4﹣2cos2B﹣2cos(﹣2B)=4﹣2cos2B﹣2(﹣cos2B﹣sin2B)=4﹣cos2B+sin2B=4+2sin(2B﹣),又∵0<∠B<,∴<2B﹣<∴﹣1<2sin(2B﹣)≤2∴3<b2+c2≤6.20.(12分)已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+log a n,S n=b1+b2+…+b n,求S n.【解答】解:(I)设等比数列{a n}的首项为a1,公比为q∵a3+2是a2,a4的等差中项∴2(a3+2)=a2+a4代入a2+a3+a4=28,得a3=8∴a2+a4=20解得或∵数列{a n}单调递增∴a n=2n(II)∵a n=2n,∴b n=a n+log a n=a n﹣n,∴S n=﹣=2n+1﹣2﹣,21.(12分)数列{a n}的前n项和为S n,a n是S n和1的等差中项,等差数列{b n}满足b1+S4=0,b9=a1.(1)求数列{a n},{b n}的通项公式;(2)若c n=,求数列{c n}的前n项和W n.【解答】解:(1)∵a n是S n和1的等差中项,∴S n=2a n﹣1,当n≥2时,a n=S n﹣S n﹣1=(2a n﹣1)﹣(2a n﹣1﹣1)=2a n﹣2a n﹣1,∴a n=2a n﹣1,当n=1时,a1=1,(2分)∴数列{a n}是以1为首项,2为公比的等比数列,∴a n=2n﹣1(6分)∴S n=2n﹣1;设{b n}的公差为d,b1=﹣S4=﹣15,b9=a1=﹣15+8d=1,∴d=2,∴b n=2n﹣17;(8分)(2)c n==(﹣),∴W n=[(1﹣)+(﹣)+…+(﹣)]=(1﹣)=(14分)附加题(本小题满分10分,该题计入总分)22.(10分)已知数列{a n}的前n项和S n=,且a1=1.(1)求数列{a n}的通项公式;(2)令b n=lna n,是否存在k(k≥2,k∈N*),使得b k、b k+1、b k+2成等比数列.若存在,求出所有符合条件的k值;若不存在,请说明理由.【解答】解:(1)当n≥2时,,(2分)即(n≥2).(4分)所以数列是首项为的常数列.(5分)所以,即a n=n(n∈N*).所以数列{a n}的通项公式为a n=n(n∈N*).(7分)(2)假设存在k(k≥2,m,k∈N*),使得b k、b k+1、b k+2成等比数列,则b k b k+2=b k+12.(8分)因为b n=lna n=lnn(n≥2),所以.(13分)这与b k b k+2=b k+12矛盾.故不存在k(k≥2,k∈N*),使得b k、b k+1、b k+2成等比数列.(14分)。
一、选择题1.(0分)[ID :12421]设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则//αβ C .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥2.(0分)[ID :12409]如图为某几何体的三视图,则该几何体的表面积为( )A .202π+B .203π+C .242π+D .243π+3.(0分)[ID :12404]已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:(1)一条直线;(2)一个平面;(3)一个点;(4)空集。
其中正确的是( ) A .(1)(2)(3) B .(1)(4)C .(1)(2)(4)D .(2)(4)4.(0分)[ID :12401]已知(2,0)A -,(0,2)B ,实数k 是常数,M ,N 是圆220x y kx ++=上两个不同点,P 是圆220x y kx ++=上的动点,如果M ,N 关于直线10x y --=对称,则PAB ∆面积的最大值是( ) A .32B .4C .6D .32+5.(0分)[ID :12373]已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( ) A .α⊥β,且m ⊂α B .m ⊥n ,且n ∥β C .α⊥β,且m ∥αD .m ∥n ,且n ⊥β6.(0分)[ID :12348]已知圆O :2224110x y x y ++--=,过点()1,0M 作两条相互垂直的弦AC 和BD ,那么四边形ABCD 的面积最大值为( ) A .42B .24C .212D .67.(0分)[ID :12344]用一个平面去截正方体,则截面不可能是( ) A .直角三角形B .等边三角形C .正方形D .正六边形8.(0分)[ID :12342]从点(,3)P m 向圆22(2)(2)1x y +++=引切线,则切线长的最小值( ) A .26B .5C 26D .429.(0分)[ID :12333]已知三条直线,,m n l ,三个平面,,αβγ,下列四个命题中,正确的是( )A .||αγαββγ⊥⎫⇒⎬⊥⎭B .||m l l m ββ⎫⇒⊥⎬⊥⎭C .||||||m m n n γγ⎫⇒⎬⎭D .||m m n n γγ⊥⎫⇒⎬⊥⎭10.(0分)[ID :12393]点A 、B 、C 、D 在同一个球的球面上,AB=BC=2,AC=2,若四面体ABCD 体积的最大值为23,则这个球的表面积为( ) A .1256πB .8πC .2516πD .254π11.(0分)[ID :12371]若方程21424x kx k +-=-+ 有两个相异的实根,则实数k 的取值范围是( )A .13,34⎛⎤ ⎥⎝⎦B .13,34⎛⎫⎪⎝⎭C .53,124⎛⎫⎪⎝⎭ D .53,12412.(0分)[ID :12364]已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,1013.(0分)[ID :12338]某几何体的三视图如图所示(单位:cm ),其俯视图为等边三角形,则该几何体的体积(单位:3cm )是( )A .3B 1033C .23D 83314.(0分)[ID :12339]某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直且相等,则该几何体的体积是( )A .1763B .1603C .1283D .3215.(0分)[ID :12337]若圆的参数方程为12cos ,32sin x y θθ=-+⎧⎨=+⎩(θ为参数),直线的参数方程为21,61x t y t =-⎧⎨=-⎩(t 为参数),则直线与圆的位置关系是( )A .相交且过圆心B .相交但不过圆心C .相切D .相离二、填空题16.(0分)[ID :12492]已知平面α与正方体的12条棱所成角相等,设所成角为θ,则sin θ=______.17.(0分)[ID :12462]若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为 .18.(0分)[ID :12461]如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,M 为B 1C 1中点,连接A 1B ,D 1M ,则异面直线A 1B 和D 1M 所成角的余弦值为________________________.19.(0分)[ID :12521]已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120,则点A 到BCD 所在平面的距离等于 .20.(0分)[ID :12484]已知圆O :224x y +=, 则圆O 在点3)A 处的切线的方程是___________.21.(0分)[ID :12470]已知平面α,β,γ是空间中三个不同的平面,直线l ,m 是空间中两条不同的直线,若α⊥γ,γ∩α=m ,γ∩β=l ,l⊥m,则 ①m⊥β;②l⊥α;③β⊥γ;④α⊥β.由上述条件可推出的结论有________(请将你认为正确的结论的序号都填上). 22.(0分)[ID :12500]如图,AB 是底面圆O 的直径,点C 是圆O 上异于A 、B 的点,PO 垂直于圆O 所在的平面,且1,2PO OB BC ===E 在线段PB 上,则CE OE +的最小值为________.23.(0分)[ID :12430]若直线:20l kx y --=与曲线()2:111C y x --=-有两个不同的交点,则实数k 的取值范围________.24.(0分)[ID :12437]在正方体1111ABCD A B C D -中, ①BD平面11CB D ②直线AD 与1CB 所成角的大小为60︒③1AA BD ⊥ ④平面11A BC ∥平面1ACD 请把所有正确命题的序号填在横线上________.25.(0分)[ID :12459]已知直线40Ax By A +-=与圆O :2236x y +=交于M ,N 两点,则线段MN 中点G 的轨迹方程为______.三、解答题26.(0分)[ID :12626]如图,在四棱锥P ABCD -中,PA ⊥面ABCD ,//AB CD ,且22,22CD AB BC ===,90ABC ∠=︒,M 为BC 的中点.(1)求证:平面PDM ⊥平面PAM ;(2)若二面角P DM A --为30,求直线PC 与平面PDM 所成角的正弦值. 27.(0分)[ID :12588]如图,直角梯形BDFE 中,//,,2EF BD BE BD EF ⊥=腰梯形ABCD 中,//,,24AB CD AC BD AB CD ⊥==,且平面BDFE ⊥平面ABCD .(1)求证:AC ⊥平面BDFE ; (2)若BF 与平面ABCD 所成角为4π,求二面角B DF C --的余弦值.28.(0分)[ID :12586]如图,在三棱锥A BCD -中,,E F 分别为棱,BC CD 上的中点.(1)求证:EF 平面ABD ;(2)若,BD CD AE ⊥⊥平面BCD ,求证:平面AEF ⊥平面ACD .29.(0分)[ID :12548]如图,在ABC 中AC BC ⊥且点O 为AB 的中点,矩形ABEF 所在的平面与平面ABC 互相垂直.(1)设EC 的中点为M ,求证://OM 平面ACF ; (2)求证:AC ⊥平面CBE30.(0分)[ID :12529]设直线l 的方程为()()1520a x y a a R ++--=∈. (1)求证:不论a 为何值,直线l 必过一定点P ;(2)若直线l 分别与x 轴正半轴,y 轴正半轴交于点(),0A A x ,()0,B B y ,当AOB ∆而积最小时,求AOB ∆的周长;(3)当直线l 在两坐标轴上的截距均为整数时,求直线l 的方程.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.B3.C4.D5.D6.B7.A8.A9.D10.D11.D12.D13.B14.B15.B二、填空题16.【解析】【分析】棱与平面所成的角相等所以平面就是与正方体的12条棱的夹角均为θ的平面之一设出棱长即可求出【详解】因为棱与平面所成的角相等所以平面就是与正方体的条棱的夹角均为的平面设棱长为:易知故答案17.2π【解析】试题分析:设圆柱的底面半径为r高为h底面积为S体积为V则有2πr=2⇒r=1π故底面面积S=πr2=π×(1π)2=1π故圆柱的体积V=Sh=1π×2=2π考点:圆柱的体积18.【解析】【分析】连接取的中点连接可知且是以为腰的等腰三角形然后利用锐角三角函数可求出的值作为所求的答案【详解】如下图所示:连接取的中点连接在正方体中则四边形为平行四边形所以则异面直线和所成的角为或其19.【解析】【分析】【详解】设AC与BD交于点O在三角形ABD中因为∠A=120°AB=2可得AO=1过A作面BCD的垂线垂足E则AE即为所求由题得∠AOE=180°−∠AOC=180°−120°=6 020.【解析】【分析】先求出kOA=从而圆O在点处的切线的方程的斜率由此能出圆O在点处的切线的方程【详解】kOA=∴圆O在点处的切线的方程的斜率∴圆O在点A处的切线的方程整理得即答案为【点睛】本题考查圆的21.②④【解析】【分析】对每一个选项分析判断得解【详解】根据已知可得面β和面γ可成任意角度和面α必垂直所以直线m可以和面β成任意角度①不正确;l⊂γl⊥m所以l⊥α②正确;③显然不对;④因为l⊂βl⊥α22.【解析】【分析】首先求出即有将三棱锥展开当三点共线时值最小可证为中点从而可求从而得解【详解】在中所以同理所以在三棱锥中将侧面绕旋转至平面使之与平面共面如图所示当共线时取得最小值又因为所以垂直平分即为23.【解析】【分析】由题意可知曲线为圆的右半圆作出直线与曲线的图象可知直线是过点且斜率为的直线求出当直线与曲线相切时k的值利用数形结合思想可得出当直线与曲线有两个公共点时实数的取值范围【详解】对于直线则24.①③④【解析】【分析】利用线面平行的判定定理判断①;由异面直线所成角判断②;由线面垂直的性质判断③;由面面平行的判定定理判断④【详解】对于①如下图所示由于则四边形为平行四边形则面面所以平面故①正确;25.【解析】【分析】直线过定点设代入方程利用点差法计算得到答案【详解】直线过定点设则两式相减得到即故整理得到:故答案为:【点睛】本题考查了轨迹方程意在考查学生对于点差法的理解和掌握三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.B 解析:B 【解析】A 中,,αβ也可能相交;B 中,垂直与同一条直线的两个平面平行,故正确;C 中,,αβ也可能相交;D 中,l 也可能在平面β内. 【考点定位】点线面的位置关系2.B解析:B 【解析】该几何体是一个正方体与半圆柱的组合体,表面积为2215221122032S πππ=⨯+⨯⨯+⨯⨯=+,故选B .3.C解析:C 【解析】 【分析】根据题意,对每一个选项进行逐一判定,不正确的只需举出反例,正确的作出证明,即可得到答案. 【详解】如图(1)所示,在平面内不可能由符合题的点;如图(2),直线,a b 到已知平面的距离相等且所在平面与已知平面垂直,则已知平面为符合题意的点;如图(3),直线,a b 所在平面与已知平面平行,则符合题意的点为一条直线, 综上可知(1)(2)(4)是正确的,故选C.【点睛】本题主要考查了空间中直线与平面之间的位置关系,其中熟记空间中点、线、面的位置关系是解答此类问题的关键,着重考查了空间想象能力,以及推理与论证能力,属于基础题.4.D解析:D 【解析】 【分析】根据圆上两点,M N 关于直线10x y --=对称,可知圆心在该直线上,从而求出圆心坐标与半径,要使得PAB ∆面积最大,则要使得圆上点P 到直线AB 的距离最大,所以高最大为3212+,PAB S ∆最大值为32 【详解】由题意,圆x 2+y 2+kx=0的圆心(-2k,0)在直线x-y-1=0上, ∴-2k-1=0,∴k=-2,∴圆x 2+y 2+kx=0的圆心坐标为(1,0),半径为1 ∵A (-2,0),B (0,2),∴直线AB 的方程为2x -+2y=1,即x-y+2=0 ∴圆心到直线AB 32. ∴△PAB 面积的最大值是1321322||(1)222222AB +=⨯=2 故选D . 【点睛】主要考查了与圆有关的最值问题,属于中档题.该题涉及到圆上动点到定直线(圆与直线相离)的最大距离.而圆上动点到定直线的最小距离为圆心到直线距离减去半径,最大距离为圆心到直线距离加上半径.5.D解析:D 【解析】【分析】根据所给条件,分别进行分析判断,即可得出正确答案. 【详解】解:αβ⊥且m α⊂⇒m β⊂或//m β或m 与β相交,故A 不成立;m n ⊥且//n β⇒m β⊂或//m β或m 与β相交,故B 不成立;αβ⊥且//m α⇒m β⊂或//m β或m 与β相交,故C 不成立; //m n 且n β⊥⇒m β⊥,故D 成立;故选:D 【点睛】本题考查直线与平面的位置关系,线面垂直判定,属于基础题.6.B解析:B 【解析】 【分析】设圆心到AC ,BD 的距离为1d ,2d ,则222128d d MO +==,12S AC BD =⋅=,利用均值不等式得到最值. 【详解】 2224110x y x y ++--=,即()()221216x y ++-=,圆心为()1,2O -,半径4r =.()1,0M 在圆内,设圆心到AC ,BD 的距离为1d ,2d ,则222128d d MO +==.1122S AC BD =⋅=⨯=2212161624d d ≤-+-=,当22121616d d -=-,即122d d ==时等号成立.故选:B . 【点睛】本题考查了圆内四边形面积的最值,意在考查学生的计算计算能力和转化能力.7.A解析:A 【解析】 【分析】 【详解】 画出截面图形如图 显然A 正三角形C 正方形: D 正六边形可以画出三角形但不是直角三角形; 故选A .用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形; ④截面为六边形时,可以是正六边形. 故可选A .8.A解析:A 【解析】 【分析】设切线长为d ,则2222(2)51(2)24d m m =++-=++再利用二次函数的图像和性质求函数的最小值得解. 【详解】设切线长为d ,则2222(2)51(2)24d m m =++-=++, min 26d ∴= 故选:A. 【点睛】本题主要考查圆的切线问题,考查直线和圆的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.9.D解析:D 【解析】 试题分析:A.}r rααββ⊥⇒⊥不正确,以墙角为例,,αβ可能相交;B.}m l l m ββ⇒⊥⊥不正确,,l β有可能平行;C.}m rm n n r⇒不正确,m,n 可能平行、相交、异面;故选D 。
高三理科高考总复习阶段测试卷(2014.10.22)14.3.[2014·湖南卷] 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .315.3.[2014·新课标全国卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数 16.15.[2014·新课标全国卷Ⅱ] 已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是________.(五) 二次函数17.16.[2014·全国卷] 若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,则a 的取值范围是________.(六) 指数与指数函数18.4.[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1A BC D图1-219.3.[2014·江西卷] 已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f [g (1)]=1,则a =( )A .1B .2C .3D .-120.3.[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( ) A .a >b >c B .a >c >b C .c >a >b D .c >b >a21.2.[2014·山东卷] 设集合A ={x ||x -1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( )A .[0,2]B .(1,3)C .[1,3)D .(1,4)22.5.[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A. 1x 2+1>1y 2+1 B. ln(x 2+1)>ln(y 2+1) C. sin x >sin y D. x 3>y 3 23.7.[2014·陕西卷] 下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( )A .f (x )=x 12B .f (x )=x 3C .f (x )=⎝⎛⎭⎫12xD .f (x )=3x 24.[2014·陕西卷] 已知4a =2,lg x =a ,则x =________.(七) 对数与对数函数25.5.[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1 B. ln(x 2+1)>ln(y 2+1) C. sin x >sin y D. x 3>y 326.3.[2014·山东卷] 函数f (x )=1(log 2x )2-1的定义域为( ) A.⎝⎛⎭⎫0,12 B .(2,+∞)C. ⎝⎛⎭⎫0,12∪(2,+∞) D. ⎝⎛⎦⎤0,12∪[2,+∞)27.4.[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1A BC D图1-228.13.[2014·广东卷] 若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________. 29.3.[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( ) A .a >b >c B .a >c >b C .c >a >b D .c >b >a30.[2014·天津卷] 函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)31.7.[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )AC 图1-2 32.12.[2014·重庆卷] 函数f (x )=log 2x ·log 2(2x )的最小值为________.15.[解析] C 由于偶函数的绝对值还是偶函数,一个奇函数与一个偶函数之积为奇函数,故正确选项为C.16.[2014·新课标全国卷Ⅱ] 15. 已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是________.[解析] (-1,3) 根据偶函数的性质,易知f (x )>0的解集为(-2,2),若f (x -1)>0,则-2<x -1<2,解得-1<x <3.(五) 二次函数17. [解析] 16.(-∞,2] 。
2014-2015学年第二学期期中考试高一数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为1-10题,共50分,第Ⅱ卷为11-20题,共100分。
全卷共计150分。
考试时间为120分钟。
第Ⅰ卷 (本卷共计50 分)一.选择题:(每小题只有一个选项,每小题5分,共计50分)1.化简0015tan 115tan 1-+等于 ( ) A. 3 B.23C. 3D. 1 2. 在中,下列三角式ABC ∆ ①sin(A+B)+sinC;②cos(B+C)+cosA;③2tan 2tanCB A + ④cos 2sec 2AC B +,其中恒为定值的是 ( ) A .①② B ②③ C ②④D ③④3. 已知函数f(x)=sin(x+2π),g(x)=cos(x -2π),则下列结论中正确的是( ) A .函数y=f(x)·g(x)的最小正周期为2π B .函数y=f(x)·g(x)的最大值为1C .将函数y=f(x)的图象向左平移2π单位后得g(x)的图象D .将函数y=f(x)的图象向右平移2π单位后得g(x)的图象4.圆:0y 6x 4y x 22=+-+和圆:0x 6y x 22=-+交于A 、B 两点,则AB 的垂直平分线的方程是( ).A .03y x =++B .05y x 2=--C . 09y x 3=--D .07y 3x 4=+- 5.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ). A.14 B .4 C .32 D .23x图4-3-17.下列命题正确的是( ).A .a//b, a⊥α⇒a⊥bB .a⊥α, b⊥α⇒a//bC .a⊥α, a⊥b ⇒b//αD .a//α,a⊥b ⇒b⊥α8.圆:02y 2x 2y x 22=---+上的点到直线2y x =-的距离最小值是( ). A .0 B .21+ C .222- D .22- 9. 曲线0y 4x 4y x 22=-++关于( )A .直线4x =对称B .直线0y x =+对称C .直线0y x =-对称D .直线)4,4(-对称10.已知在四面体ABCD 中,E 、F 分别是AC 、BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角为( ). A .︒90 B .︒45 C .︒60D .︒30第Ⅱ卷 (本卷共计100分)二.填空题:(每小题5分,共计20分)11. 使函数f(x)=sin(2x+θ)+)2cos(3θ+x 是奇函数,且在[0,4π]上是减函数的θ的一个值____________.12.一个圆锥的母线长为4,中截面面积为π,则圆锥的全面积为____________.13.已知z ,y ,x 满足方程C :22(3)(2)4x y ++-=,的最大值是___________.14.在三棱锥A B C P -中,已知2PC PB PA ===,︒=∠=∠=∠30CPA BPC BPA , 一绳子从A 点绕三棱锥侧面一圈回到点A 的距离中,绳子最短距离是_____________.三.解答题:(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)15. (本小题满分12分)已知π2 <α<π,0<β<π2 ,tan α=- 34 ,cos(β-α)= 513,求sinβ的值.ABCPDC 1A 1B 1CBA16.(本小题满分12分)已知平行四边形ABCD 的两条邻边AB 、AD 所在的直线方程为02y 4x 3=-+;02y x 2=++,它的中心为M )3,0(,求平行四边形另外两条边CB 、CD 所在的直线方程及平行四边形的面积.17.(本小题满分14分)正三棱柱111C B A ABC -中,2BC =,6AA 1=,D、E分别是1AA 、11C B 的中点, (Ⅰ)求证:面E AA 1⊥面BCD ; (Ⅱ)求直线11B A 与平面BCD 所成的角.18.(本小题满分14分)直线L 经过点)2,1(P ,且被两直线L 1:02y x 3=+-和 L 2:01y 2x =+-截得的线段AB 中点恰好是点P ,求直线L 的方程.19.(本小题满分14分)如图,在三棱柱111-ABC A B C 中,侧棱1AA ⊥底面ABC ,,⊥AB BC D 为AC 的中点,12A A AB ==,3BC =. (1)求证:1//AB 平面1BC D ; (2) 求四棱锥11-B AAC D 的体积.20.(本小题满分14分)设关于x 函数a x a x x f 2cos 42cos )(+-= 其中02π≤≤x(1) 将f(x)的最小值m 表示成a 的函数m=g(a); (2) 是否存在实数a,使f(x)>0在]2,0[π∈x 上恒成立?(3) 是否存在实数a ,使函数f(x) 在]2,0[π∈x 上单调递增?若存在,写出所有的a组成的集合;若不存在,说明理由。
2014-2015学年吉林省长春市东北师大附中高一(下)期中数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)(2015春•吉林校级期中)在等差数列{a n}中,a3=2,则{a n}的前5项和为()A.6 B.10 C.16 D.32考点:等差数列的性质;数列的求和.专题:等差数列与等比数列.分析:直接利用等差数列求和公式求解即可.解答:解:等差数列{a n}中,a3=2,S5==5a3=10.故选:B.点评:本题考查等差数列的性质,数列求和,考查计算能力.2.(5分)设S n为等比数列{a n}的前n项和,已知3S3=a4﹣2,3S2=a3﹣2,则公比q=()A.3 B. 4 C. 5 D. 6考点:等比数列的性质.专题:计算题.分析:本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.我们根据3S3=a4﹣2,3S2=a3﹣2,结合a n=S n﹣S n﹣1,我们易得a3与a4的关系,进而求出公比q.解答:解:∵3S3=a4﹣2,①3S2=a3﹣2,②①﹣②得,3a3=a4﹣a3,即a4=4a3,∴q==4.故选B点评:如果题目中已经告知:{a n}为等比数列(如本题),我们只要求出数列的连续两项,然后根据公比的定义代入计算,即可求解.3.(5分)已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为()A.5 B. 4 C. 3 D. 2考点:等差数列的通项公式.专题:等差数列与等比数列.分析:写出数列的第一、三、五、七、九项的和即5a1+(2d+4d+6d+8d),写出数列的第二、四、六、八、十项的和即5a1+(d+3d+5d+7d+9d),都用首项和公差表示,两式相减,得到结果.解答: 解:,故选C .点评: 等差数列的奇数项和和偶数项和的问题也可以这样解,让每一个偶数项减去前一奇数项,有几对得到几个公差,让偶数项和减去奇数项和的差除以公差的系数.4.(5分)在等比数列{a n }中T n 表示前n 项的积,若T 5=1,则一定有( ) A . a 1=1 B . a 3=1 C . a 4=1 D . a 5=1考点: 等比数列的性质. 专题: 计算题.分析: 由题意知T 5=(a 1q 2)5=1,由此可知a 1q 2=1,所以一定有a 3=1.解答: 解:T 5=a 1•a 1q •a 1q 2•a 1q 3•a 1q 4=(a 1q 2)5=1,∴a 1q 2=1, ∴a 3=1. 故选B .点评: 本题考查数列的性质和应用,解题时要认真审题,仔细解答.5.(5分)(2009•淄博一模)在三角形ABC 中,A=120°,AB=5,BC=7,则的值为( )A .B .C .D .考点: 正弦定理;余弦定理. 专题: 方程思想.分析: 首先利用余弦定理列出关于AC 的方程,从而解出AC 的值,然后利用正弦定理的变形sinB :sinC=b :c 求解.解答: 解:在三角形ABC 中,由余弦定理得BC 2=AB 2+AC 2﹣2AB •AC •cosA , ∵A=120°,AB=5,BC=7, ∴49=25+AC 2﹣10×AC ×cos120°,即AC 2+5AC ﹣24=0,解得AC=3或AC=﹣8(舍去), 由正弦定理可得==,故选D .点评: 本题考查了正弦定理和余弦定理的综合应用,熟练掌握公式是解题的关键. 6.(5分)(2014春•鞍山期末)已知锐角三角形的边长分别为2,4,x ,则x 的取值范围是( )A .B .C .D .考点: 余弦定理.专题: 三角函数的求值.分析:分两种情况来做,当x为最大边时,只要保证x所对的角的余弦值大于零即可;当x 不是最大边时,则4为最大边,同理只要保证4所对的角的余弦值大于零即可.解答:解:设锐角三角形的边x对应的角为θ,当x为最大边时,由余弦定理可得应有cosθ=>0,解得x<2,当x不是最大边时,则4为最大边,设4所对的角α,由余弦定理可知应有cosα=>0,解得x>2,综上可得x的取值范围是2<x<2,故选:D.点评:此题考查了余弦定理,利用了分类讨论的思想,熟练掌握余弦定理是解本题的关键.7.(5分)(2010•湖北)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.考点:正弦定理.分析:根据正弦定理先求出sinB的值,再由三角形的边角关系确定∠B的范围,进而利用sin2B+cos2B=1求解.解答:解:根据正弦定理可得,,解得,又∵b<a,∴B<A,故B为锐角,∴,故选D.点评:正弦定理可把边的关系转化为角的关系,进一步可以利用三角函数的变换,注意利用三角形的边角关系确定所求角的范围.8.(5分)(2013秋•丰城市校级期末)下列判断中正确的是()A.△ABC中,a=7,b=14,A=30°有两解B.△ABC中,a=30,b=25,A=150°有一解C.△ABC中,a=6,b=9,A=45°有两解D.△ABC中,b=9,c=10,B=60°无解考点:解三角形.专题:计算题;解三角形.分析:由正弦定理加以计算,可得A中的三角形为直角三角形,B、C中的三角形都为钝角三角形,有唯一解;而D中的三角形满足sinC=<1,三角形可能是锐角或钝角三角形,有两个解.由此可得本题的答案.解答:解:对于A,若△ABC中,a=7,b=14,A=30°,则sinB===1,可得B=90°,因此三角形有一解,得A不正确;对于B,若△ABC中,a=30,b=25,A=150°,则sinB===,而B为锐角,可得角B只有一个解,因此三角形只有一解,得B正确;对于C,若△ABC中,a=6,b=9,A=45°,则sinB===,当B为锐角时满足sinB=的角B要小于45°,∴由a<b得A<B,可得B为钝角,三角形只有一解,故C不正确;对于D,若△ABC中,b=9,c=10,B=60°,则sinC===<1,因此存在角C=arcsin或π﹣arcsin满足条件,可得三角形有两解,故D不正确.故选:B点评:本题给出三角形的两边和其中一边的对角,求三角形的解的个数.着重考查利用正弦定理解三角形、三角形大边对大角等知识,属于中档题.9.(5分)(2015春•吉林校级期中)在△ABC中,B=30°,c=,b=1,则△ABC的面积是()A.B.C.或D.或考点:余弦定理;正弦定理.专题:解三角形.分析:由余弦定理列出关系式,将cosB,b及c的值代入求出a的值,再由a,c,sinB的值,利用三角形的面积公式即可求出三角形ABC的面积.解答:解:∵在△ABC中,B=30°,c=,b=1,∴由余弦定理得:b2=a2+c2﹣2accosB,即1=a2+3﹣3a,解得:a=1或a=2,当a=1时,S△ABC=acsinB=;当a=2时,S△ABC=acsinB=.故选D点评:此题考查了正弦定理,以及三角形面积公式,熟练掌握正弦定理是解本题的关键.10.(5分)(2015春•吉林校级期中)三角形ABC中,BC=2,B=,若三角形的面积为,则tanC为()A.B.1 C.D.考点:正弦定理;同角三角函数间的基本关系.专题:三角函数的求值.分析:先利用三角形面积公式求得c,进而利用余弦定理求得cosC的值,进而求得C的值,从而求得tanC的值.解答:解:由于三角形ABC中,三角形的面积为==,解得c=1.再由余弦定理可得b2=a2+c2﹣2ac•cosB=4+1﹣4×=,∴cosC==,∴C=,∴tanC=,故选C.点评:本题主要考查了余弦定理的应用,根据三角函数的值求角,属于中档题.11.(5分)(2015春•吉林校级期中)在△ABC中,如果sinAsinB+sinAcosB+cosAsinB+cosAcosB=2,则△ABC是()A.等边三角形B.钝角三角形C.等腰直角三角形D.直角三角形考点:正弦定理.专题:解三角形.分析:分析:先通过合并同类项和辅角公式求得sin(A+)=sin(B+)=1,确定角A、B的值,从而确定三角形的形状.解答:解::∵sinAsinB+sinAcosB+cosAsinB+cosAcosB=sinA(sinB+cosB)+cosA(sinB+cosB)=(sinB+cosB)(sinA+cosA)=sin(A+)sin(B+)=2sin(A+)sin(B+)=2,∴,∴A=B=,C=,∴△ABC是等腰直角三角形,故答案为:等腰直角三角形.点评:本题主要考查通过确定角的值判断三角形的形状,属于中档题.12.(5分)(2015春•吉林校级期中)△ABC中,若a4+b4+c4=2c2(a2+b2),则角C的度数是()A.60° B.45°或135° C.120° D.30°考点:余弦定理.专题:解三角形.分析:把已知等式a4+b4+c4=2c2(a2+b2),通过完全平方式、拆分项转化为(a2+b2﹣c2+ab)(a2+b2﹣c2﹣ab)=0.分两种情况,根据余弦定理即可求得C的度数.解答:解:∵a4+b4+c4=2c2(a2+b2),∴(a2+b2)2﹣2c2(a2+b2)+c4﹣2a2b2=0,∴(a2+b2﹣c2)2﹣2a2b2=0,∴(a2+b2﹣c2+ab)(a2+b2﹣c2﹣ab)=0∴a2+b2﹣c2+ab=0或a2+b2﹣c2﹣ab=0∵cosC=,∴cosC=﹣或,∵0°<C<180°,∴C=45°或135°.故选B.点评:本题考查了余弦定理,以及因式分解的应用,解决本题的关键是将原式转化为(a2+b2﹣c2+ab)(a2+b2﹣c2﹣ab)=0.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)(2015春•吉林校级期中)定义“等和数列”:在一个数列中,如果每一项与它后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n}是等和数列,且a1=﹣1,公和为1,那么这个数列的前2011项和S2011=1004.考点:数列的求和.专题:计算题;新定义;等差数列与等比数列.分析:由题意可得a n=;从而求前n项和即可.解答:解:∵数列{a n}是等和数列,且a1=﹣1,公和为1,∴a n=;∴S2011=(a1+a2)+(a3+a4)+…+(a2009+a2010)+a2011=1005×1+(﹣1)=1004.故答案为:1004.点评:本题考查了学生对新定义的接受能力与应用能力,属于基础题.14.(5分)(2010春•如皋市期末)在△ABC中,已知A=60°,AB=5,BC=7,则△ABC的面积为10.考点:解三角形.专题:计算题;解三角形.分析:作AC边上的高BD,根据直角三角函数求出高,然后求出AD,CD,运用三角形面积公式求解.解答:解:作AC边上的高BD,因为在△ABC中,已知A=60°,AB=5,BC=7,所以BD=,AD=;CD==,所以AC=8,△ABC的面积=AB•AC•sin60°=×5×8×=10.故答案为:10.点评:考查了解三角形,三角形面积的计算,也可以利用正弦定理解答.15.(5分)(2015春•吉林校级期中)一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°距塔64海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为8海里/小时.考点:解三角形的实际应用.专题:应用题;解三角形.分析:根据题意可求得∠MPN和,∠PNM进而利用正弦定理求得MN的值,进而求得船航行的时间,最后利用里程除以时间即可求得问题的答案.解答:解:如图所示,∠MPN=75°+45°=120°,∠PNM=45°.在△PMN中,=,∴MN==32,∴v==8(海里/小时).故答案为:8.点评:本题主要考查了解三角形的实际应用.解答关键是利用正弦定理建立边角关系,考查了学生分析问题和解决问题的能力.16.(5分)(2008•浙江)在△ABC中,角A、B、C所对的边分别为a、b、C、若(b﹣c)cosA=acosC,则cosA=.考点:正弦定理的应用;两角和与差的正弦函数.专题:计算题.分析:先根据正弦定理将边的关系转化为角的正弦值的关系,再运用两角和与差的正弦公式化简可得到sinBcosA=sinB,进而可求得cosA的值.解答:解:由正弦定理,知由(b﹣c)cosA=acosC可得(sinB﹣sinC)cosA=sinAcosC,∴sinBcosA=sinAcosC+sinCcosA=sin(A+C)=sinB,∴cosA=.故答案为:点评:本题主要考查正弦定理、两角和与差的正弦公式的应用.考查对三角函数公式的记忆能力和综合运用能力.三、解答题(本大题共6小题,共70分)17.(10分)(2010•哈尔滨模拟)如图,H、G、B三点在同一条直线上,在H、G两点用测角仪器测得A的仰角分别为α、β,CD=α,测角仪器的高是h,用a、h、α、β表示建筑物高度AB.考点:解三角形的实际应用.专题:计算题;应用题.分析:根据题意可知∠DAC=α﹣β,进而利用正弦定理求得AC,进而求得AE,最后根据AB=AE+EB求得答案.解答:解:在△ACD中,∠DAC=α﹣β,由正弦定理∴∴AB=AE+EB=ACsinα+h=点评:本题主要考查了解三角形中的实际应用.解题的关键是利用正弦定理,完成了边角问题的互化.18.(12分)(2011•金东区校级模拟)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.考点:正弦定理的应用;余弦定理的应用.专题:计算题.分析:(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B的正弦值,再由△ABC 为锐角三角形可得答案.(2)根据(1)中所求角B的值,和余弦定理直接可求b的值.解答:解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)根据余弦定理,得b2=a2+c2﹣2accosB=27+25﹣45=7.所以,.点评:本题主要考查正弦定理和余弦定理的应用.在解三角形中正余弦定理应用的很广泛,一定要熟练掌握公式.19.(12分)(2015春•吉林校级期中)设S n是等差数列{a n}的前n项和,已知S3,S4的等比中项为S5;S3,S4的等差中项为1,求数列{a n}的通项公式.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:设等差数列{a n}的首项a1=a,公差为d,则S n=na+d,再由等比数列和等差数列的中项的性质,列方程,解方程可得a,d,再由等差数列的通项公式即可得到.解答:解:设等差数列{a n}的首项a1=a,公差为d,则S n=na+d,依题意,有,即为,∴a=1,d=0或a=4,d=﹣.∴a n=1或a n=﹣n,经检验,a n=1和a n=﹣n均合题意.∴所求等差数列的通项公式为a n=1或a n=﹣n.点评:本题考查等差数列和等比数列的性质,同时考查等差数列的通项和求和公式的运用,属于中档题.20.(12分)(2010•淄博一模)设数列{a n}的前n项和为S n,a1=1,S n=na n﹣2n(n﹣1).(Ⅰ)求数列数列{a n}的通项公式a n,(Ⅱ)设数列的前n项和为T n,求证.考点:数列与不等式的综合.专题:计算题;证明题.分析:(I)由S n=na n﹣2n(n﹣1)结合通项和前n项和的关系,转化为a n+1﹣a n=4(n≥2)再由等差数列的定义求解,要注意分类讨论.(II)利用裂项求和法求出=,又易知T n单调递增,则,从而证得结论.解答:解:(I)由S n=na n﹣2n(n﹣1)得a n+1=S n+1﹣S n=(n+1)a n+1﹣na n﹣4n即a n+1﹣a n=4…(4分)∴数列{a n}是以1为首项,4为公差的等差数列∴a n=4n﹣3.…(6分)(II)===…(10分)又易知T n单调递增,故,得.…(12分)点评:本题主要考查数列的转化与通项公式和求和方法,这里涉及了通项与前n项和之间的关系及裂项求和法,这是数列考查中常考常新的问题,要熟练掌握.21.(12分)(2015•广州校级二模)在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,.(1)若△ABC的面积等于,求a,b;(2)若sinB=2sinA,求△ABC的面积.考点:解三角形;三角形中的几何计算.专题:计算题.分析:(1)由c及cosC的值,利用余弦定理列出关于a与b的关系式a2+b2﹣ab=4,再由已知三角形的面积及sinC的值,利用三角形的面积公式得出ab的值,与a2+b2﹣ab=4联立组成方程组,求出方程组的解即可求出a与b的值;(2)利用正弦定理化简sinB=2sinA,得到b=2a,与(1)得出的a2+b2﹣ab=4联立组成方程组,求出方程组的解得到a与b的值,再由sinC的值,利用三角形的面积公式即可求出三角形ABC的面积.解答:解:(1)∵c=2,cosC=,∴由余弦定理c2=a2+b2﹣2abcosC得:a2+b2﹣ab=4,又△ABC的面积等于,sinC=,∴,整理得:ab=4,(4分)联立方程组,解得a=2,b=2;(6分)(2)由正弦定理,把sinB=2sinA化为b=2a,(8分)联立方程组,解得:,,又sinC=,则△ABC的面积.(10分)点评:此题属于解三角形的题型,涉及的知识有:正弦、余弦定理,三角形的面积公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.22.(12分)(2012•矿区校级模拟)如图,扇形AOB,圆心角AOB等于60°,半径为2,在弧AB上有一动点P,过P引平行于OB的直线和OA交于点C,设∠AOP=θ,求△POC面积的最大值及此时θ的值.考点:已知三角函数模型的应用问题.专题:计算题.分析:根据CP∥OB求得∠CPO和和∠OCP进而在△POC中利用正弦定理求得PC和OC,进而利用三角形面积公式表示出S(θ)利用两角和公式化简整理后,利用θ的范围确定三角形面积的最大值.解答:解:因为CP∥OB,所以∠CPO=∠POB=60°﹣θ,∴∠OCP=120°.在△POC中,由正弦定理得=,∴=,所以CP=sinθ.又=,∴OC=sin(60°﹣θ).因此△POC的面积为S(θ)=CP•OCsin120°=•sinθ•sin(60°﹣θ)×=sinθsin(60°﹣θ)=sinθ(cosθ﹣sinθ)=(sinθcosθ﹣sin2θ)=(sin2θ+cos2θ﹣)=,θ∈(0°,60°).所以当θ=30°时,S(θ)取得最大值为.点评:本题主要考查了三角函数的模型的应用.考查了考生分析问题和解决问题的能力.。