chapter04非线性方程和方程组的数值解法
- 格式:ppt
- 大小:577.50 KB
- 文档页数:25
第四章 非线性方程组的数值求解习题4.11.考虑211212221212(,)0(,)0f x x x x f x x x x αα⎧=-+=⎪⎨=-++=⎪⎩,讨论1,1/4,0,1α=-的4种情况下的解各等于什么? 2.用图解法研究方程组12221sin 0220x x x x π⎧-=⎪⎨⎪-=⎩的解大致等于什么? 3.先用图解法大致判断解的位置,再用消元法求解212221210(2)(0.5)10x x x x ⎧--=⎪⎨-+--=⎪⎩。
4.查阅数学手册,用卡丹方法分别求解331540;660x x x x --=-+=。
5.解4次分圆方程43210x x x x ++++=。
6.证明实系数n 次代数方程的共轭根必定成对出现。
习题4.21.用Gerschgorin 圆盘定理作方程3243100x x x +--=和765432621353521710x x x x x x x -+-+-+-=的实根的定位,求出根的隔离区间。
2.设()A ρ为矩阵A 的谱半径,用圆盘定理直接证明()||||A A ρ≤.3.若n 阶矩阵A 不可约,有一特征值λ在A 的一个圆盘的边界上,证明:A 的n 个圆盘的边界均通过λ。
4.用Gerschgorin 圆盘定理隔离矩阵20312102810A ⎛⎫⎪= ⎪ ⎪⎝⎭的特征值,再用实矩阵特征值的性质,改进得出的结果。
5.用二分法求函数:f R R →的零点。
初始有根区间长度为1,问迭代6次后有根区间的长度为多少?需要用函数表达式吗?若在初始区间上函数有符号变化,问二分法的收敛速度与要求是单根还是重根有关系吗? 6.应用二分法求方程sin02xxe π-=在区间[0, 1]上误差不超过52-的近似根,应对分多少次,并求其根。
7.对3()310f x x x =--=的根进行隔离,并用二分法计算所有的实根。
8.在[1,2]上用二分法解22cos 0xx -+=,精度要求31||10k k x x -+-<和3|*|10k x x --<,对分各多少次数?9.用二分法求cos()0x e =在[0,4]上的根,精度要求31||10k k x x -+-<和3|*|10k x x --<,对分各多少次数?10.用二分法求20xx e -+=的一个正根和一个负根,精度要求31||10k k x x -+-<。
非线性方程组数值解法随着科学技术的进步和发展,人们发现非线性方程组在科学研究中起着越来越重要的作用,成为解决复杂科学问题的有力工具。
解决非线性方程组的核心是采用有效的数值解法,它们可以帮助我们快速解决复杂的非线性问题。
一般来说,解决非线性方程组的数值解法可以分为三类:一类是积分方法,一类是有限元方法,另一类是迭代方法。
积分方法包括欧拉法和梯形法等;有限元方法则包括Galerkin方法、Ritz方法、Kirchhoff方法等;而迭代方法有Newton-Raphson方法、拟牛顿投影方法、拟牛顿变量步长方法、McKenna迭代法等。
积分方法按照方程组的方向将时间分解为若干步,并利用各步的积分求解出方程组的解。
它的优点是收敛性强,适用范围广,但缺点是计算量大,实际计算起来比较复杂。
有限元方法将非线性方程组转换成一组有限元方程,然后利用有限元解法求解出解析解。
它的优点是快速计算和分空间,可以解决含有空间变量的非线性问题,但缺点是收敛性一般,容易发散。
迭代方法首先采用初始值作为方程组的解,然后不断迭代求解,该方法的优点是可以用来求解非线性方程组的定点解,但也有缺点,如求解精度较低,耗时较长。
在实际应用中,解决非线性方程组数值解法需要考虑多方面因素,如准确性、可行性、处理效率和使用复杂度等,以选择合适的解法。
此外,还需要考虑非线性方程组的特殊性质,如线性方程组不可约或不可约变系数等,以决定是否可以采用一般的解法。
因此,解决非线性方程组的数值解法是一项复杂的工作,要求工程师必须运用知识和技术,有系统地考虑不同的解法,并在不同情况下进行取舍,才能获得最佳的结果。
总之,解决非线性方程组的数值解法具有复杂的理论和实际应用,为解决复杂科学问题提供了有力的工具,受到了越来越多的关注。
只有深入地研究各类数值解法,推动它们的发展,才能满足现实需求,建立科学有效的解决方案,最终实现理想的结果。
1. 使用二分法求3250x x --=在区间[2,3]上的根,要求误差不超过30.510-⨯.解:首先确定二分次数,根据误差估计式得,取k=10即可。
使用二分法计算10次,结果见下表2. 利用0)ln(=+x x 构造收敛的迭代格式,并求在0.5附近的根.解 首先考虑迭代格式1ln ,0,1,2,...k k x x k +=-=,相应的迭代函数()ln ,x x ϕ=-容易计算'1()x xϕ=-,在0.5附近有 ''()2,()21x x ϕϕ≈-≈>.迭代格式1ln ,0,1,2k k x x k +=-=不收敛,利用上题结论,函数()ln x x ϕ=-的反函数1()x x e ϕ--=,建立迭代格式1,0,1,2,...,k x k x e k -+==取初值00.5x =,计算结果见下表:最后*180.5671408x x≈=3.求方程310x x--=在]2,1[上的唯一正根,精度410-解考虑函数3()1, f x x x=--显然(1)10,(2)50f f=-<=>,故在[1,2]上方程有根存在;另外'2()312,[1,2],f x x x=-≥∈因此在[1,2]上方程有唯一的根。
建立迭代格式1nx+=迭代函数()xϕ=在[1,2]上满足23'131()(1)3x xϕ-=+<根据收敛性定理,迭代格式1nx+=[1,2]x∈均收敛。
例如,取初值x=1.5,并计算结果如下:方程31x x--=0在[]1,2上的精确解是* 1.324718x=4.利用简单加速方法,求方程xx e-=在x=0.5附近得一个根,精度510-。
解考虑'(),()0.6x xx e x e Lϕϕ--==-=≈-.利用简单加速方法()1111111n nnn nL Lx xx x xϕ+++--⎧=⎪⎨=-⎪⎩得()1111 1.60.6nxnnn nx ex x x-+++⎧=⎪⎨=+⎪⎩取初值00.5x =,计算结果列表如下:5. 利用Newton 法解方程x=cosx ,取初值0x =1.解 考虑()cos f x x x =-,建立Newton 迭代格式:()()01'1,,0,1,2.....n n n n x f x x x n f x +=⎧⎪⎨=-=⎪⎩方程x=cosx 的精确解是*x =0.739 085 133……。
第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x ll x x x lαα+-≤---≤--定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠L (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。
6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。