6-5.二阶常系数齐次线性微分方程
- 格式:ppt
- 大小:546.00 KB
- 文档页数:26
第六章微分方程教学目的:1.了解微分方程及其解、阶、通解,初始条件和特等概念。
2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。
3.会解齐次微分方程,会用简单的变量代换解某些微分方程。
4.掌握二阶常系数齐次线性微分方程的解法,并会解二阶的常系数齐次线性微分方程。
5.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。
教学重点:1、可分离的微分方程及一阶线性微分方程的解法2、二阶常系数齐次线性微分方程;3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程;教学难点:1、齐次微分方程;2、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。
教学过程:6.1 微分方程的基本概念一、引例函数是客观事物的内部联系在数量方面的反映,利用函数关系又可以对客观事物的规律性进行研究.因此如何寻找出所需要的函数关系,在实践中具有重要意义.在许多问题中,往往不能直接找出所需要的函数关系,但是根据问题所提供的情况,有时可以列出含有要找的函数及其导数的关系式.这样的关系就是所谓微分方程.微分方程建立以后,对它进行研究,找出未知函数来,这就是解微分方程.本章主要介绍微分方程的一些基本概念和几种常用的微分方程的解法。
例1 一曲线通过点(1,2),且在该曲线上任一点M(x,y)处的切线的斜率为2x,求这曲线的方程.解设所求曲线的方程为y=y(x).根据导数的几何意义,可知未知函数y=y(x)应满足关系式(称为微分方程)x dxdy2=. (1) 此外, 未知函数y =y (x )还应满足下列条件:x =1时, y =2, 简记为y |x =1=2. (2) 把(1)式两端积分, 得(称为微分方程的通解)⎰=xdx y 2, 即y =x 2+C , (3) 其中C 是任意常数.把条件“x =1时, y =2”代入(3)式, 得 2=12+C ,由此定出C =1. 把C =1代入(3)式, 得所求曲线方程(称为微分方程满足条件y |x =1=2的解):y =x 2+1.例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程?解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式4.022-=dts d . (4)此外, 未知函数s =s (t )还应满足下列条件:t =0时, s =0, 20==dt ds v . 简记为s |t =0=0, s '|t =0=20. (5)把(4)式两端积分一次, 得14.0C t dt ds v +-==; (6)再积分一次, 得s =-0.2t 2 +C 1t +C 2, (7) 这里C 1, C 2都是任意常数. 把条件v |t =0=20代入(6)得 20=C 1;把条件s |t =0=0代入(7)得0=C 2. 把C 1, C 2的值代入(6)及(7)式得v =-0.4t +20, (8) s =-0.2t 2+20t . (9)在(8)式中令v =0, 得到列车从开始制动到完全停住所需的时间 504.020==t (s ).再把t =50代入(9), 得到列车在制动阶段行驶的路程 s =-0.2⨯502+20⨯50=500(m ).二、微分方程的基本概念:微分方程: 表示未知函数、未知函数的导数与自变量之间的关系的方程, 叫微分方程.常微分方程: 未知函数是一元函数的微分方程, 叫常微分方程. 偏微分方程: 未知函数是多元函数的微分方程, 叫偏微分方程.微分方程的阶: 微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶.x 3 y '''+x 2 y ''-4xy '=3x 2 ,y (4) -4y '''+10y ''-12y '+5y =sin2x , y (n ) +1=0, 一般n 阶微分方程:F (x , y , y ', ⋅ ⋅ ⋅ , y (n ) )=0. y (n )=f (x , y , y ', ⋅ ⋅ ⋅ , y (n -1) ) .微分方程的解: 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解. 确切地说, 设函数y =ϕ(x )在区间I 上有n 阶连续导数, 如果在区间I 上,F [x , ϕ(x ), ϕ'(x ), ⋅ ⋅ ⋅, ϕ(n ) (x )]=0,那么函数y =ϕ(x )就叫做微分方程F (x , y , y ', ⋅ ⋅ ⋅, y (n ) )=0在区间I 上的解. 通解: 如果微分方程的解中含有任意常数, 且任意常数的个数与微分方程的阶数相同, 这样的解叫做微分方程的通解.初始条件: 用于确定通解中任意常数的条件, 称为初始条件. 如 x =x 0 时, y =y 0 , y '= y '0 . 一般写成00y y x x ==, 00y y x x '='=. 特解: 确定了通解中的任意常数以后, 就得到微分方程的特解. 即不含任意常数的解.初值问题: 求微分方程满足初始条件的解的问题称为初值问题.如求微分方程y '=f (x , y )满足初始条件00y y x x ==的解的问题, 记为⎩⎨⎧=='=00),(y y y x f y x x .积分曲线: 微分方程的解的图形是一条曲线, 叫做微分方程的积分曲线. 例3 验证: 函数x =C 1cos kt +C 2 sin kt 是微分方程222=+x k dtx d的解.解 求所给函数的导数: kt kC kt kC dtdx cos sin 21+-=,)sin cos (sin cos 212221222kt C kt C k kt C k kt C k dtx d +-=--=. 将22dtxd 及x 的表达式代入所给方程, 得 -k 2(C 1cos kt +C 2sin kt )+ k 2(C 1cos kt +C 2sin kt )≡0.这表明函数x =C 1cos kt +C 2sin kt 满足方程0222=+x k dtx d , 因此所给函数是所给方程的解.例4 已知函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程0222=+x k dtx d 的通解, 求满足初始条件x | t =0 =A , x '| t =0 =0 的特解.解 由条件x | t =0 =A 及x =C 1 cos kt +C 2 sin kt , 得 C 1=A .再由条件x '| t =0 =0, 及x '(t ) =-kC 1sin kt +kC 2cos kt , 得 C 2=0.把C 1、C 2的值代入x =C 1cos kt +C 2sin kt 中, 得 x =A cos kt .6.2 一阶微分方程可分离变量的微分方程: 如果一个一阶微分方程能写成g (y )dy =f (x )dx (或写成y '=ϕ(x )ψ(y ))的形式, 就是说, 能把微分方程写成一端只含y 的函数和dy , 另一端只含x 的函数和dx , 那么原方程就称为可分离变量的微分方程. 讨论: 下列方程中哪些是可分离变量的微分方程? (1) y '=2xy , 是. ⇒y -1dy =2xdx . (2)3x 2+5x -y '=0, 是. ⇒dy =(3x 2+5x )dx . (3)(x 2+y 2)dx -xydy =0, 不是.(4)y '=1+x +y 2+xy 2, 是. ⇒y '=(1+x )(1+y 2). (5)y '=10x +y , 是. ⇒10-y dy =10x dx .(6)x yy x y +='. 不是.可分离变量的微分方程的解法:第一步 分离变量, 将方程写成g (y )dy =f (x )dx 的形式; 第二步 两端积分:⎰⎰=dx x f dy y g )()(, 设积分后得G (y )=F (x )+C ;第三步 求出由G (y )=F (x )+C 所确定的隐函数y =Φ(x )或x =ψ(y ),G (y )=F (x )+C ,y =Φ (x )或x =ψ(y )都是方程的通解, 其中G (y )=F (x )+C 称为隐式(通)解. 例1 求微分方程xy dxdy2=的通解. 解 此方程为可分离变量方程, 分离变量后得xdx dy y21=,两边积分得 ⎰⎰=xdx dy y21,即 ln|y |=x 2+C 1, 从而 2112x C C xe e e y ±=±=+.因为1C e ±仍是任意常数, 把它记作C , 便得所给方程的通解 2x Ce y =.例2 铀的衰变速度与当时未衰变的原子的含量M 成正比. 已知t =0时铀的含量为M 0, 求在衰变过程中铀含量M (t )随时间t 变化的规律.解 铀的衰变速度就是M (t )对时间t 的导数dt dM .由于铀的衰变速度与其含量成正比, 故得微分方程 M dtdM λ-=,其中λ(λ>0)是常数, λ前的曲面号表示当t 增加时M 单调减少. 即0<dt dM .由题意, 初始条件为 M |t =0=M 0. 将方程分离变量得 dt M dM λ-=.两边积分, 得⎰⎰-=dt MdM )(λ,即 ln M =-λt +ln C , 也即M =Ce -λt . 由初始条件, 得M 0=Ce 0=C ,所以铀含量M (t )随时间t 变化的规律M =M 0e -λt .例 3 设降落伞从跳伞塔下落后, 所受空气阻力与速度成正比, 并设降落伞离开跳伞塔时速度为零. 求降落伞下落速度与时间的函数关系.解 设降落伞下落速度为v (t ). 降落伞所受外力为F =mg -kv ( k 为比例系数). 根据牛顿第二运动定律F =ma , 得函数v (t )应满足的方程为 kv mg dt dv m -=,初始条件为 v |t =0=0. 方程分离变量, 得mdtkv mg dv =-,两边积分, 得⎰⎰=-mdtkv mg dv ,1)ln(1C mt kv mg k +=--,即 t m k Ce km g v -+=(k e C kC 1--=),将初始条件v |t =0=0代入通解得kmgC -=,于是降落伞下落速度与时间的函数关系为)1(t m k e km gv --=.例4 求微分方程221xy y x dxdy+++=的通解. 解 方程可化为)1)(1(2y x dxdy++=, 分离变量得dx x dy y )1(112+=+,两边积分得⎰⎰+=+dx x dy y )1(112, 即C x x y ++=221arctan .于是原方程的通解为)21tan(2C x x y ++=.齐次方程的解法:在齐次方程)(x ydx dy ϕ=中, 令x y u =, 即y =ux , 有 )(u dxdu x u ϕ=+, 分离变量, 得 xdxu u du =-)(ϕ.两端积分, 得 ⎰⎰=-x dx u u du )(ϕ.求出积分后, 再用xy代替u , 便得所给齐次方程的通解. 例1 解方程dxdy xy dx dy x y =+22. 解 原方程可写成 1)(222-=-=xyx y x xy y dx dy ,因此原方程是齐次方程. 令u x y =, 则 y =ux ,dxdu x u dx dy+=, 于是原方程变为 12-=+u udx du x u ,即 1-=u u dx du x .分离变量, 得 xdx du u =-)11(.两边积分, 得u -ln|u |+C =ln|x |, 或写成ln|xu |=u +C . 以xy 代上式中的u , 便得所给方程的通解C xyy +=||ln .一阶线性微分方程方程)()(x Q y x P dxdy=+叫做一阶线性微分方程. 如果Q (x )≡0 , 则方程称为齐次线性方程, 否则方程称为非齐次线性方程. 方程0)(=+y x P dx dy 叫做对应于非齐次线性方程)()(x Q y x P dxdy=+的齐次线性方程. 下列方程各是什么类型方程? (1)y dx dy x =-)2(⇒021=--y x dx dy是齐次线性方程. (2) 3x 2+5x -5y '=0⇒y '=3x 2+5x , 是非齐次线性方程. (3) y '+y cos x =e -sin x , 是非齐次线性方程. (4)y x dxdy+=10, 不是线性方程. (5)0)1(32=++x dx dy y ⇒0)1(23=+-y x dx dy 或32)1(x y dy dx +-, 不是线性方程.齐次线性方程的解法: 齐次线性方程0)(=+y x P dxdy是变量可分离方程. 分离变量后得dx x P ydy)(-=, 两边积分, 得 1)(||ln C dx x P y +-=⎰,或 )( 1)(C dxx P e C Ce y ±=⎰=-, 这就是齐次线性方程的通解(积分中不再加任意常数). 例1 求方程y dxdyx =-)2(的通解. 解 这是齐次线性方程, 分离变量得2-=x dx y dy , 两边积分得ln|y |=ln|x -2|+lnC , 方程的通解为 y =C (x -2).非齐次线性方程的解法:将齐次线性方程通解中的常数换成x 的未知函数u (x ), 把⎰=-dxx P e x u y )()(设想成非齐次线性方程的通解. 代入非齐次线性方程求得)()()()()()()()()(x Q e x u x P x P e x u e x u dxx P dx x P dx x P =⎰+⎰-⎰'---, 化简得 ⎰='dxx P e x Q x u )()()(,C dx e x Q x u dxx P +⎰=⎰)()()(,于是非齐次线性方程的通解为])([)()(C dx e x Q e y dxx P dx x P +⎰⎰=⎰-, 或 dx e x Q e Ce y dx x P dx x P dx x P ⎰⎰⎰+⎰=--)()()()(. 非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和.例2 求方程25)1(12+=+-x x ydx dy 的通解. 解 这是一个非齐次线性方程.先求对应的齐次线性方程012=+-x y dx dy 的通解. 分离变量得12+=x dx y dy , 两边积分得ln y =2ln (x +1)+ln C , 齐次线性方程的通解为 y =C (x +1)2.用常数变易法. 把C 换成u , 即令y =u ⋅(x +1)2, 代入所给非齐次线性方程, 得 2522)1()1(12)1(2)1(+=+⋅+-+⋅++⋅'x x u x x u x u21)1(+='x u ,两边积分, 得C x u ++=23)1(32.再把上式代入y =u (x +1)2中, 即得所求方程的通解为 ])1(32[)1(232C x x y +++=.解: 这里12)(+-=x x P , 25)1()(+=x x Q .因为 )1ln(2)12()(+-=+-=⎰⎰x dx x dx x P ,2)1ln(2)()1(+==⎰+-x e e x dxx P , 2321225)()1(32)1()1()1()(+=+=++=⎰⎰⎰⎰-x dx x dx x x dx e x Q dxx P ,所以通解为 ])1(32[)1(])([232)()(C x x C dx ex Q e y dxx P dxx P +++=+⎰⎰=⎰-.6.4 二阶常系数齐次线性微分方程一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程: 方程 y ''+py '+qy =0 称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程 y ''+py '+qy =0 得(r 2+pr +q )e rx =0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解. 特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式2422,1qp p r -±+-=求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解. 这是因为, 函数xr e y 11=、xr e y 22=是方程的解, 又xr r x r x r e e e y y )(212121-==不是常数.因此方程的通解为 x r x r e C e C y 2121+=.(2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解. 这是因为, x r e y 11=是方程的解, 又x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111=++++=q pr r xe p r e x r x r ,所以xr xe y 12=也是方程的解, 且x e xe y y x r xr ==1112不是常数.因此方程的通解为 x r x r xe C e C y 1121+=.(3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解.函数y 1=e (α+i β)x 和y 2=e (α-i β)x 都是方程的解, 而由欧拉公式, 得y 1=e (α+i β)x =e αx (cos βx +i sin βx ), y 2=e (α-i β)x =e αx (cos βx -i sin βx ),y 1+y 2=2e αx cos βx , )(21cos 21y y x e x +=βα,y 1-y 2=2ie αx sin βx , )(21sin 21y y i x e x -=βα.故e αx cos βx 、y 2=e αx sin βx 也是方程解.可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解. 因此方程的通解为y =e αx (C 1cos βx +C 2sin βx ).求二阶常系数齐次线性微分方程y ''+py '+qy =0的通解的步骤为:第一步写出微分方程的特征方程r2+pr+q=0第二步求出特征方程的两个根r1、r2.第三步根据特征方程的两个根的不同情况,写出微分方程的通解.例1 求微分方程y''-2y'-3y=0的通解.解所给微分方程的特征方程为r2-2r-3=0,即(r+1)(r-3)=0.其根r1=-1,r2=3是两个不相等的实根,因此所求通解为e-x+C2e3x.y=C1例2 求方程y''+2y'+y=0满足初始条件y|x=0=4、y'|x=0=-2的特解.解所给方程的特征方程为r2+2r+1=0,即(r+1)2=0.其根r1=r2=-1是两个相等的实根,因此所给微分方程的通解为y=(C+C2x)e-x.1将条件y|x=0=4代入通解,得C1=4,从而x)e-x.y=(4+C2将上式对x求导,得y'=(C-4-C2x)e-x.2再把条件y'|x=0=-2代入上式,得C2=2.于是所求特解为x=(4+2x)e-x.例 3 求微分方程y''-2y'+5y= 0的通解.解所给方程的特征方程为r2-2r+5=0.特征方程的根为r1=1+2i,r2=1-2i,是一对共轭复根,因此所求通解为y=e x(Ccos2x+C2sin2x).1二阶常系数非齐次线性微分方程一、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程:方程y''+py'+qy=f(x)称为二阶常系数非齐次线性微分方程,其中p、q是常数.二阶常系数非齐次线性微分方程的通解是对应的齐次方程的通解y=Y(x)与非齐次方程本身的一个特解y=y*(x)之和:y=Y(x)+ y*(x).当f(x)为两种特殊形式时,方程的特解的求法:一、f(x)=P m(x)eλx型当f(x)=P m(x)eλx时,可以猜想,方程的特解也应具有这种形式.因此,设特解形式为y*=Q(x)eλx,将其代入方程,得等式Q''(x)+(2λ+p)Q'(x)+(λ2+pλ+q)Q(x)=P m(x).(1)如果λ不是特征方程r2+pr+q=0 的根,则λ2+pλ+q≠0.要使上式成立,Q(x)应设为m次多项式:Q(x)=b0x m+b1x m-1+⋅⋅⋅+b m-1x+b m,m通过比较等式两边同次项系数,可确定b0,b1,⋅⋅⋅,b m,并得所求特解y*=Q(x)eλx.m(2)如果λ是特征方程r2+pr+q=0 的单根,则λ2+pλ+q=0,但2λ+p≠0,要使等式 Q''(x)+(2λ+p)Q'(x)+(λ2+pλ+q)Q(x)=P m(x).成立,Q(x)应设为m+1 次多项式:Q(x)=xQ(x),mQ(x)=b0x m+b1x m-1+⋅⋅⋅+b m-1x+b m,m通过比较等式两边同次项系数,可确定b0,b1,⋅⋅⋅,b m,并得所求特解y*=xQ(x)eλx.m(3)如果λ是特征方程r2+pr+q=0的二重根,则λ2+pλ+q=0, 2λ+p=0,要使等式 Q''(x)+(2λ+p)Q'(x)+(λ2+pλ+q)Q(x)=P m(x).成立,Q(x)应设为m+2次多项式:Q(x)=x2Q(x),mQ(x)=b0x m+b1x m-1+⋅⋅⋅+b m-1x+b m,m通过比较等式两边同次项系数,可确定b0,b1,⋅⋅⋅,b m,并得所求特解y*=x2Q(x)eλx.m综上所述,我们有如下结论:如果f(x)=P m(x)eλx,则二阶常系数非齐次线性微分方程y''+py'+qy=f(x)有形如y*=x k Q(x)eλxm的特解,其中Q m(x)是与P m(x)同次的多项式,而k按λ不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1 求微分方程y''-2y'-3y=3x+1的一个特解.解这是二阶常系数非齐次线性微分方程,且函数f(x)是P m(x)eλx型(其中P(x)=3x+1,λ=0).m与所给方程对应的齐次方程为y''-2y'-3y=0,它的特征方程为r 2-2r -3=0.由于这里λ=0不是特征方程的根, 所以应设特解为y *=b 0x +b 1. 把它代入所给方程, 得 -3b 0x -2b 0-3b 1=3x +1, 比较两端x 同次幂的系数, 得⎩⎨⎧=--=-13233100b b b , -3b 0=3, -2b 0-3b 1=1.由此求得b 0=-1, 311=b . 于是求得所给方程的一个特解为31*+-=x y .例2 求微分方程y ''-5y '+6y =xe 2x 的通解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e λx 型(其中P m (x )=x , λ=2).与所给方程对应的齐次方程为y ''-5y '+6y =0, 它的特征方程为r 2-5r +6=0.特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为Y =C 1e 2x +C 2e 3x .由于λ=2是特征方程的单根, 所以应设方程的特解为y *=x (b 0x +b 1)e 2x . 把它代入所给方程, 得 -2b 0x +2b 0-b 1=x . 比较两端x 同次幂的系数, 得⎩⎨⎧=-=-0212100b b b , -2b 0=1, 2b 0-b 1=0.由此求得210-=b , b 1=-1. 于是求得所给方程的一个特解为x e x x y 2)121(*--=.从而所给方程的通解为x x x e x x e C e C y 223221)2(21+-+=.提示:y *=x (b 0x +b 1)e 2x =(b 0x 2+b 1x )e 2x ,[(b 0x 2+b 1x )e 2x ]'=[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x , [(b 0x 2+b 1x )e 2x ]''=[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x .y *''-5y *'+6y *=[(b 0x 2+b 1x )e 2x ]''-5[(b 0x 2+b 1x )e 2x ]'+6[(b 0x 2+b 1x )e 2x ]=[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x -5[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x +6(b 0x 2+b 1x )e 2x =[2b 0+4(2b 0x +b 1)-5(2b 0x +b 1)]e 2x =[-2b 0x +2b 0-b 1]e 2x . 方程y ''+py '+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解形式 应用欧拉公式可得e λx [P l (x )cos ωx +P n (x )sin ωx ]]2)(2)([ ie e x P e ex P e x i x i nx i xi lx ωωωωλ---++= x i n l x i n l e x iP x P e x iP x P )()()]()([21)]()([21ωλωλ-+++-= x i x i e x P e x P )()()()(ωλωλ-++=,其中)(21)(i P P x P n l -=, )(21)(i P P x P nl +=. 而m =max{l , n }. 设方程y ''+py '+qy =P (x )e (λ+i ω)x 的特解为y 1*=x k Q m (x )e (λ+i ω)x , 则)(1)(*ωλi m k e x Q x y -=必是方程)()(ωλi e x P qy y p y -=+'+''的特解, 其中k 按λ±i ω不是特征方程的根或是特征方程的根依次取0或1. 于是方程y ''+py '+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解为 x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ-++=)sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ-++= =x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ]. 综上所述, 我们有如下结论:如果f (x )=e λx [P l (x )cos ωx +P n (x )sin ωx ], 则二阶常系数非齐次线性微分方程y ''+py '+qy =f (x ) 的特解可设为y *=x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ],其中R (1)m (x )、R (2)m (x )是m 次多项式, m =max{l , n }, 而k 按λ+i ω (或λ-i ω)不是特征方程的根或是特征方程的单根依次取0或1.例3 求微分方程y ''+y =x cos2x 的一个特解. 解 所给方程是二阶常系数非齐次线性微分方程,且f (x )属于e λx [P l (x )cos ωx +P n (x )sin ωx ]型(其中λ=0, ω=2, P l (x )=x , P n (x )=0). 与所给方程对应的齐次方程为y ''+y =0, 它的特征方程为r 2+1=0.由于这里λ+i ω=2i 不是特征方程的根, 所以应设特解为y *=(ax +b )cos2x +(cx +d )sin2x . 把它代入所给方程, 得(-3ax -3b +4c )cos2x -(3cx +3d +4a )sin2x =x cos2x . 比较两端同类项的系数, 得 31-=a , b =0, c =0, 94=d .于是求得一个特解为 x x x y 2sin 942cos 31*+-=. 提示:y *=(ax +b )cos2x +(cx +d )sin2x .y *'=a cos2x -2(ax +b )sin2x +c sin2x +2(cx +d )cos2x , =(2cx +a +2d )cos2x +(-2ax -2b +c )sin2x ,y *''=2c cos2x -2(2cx +a +2d )sin2x -2a sin2x +2(-2ax -2b +c )cos2x =(-4ax -4b +4c )cos2x +(-4cx -4a -4d )sin2x .y *''+ y *=(-3ax -3b +4c )cos2x +(-3cx -4a -3d )sin2x . 由⎪⎩⎪⎨⎧=--=-=+-=-0340304313d a c c b a , 得31-=a , b =0, c =0, 94=d .。
2024年数二试卷一、选择题(每题5分,共30分)1. 设函数y = f(x)在点x_0处可导,则limlimits_Δ x to 0(f(x_0 + Δ x) - f(x_0 - Δ x)/Δ x)=()A. f^′(x_0)B. 2f^′(x_0)C. -f^′(x_0)D. -2f^′(x_0)2. 已知y = ln(x+√(x^2)+1),则y^′=()A. (1/√(x^2)+1)B. (1/x+√(x^2)+1)C. (1/x)D. (1/x^2)+13. 函数y = x^3-3x^2-9x + 5的单调递减区间是()A. (-1,3)B. (-∞,-1)C. (3,+∞)D. (-∞,-1)∪(3,+∞)4. 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则由罗尔定理可知()A. 在(a,b)内至少存在一点ξ,使得f^′(ξ)=0B. 在(a,b)内至少存在一点ξ,使得f(ξ)=0C. 在(a,b)内f^′(x)恒等于0D. 在(a,b)内f(x)恒等于05. ∫ xsin xdx=()A. -xcos x+sin x + CB. xcos x+sin x + CC. -xcos x - sin x + CD. xcos x - sin x + C6. 设A=(12 34),则| A|=()A. -2.B. 2.C. -1.D. 1.二、填空题(每题5分,共30分)1. 极限limlimits_x to 0(sin 2x/x)=_ 。
2. 设y = e^2x,则y^(n)=_ (n为正整数)。
3. 函数y = dfrac{x^2+1}{x}的渐近线方程为y = x和_ 。
4. 定积分∫_0^1(x^2+1)dx=_ 。
5. 设向量→a=(1,2),→b=(3,-1),则→a·→b=_ 。
6. 二阶线性常系数齐次微分方程y'' - 3y' + 2y = 0的通解为y=_ 。
微分方程习题§1 基本概念1. 验证下列各题所给出的隐函数是微分方程的解.(1)y x y y x C y xy x -='-=+-2)2(,22(2)⎰'=''=+y 0 222t -)(,1e y y y x dt2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数)(一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.)(1)1)(22=++y C x ;(2)x C x C y 2cos 2sin 21+=.3.写出下列条件确定的曲线所满足的微分方程。
(1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。
(2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。
(3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。
§2可分离变量与齐次方程1.求下列微分方程的通解(1)2211y y x -='-;(2)0tan sec tan sec 22=⋅+⋅xdy y ydx x ;(3)23xy xy dxdy =-;(4)0)22()22(=++-++dy dx y y x x y x .2.求下列微分方程的特解(1)0 ,02=='=-x y x y e y ;(2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解(1))1(ln +='xy y y x ; (2)03)(233=-+dy xy dx y x .4. 求下列微分方程的特解(1)1 ,022=-==x y yx xy dx dy ; (2)1 ,02)3(022==+-=x y xydx dy x y .5. 用适当的变换替换化简方程,并求解下列方程(1)2)(y x y +=';(2))ln (ln y x y y y x +=+'(3)11+-='yx y (4)0)1()1(22=++++dy y x xy x dx xy y6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a .7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系.8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常?9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?§3 一阶线性方程与贝努利方程1.求下列微分方程的通解(1)2x xy y =-'; (2)0cos 2)1(2=-+'-x xy y x ;(3)0)ln (ln =-+dy y x ydx y ;(4))(ln 2x y y y -='; (5)1sin 4-=-x e dxdy y 2.求下列微分方程的特解(1)0 ,sec tan 0==-'=x yx x y y ;(2)1|,sin 0==+'=x y xx x y y 3.一 曲线过原点,在) ,(y x 处切线斜率为y x +2,求该曲线方程.4.设可导函数)(x ϕ满足方程⎰+=+ x0 1sin )(2cos )(x tdt t x x ϕϕ,求)(x ϕ. 5.设有一个由电阻Ω=10R ,电感H L 2=,电流电压tV E 5sin 20=串联组成之电路,合上开关,求电路中电流i 和时间t 之关系.6.求下列贝努利方程的通解(1) 62y x xy y =+' (2)x y x y y tan cos 4+='(3)0ln 2=-+y x x dydx y (4)2121xy x xyy +-='§4 可降阶的高阶方程1.求下列方程通解。
346艺术文化交流2013年03月下半月刊二阶齐次线性微分方程在科学研究、工程技术中有着广泛的应用,其中的二阶常系数齐次线性微分方程一般都是可解的,但是二阶变系数齐次线性微分方程的求解却较为困难,下面探讨如何利用判别式法求解二阶变系数齐次线性微分方程。
形如0)()(=+′+′′y x Q y x P y (其中)(),(x Q x P 是连续函数)(1)的方程为二阶变系数齐次线性微分方程,称函数)(4)()(2)(2x Q x P x P x D −+′=为其判别式,它是二阶常系数齐次线性微分方程的特征方程判别式的自然推广。
定理1 若二阶变系数齐次线性微分方程(1)的判别式)()(是一个常数k k x D =,则其基本解组为要:二阶变系数齐次线性微分方程的求解一般较为困难,对于某些二阶变系数齐次线性微分方程,可考虑用判别式法求解,这是二阶常系数齐次线性微分方程特征方程判别式法的自然推广。
关键词:二阶齐次线性微分方程;判别式;解组 二阶齐次线性微分方程在科学研究、工程技术中有着广泛的应用,其中的二阶常系数齐次线性微分方程一般都是可解的,但是二阶变系数齐次线性微分方程的求解却较为困难,下面探讨如何利用判别式法求解二阶变系数齐次线性微分方程。
形如0)()(=+′+′′y x Q y x P y (其中)(),(x Q x P 是连续函数)(1)的方程为二阶变系数齐次线性微分方程, 称函数)(4)()(2)(2x Q x P x P x D −+′=为其判别式, 它是二阶常系数齐次线性微分方程的特征方程判别式的自然推广。
定理1 若二阶变系数齐次线性微分方程(1)的判别式)()(是一个常数k k x D ,则其基本解组为 )])([21exp(1dx w x P y ∫+−=, −=,其中k 是一个常数,则由变量代换x t ln =,(1)式可转化为变量t 的二阶变系数齐次线性微分方程 0))(exp())(exp()2exp()1))(exp()(exp(22=+−+t y t Q t dt dy t P t dt y d , 并且其判别式k t D =)(1。
新编高等数学第二版教材答案第一章:函数和极限1. 函数的概念和性质2. 极限的概念和性质3. 极限的运算法则4. 无穷大与无穷小量5. 函数的连续性6. 一元函数的导数和微分第二章:一元函数的微分学1. 导数的定义和性质2. 导数的几何意义和物理意义3. 微分的概念和性质4. 微分中值定理5. 函数的高阶导数6. 复合函数的导数第三章:一元函数的积分学1. 不定积分和定积分的概念2. 基本积分公式3. 定积分性质和计算方法4. 牛顿-莱布尼茨公式5. 定积分的几何意义和物理意义6. 定积分和不定积分的关系第四章:一元函数的应用1. 曲线的切线和法线2. 函数的单调性和凹凸性3. 函数的极值和最值4. 弧长和曲线的曲率5. 定积分的应用:面积和体积计算6. 微分方程的应用第五章:数列和级数1. 数列的概念和性质2. 数列的极限和收敛性3. 数列极限的运算法则4. 单调数列的性质5. 级数的概念和性质6. 常见级数的收敛性判别第六章:无穷级数1. 可数无穷集合和不可数无穷集合2. 数列极限存在准则3. 函数项级数的收敛性4. 幂级数的收敛性5. 傅里叶级数的收敛性6. 项级数的运算性质和收敛域第七章:多元函数的微分学1. 多元函数的极限和连续性2. 偏导数和全微分3. 多元复合函数的导数4. 隐函数的导数5. 方向导数和梯度6. 条件极值和拉格朗日乘子法第八章:多元函数的积分学1. 二重积分和三重积分的概念2. 二重积分和三重积分的性质3. 二重积分和三重积分的计算方法4. 广义积分的概念和性质5. 广义积分的收敛性判别6. 曲线积分和曲面积分第九章:多元函数的应用1. 向量场及其运算2. 向量场的散度和旋度3. 曲线、曲面的方程4. 曲线积分和曲面积分的应用5. 散度定理和高斯公式6. 斯托克斯公式及其应用第十章:常微分方程1. 方程的解和初值问题2. 一阶线性微分方程3. 二阶线性常系数齐次微分方程4. 二阶线性非齐次微分方程5. 微分方程的应用6. 线性微分方程组该教材答案包含了新编高等数学第二版教材中各个章节的题目答案,以方便学生们辅助学习和复习。
全国硕士研究生入学统一考试数学一考试大纲高等数学一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容:原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容:向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程、直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容:多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容:二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯公式斯托克斯公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容:常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶系数与傅里叶级数狄利克雷定理函数的傅里叶级数函数的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握e x, sinx, cosx, ln(1+x) 及 (1+x)α的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将函数展开为傅里叶级数,会将函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容:常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解概念.2.掌握变量可分离的微分方程及一阶线性微分方程解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程4.会用降阶法解下列形式的微分方程:.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容:向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容: 线性方程组的克莱姆法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容: 矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.考研老师私人扣扣:任汝芬教授:2069358600宫东风教授:2274805912苏楠楠老师:2864611789刘忠保老师:30421531概率论与数理统计一、随机事件和概率考试内容:随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容:多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫不等式切比雪夫大数定律伯努利大数定律辛钦大数定律棣莫弗-拉普拉斯定理列维-林德伯格定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律) .3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理) .六、数理统计的基本概念考试内容:总体个体简单随机样本统计量样本均值样本方差和样本矩卡方分布 T分布 F分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:2.了解卡方分布、T分布 F分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容:点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计刘忠保老师:30421531 考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容:显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.考研老师私人扣扣:任汝芬教授:2069358600宫东风教授:2274805912苏楠楠老师:2864611789。