【学练优】2016春八年级数学下册 19.2.2 一次函数的图象与性质(第2课时)课件 (新版)新人教版
- 格式:ppt
- 大小:1.44 MB
- 文档页数:19
《一次函数图像与性质》教学设计(一)内容解析函数是数学领域中最重要的内容之一,也是刻画和研究现实世界变化规律的重要模型.它反映了数量之间的对应规律,是研究数量关系的重要工具。
一次函数是中学阶段接触到的最简单、最基本的函数,它在实际生活中有着广泛的应用。
一次函数的学习是建立在学习了平面直角坐标系、变量与函数和正比例函数及其图象与性质的基础上的。
一次函数的第一课时主要内容是一次函数的有关概念,本节课是一次函数的第二课时,主要研究一次函数图象的形状、画法,并结合图象分析一次函数的性质。
它既是正比例函数的图象和性质的拓展,又是继续学习“用函数观点看方程(组)与不等式”的基础。
(二)教学目标知识与技能目标:1、会画一次函数的图象。
2、知道一次函数y=kx+b的性质。
3、了解k、b与一次函数的图象之间的关系。
4、能根据一次函数的图象与k、b的关系解决简单的问题。
过程与方法目标:1.通过画正比例函数与一次函数的图象,培养学生的动手能力;2.在一次函数的图象与性质的教学中,培养学生的观察、分析、总结、归纳的能力。
情感态度与价值观目标:向学生渗透“数形结合”及“分类讨论”的数学思想。
体会从特殊到一般的研究问题的方法,培养科学的学习方法和良好的学习习惯。
(三)目标解析1.使学生理解一次函数y=kx+b(k≠0)与正比例函数y=kx(k≠0)图象之间的关系,会利用两个合适的点画出一次函数的图象,掌握k的正负对图象变化趋势和函数性质的影响.2.通过描点法来研究一次函数图象,在动手绘制一次函数的图象的过程中,让学生经历“动手----比较----讨论---归纳”的数学活动,通过对一次函数图象的分析,归纳k的正负对函数图象变化趋势和函数性质的影响,让学生经历知识的探究、归纳的过程,体会数形结合思想方法和分类讨论思想方法的应用,同时培养学生的观察能力和抽象概括能力.3.通过从具体一次函数的图象特征抽象得到一般形式一次函数的图象特征,进而得到函数的性质,使学生经历从特殊到一般的研究问题的过程,体会从特殊到一般的研究问题的方法.4.在探究一次函数的图象和性质的活动中,通过动手实践,互相交流,使学生在探究的过程中,提高与他人交流合作的意识,提高学生的动手实践的能力和探究精神.(四)教学重点、难点1、教学重点:一次函数的图象及性质。
第2课时 一次函数的图象与性质知识点 1 一次函数的图象1.[2018·抚顺]一次函数y =-x -2的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限2.[2018·湘西州]一次函数y =x +2的图象与y 轴的交点坐标为( )A .(0,2)B .(0,-2)C .(2,0)D .(-2,0)3.若点(3,1)在一次函数y =kx -2的图象上,则k 的值是( )A .5B .4C .3D .14.分别在同一平面直角坐标系中画出下列各函数的图象,并指出各函数图象的共同之处.(1)y =12x +2;(2)y =-x +2;(3)y =2x +2.知识点 2 一次函数图象的平移5.[2018·南充]直线y =2x 向下平移2个单位长度得到的直线的解析式是( )A .y =2(x +2)B .y =2(x -2)C .y =2x -2D .y =2x +26.[2018·娄底]将直线y =2x -3向右平移2个单位长度,再向上平移3个单位长度后,所得的直线的解析式为( )A .y =2x -4B .y =2x +4C .y =2x +2D .y =2x -27.若直线y =kx +2是由直线y =-2x -1平移得到的,则k =________,即直线y =-2x -1沿y 轴向________平移了________个单位长度.知识点 3 一次函数的性质8.对于函数y =2x -1,下列说法正确的是( )A .它的图象过点(1,0)B .y 随x 的增大而减小C .它的图象经过第二象限D .当x >1时,y >09.已知一次函数y =(m +2)x +1,若y 随x 的增大而增大,则m 的取值范围是________.10.[2018·济宁]在平面直角坐标系中,已知一次函数y =-2x +1的图象经过P 1(x 1,y1),P2(x2,y2)两点,若x1<x2,则y1________y2(填“>”“<”或“=”).11.[2018·眉山]已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且该直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为________(用“>”连接).12.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第________象限.13.[2018·上海]如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x值的增大而________(填“增大”或“减小”).14.已知关于x的函数y=(m-1)x+1-3m为一次函数,试根据下列各条件确定m的值或取值范围.(1)该函数图象经过原点;(2)该函数图象与y轴相交于点(0,2);(3)y随x的增大而减小.15.[2018·湘潭]若b>0,则一次函数y=-x+b的图象大致是( )图19-2-816.[2018·贵阳]一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可能为( )A.(-5,3) B.(1,-3)C.(2,2) D.(5,-1)17.两条直线y=ax+b与y=bx+a在同一平面直角坐标系中的位置可能是( )图19-2-918.写出一个图象过点(0,3),且函数值y随自变量x的增大而减小的一次函数解析式:________(填一个答案即可).19.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y 随x的增大而减小,则k所有可能取得的整数值为________.20.若函数y=2x+3与y=4x-b的图象交x轴于同一点,则b的值为________.21.如图19-2-10,一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行且经过点A (1,-2),则k =________,b =________.图19-2-1022.已知直线y =-12x -6与x 轴交于点A ,与y 轴交于点B ,求这条直线与坐标轴围成的三角形的面积.23.已知直线y =(1-3k )x +2k -1.(1)当k 为何值时,该直线经过第二、三、四象限?(2)当k 为何值时,该直线与直线y =-3x -5平行?拓广探究创新练 冲刺满分24.如图19-2-11,已知直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,点P 在坐标轴上,且PO =2AO .求△ABP 的面积.图19-2-11教师详解详析1.D [解析] 由一次函数图象的特点可知,当k >0时,图象必过第一、三象限;当k <0时,图象必过第二、四象限;当b >0时,图象必过第一、二象限;当b <0时,图象必过第三、四象限.∵-1<0,-2<0,∴一次函数y =-x -2的图象经过第二、三、四象限.故选D.2.A 3.D4.解:图象略.共同点:函数图象都是一条直线,且均与y 轴交于点(0,2).5.C [解析] 直线y =2x 向下平移2个单位长度得到直线的解析式是y =2x -2,故选C.6.A [解析] 根据图象平移时“左加右减,上加下减”的规律,向右平移2个单位长度后为y =2(x -2)-3=2x -7,再向上平移3个单位长度后为y =2x -7+3=2x -4.故选A.7.-2 上 38.D [解析] A .把x =1代入解析式得到y =1,即函数图象经过点(1,1),不经过点(1,0),故本选项错误;B.函数y =2x -1中,k =2>0,则y 随x 的增大而增大,故本选项错误;C.函数y =2x -1中,k =2>0,b =-1<0,则该函数图象经过第一、三、四象限,故本选项错误;D.当x >1时,2x -1>1,则y >1,故y >0正确,故本选项正确.故选D.9.m >-210.> [解析] 因为y =-2x +1中的k =-2<0,所以y 随x 的增大而减小,所以当x 1<x 2时,y 1>y 2.11.y 1>y 2 [解析] 由于一次函数的图象经过第一、二、四象限,∴k <0,∴y 随x 的增大而减小,∴当x 1<x 2时,y 1>y 2.12.四 [解析] ∵在一次函数y =kx +2中,y 随x 的增大而增大,∴k >0.∵2>0,∴此函数的图象经过第一、二、三象限,不经过第四象限.13.减小 [解析] 因为一次函数图象经过点(1,0),故将其代入y =kx +3,得0=k +3,解得k =-3<0,所以y 的值随x 值的增大而减小.14.解:(1)由1-3m =0且m -1≠0,得m =13. (2)把点(0,2)代入,得1-3m =2,解得m =-13. (3)由m -1<0,得m <1.15.C [解析] ∵k =-1<0,∴图象从左到右是下降的.∵b >0,∴图象与y 轴的正半轴相交.故选C.16.C [解析] ∵一次函数y =kx -1中,y 的值随x 值的增大而增大,∴k >0.A .把(-5,3)代入y =kx -1,得k =-45<0,不符合题意; B .把(1,-3)代入y =kx -1,得k =-2<0,不符合题意;C .把(2,2)代入y =kx -1,得k =32>0,符合题意; D .把(5,-1)代入y =kx -1,得k =0,不符合题意.故选C.17.A [解析] 分四种情况:①当a >0,b >0时,直线y =ax +b 和y =bx +a 均经过第一、二、三象限,选项中不存在此情况;②当a >0,b <0时,直线y =ax +b 经过第一、三、四象限,直线y =bx +a 经过第一、二、四象限,选项A 符合此条件;③当a <0,b >0时,直线y =ax +b 经过第一、二、四象限,直线y =bx +a 经过第一、三、四象限,选项A 符合此条件;④当a <0,b <0时,直线y =ax +b 经过第二、三、四象限,直线y =bx +a 经过第二、三、四象限,选项中不存在此情况.故选A.18.答案不唯一,如y =-x +319.-1 [解析] 由题意得⎩⎪⎨⎪⎧2k +3>0,k <0,解得-32<k <0.∵k 为整数,∴k =-1. 20.-6 [解析] 函数y =2x +3的图象与x 轴的交点坐标是(-32,0),函数y =4x -b 的图象与x 轴的交点坐标是(b 4,0),所以-32=b 4,解得b =-6. 21.2 -4 [解析] ∵一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行, ∴k =2,∴y =2x +b ,把A (1,-2)代入y =2x +b ,得2+b =-2,解得b =-4.22.解:当x =0时,y =-6.当y =0时,即-12x -6=0,解得x =-12, 所以点A ,B 的坐标分别为(-12,0),(0,-6),所以OA =||-12=12,OB =||-6=6,所以这条直线与坐标轴围成的三角形的面积为12OA ·OB =12×12×6=36. 23.解:(1)当⎩⎪⎨⎪⎧1-3k <0,2k -1<0,即13<k <12时,该直线经过第二、三、四象限. (2)当⎩⎪⎨⎪⎧1-3k =-3,2k -1≠-5,即k =43时,该直线与直线y =-3x -5平行. 24.解:令y =0,则由0=2x +4得x =-2,∴A (-2,0),∴AO =2.令x =0,则y =2×0+4=4,∴B (0,4),∴BO =4.∵PO =2AO =4,点P 在坐标轴上,∴点P 有以下四种情况:(1)当点P 在x 轴的负半轴上时,AP =2,∴S △ABP =12AP ·BO =12×2×4=4; (2)当点P 在x 轴的正半轴上时,AP =6,∴S △ABP =12AP ·BO =12×6×4=12; (3)当点P 在y 轴的负半轴上时,PB =PO +BO =4+4=8,∴S △ABP =12PB ·AO =12×8×2=8; (4)当点P 在y 轴的正半轴上时,PO =4,点P ,B 重合,△ABP 不存在.。
人教版数学八年级下册19.2.2《一次函数》说课稿2一. 教材分析《一次函数》是人民教育出版社出版的初中数学八年级下册第19.2.2节的内容。
本节课的主要内容是让学生了解一次函数的定义、性质以及一次函数图象与系数的关系。
通过学习本节课,使学生能运用一次函数解决实际问题,提高学生的数学应用能力。
二. 学情分析学生在学习本节课之前,已经掌握了小学数学的基本知识,具备了一定的逻辑思维能力和运算能力。
但对于一次函数的定义、性质以及一次函数图象与系数的关系可能还比较陌生。
因此,在教学过程中,教师需要结合学生的实际情况,循序渐进地引导学生理解和掌握一次函数的相关知识。
三. 说教学目标1.知识与技能目标:使学生了解一次函数的定义、性质,学会绘制一次函数图象,掌握一次函数图象与系数的关系。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生独立思考、合作交流的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的数学素养,使学生感受数学在生活中的应用。
四. 说教学重难点1.教学重点:一次函数的定义、性质,一次函数图象与系数的关系。
2.教学难点:一次函数图象与系数的关系的推导和理解。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组讨论法等。
2.教学手段:多媒体课件、黑板、粉笔、教学卡片等。
六. 说教学过程1.导入新课:通过生活中的实际例子,引出一次函数的概念,激发学生的学习兴趣。
2.知识讲解:讲解一次函数的定义、性质,引导学生通过观察、分析、归纳等方法,发现一次函数图象与系数的关系。
3.案例分析:分析具体的一次函数案例,使学生进一步理解和掌握一次函数的相关知识。
4.实践操作:让学生动手绘制一次函数图象,巩固所学知识。
5.小组讨论:学生进行小组讨论,分享学习心得,互相学习,共同进步。
6.总结提升:对本节课的主要内容进行总结,强化学生对一次函数的理解和记忆。
七. 说板书设计板书设计要清晰、简洁、明了,能够突出一次函数的重点知识。
一次函数第2课时 一次函数的图象与性质 学习目标:会画一次函数的图象;理解一次函数图象的性质,了解b kx y +=中的k ,b 对函数图象的影响。
重点、难点:一次函数图象的性质 学习过程 复习旧知:1、 (1)2my m x =-+,当m= ,y 是x 的一次函数.2、函数:①y=-2x+3;②x+y=1;③xy=1;④y=1+x ;⑤2112y x =+;⑥y=0.5x 中,属一次函数的有 ,属正比例函数的有 (填序号)3、用描点法画函数图象的步骤是 。
二、新知探究:阅读教材,思考下列问题:系中画出函数 。
函数y=2x 的图象经过原点,函数y=2x+3与y 轴交于点________,即它可以看作由直线y=2x 向_____平移_____个单位长度得到;函数y=2x-3与y 轴交于点________,即它可以看作由直线y=2x 向_____平移_____个单位长度得到。
6标系中函数画出-1观察这三个图象,这三个函数图象形状都是_________,并且倾斜度_______,从左向右 。
函数y=-x 的图象经过原点,函数y=-x-1与y 轴交于点________,即它可以看作由直线y=-x 向_____平移_____个单位长度得到;同样的,函数y=-x+1与y 轴交于点________,即它可以看作由直线y=-x 向_____平移_____个单位长度得到。
三、新知归纳1、一次函数b kx y +=(k ≠0)的图象是一条____ _。
当0>b 时,它是由直线kx y =向_____平移_____个单位长度得到; 当0<b 时,它是由直线kx y =向_____平移_____个单位长度得到。
2、一次函数b kx y +=(k ≠0)的性质:(1)当0>k 时,y 随x 的增大而_______,这时函数的图象从左到右_______; (2)当0<k 时,y 随x 的增大而_______,这时函数的图象从左到右_______;3、一次函数图象的画法:一次函数b kx y +=(k ≠0)的图象是一条直线,因此画它们的图象时,只需要确定两点,通常选取坐标较“简单”的点,如(0, )与( ,0) 四、课堂练习1、直线y=2x-3与y 轴交点坐标为 ,与x 轴交点为 ,图象经过 象限,y 随x 的增大而 。
人教版数学八年级下册19.2.2第2课时《一次函数的图象与性质》说课稿一. 教材分析《一次函数的图象与性质》是人教版数学八年级下册第19.2.2节的内容,这部分内容是在学生已经掌握了函数的概念、一次函数的定义和表达式的基础上进行讲解的。
本节课的主要内容是一次函数的图象与性质,包括一次函数的图象是一条直线,直线的斜率和截距的概念,以及一次函数的单调性和特殊点。
这部分内容不仅是学生对函数知识的深化,也是对函数知识在实际问题中的应用。
二. 学情分析八年级的学生已经具备了一定的函数知识,对一次函数的概念和表达式已经有了一定的了解。
但是,学生对一次函数的图象与性质的理解还需要进一步的引导和启发。
此外,学生对数学知识的应用能力还需要加强,需要通过实际问题来引导学生理解和运用一次函数的图象与性质。
三. 说教学目标1.知识与技能目标:学生能够理解一次函数的图象与性质,包括一次函数的图象是一条直线,直线的斜率和截距的概念,以及一次函数的单调性和特殊点。
2.过程与方法目标:学生能够通过实际问题来运用一次函数的图象与性质,提高学生对数学知识的应用能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,提高学生对数学学科的兴趣和热情。
四. 说教学重难点1.教学重点:一次函数的图象与性质,包括一次函数的图象是一条直线,直线的斜率和截距的概念,以及一次函数的单调性和特殊点。
2.教学难点:一次函数的图象与性质在实际问题中的应用。
五. 说教学方法与手段本节课采用问题驱动的教学方法,通过实际问题引导学生理解和运用一次函数的图象与性质。
同时,利用多媒体手段,展示一次函数的图象和性质,帮助学生直观地理解和记忆。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考一次函数的图象与性质。
2.讲解:讲解一次函数的图象与性质,包括一次函数的图象是一条直线,直线的斜率和截距的概念,以及一次函数的单调性和特殊点。
3.练习:学生进行课堂练习,巩固对一次函数的图象与性质的理解。