正多边形和圆
- 格式:pptx
- 大小:105.48 KB
- 文档页数:8
正多边形和圆
知识要点
1、正多边形
(1)、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。
如:正六边形,表示六条边都相等,六个角也相等。
(2)、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
(3)、正多边形的中心正多边形的外接圆的圆心叫做这个正多边形的中心。
(4)、正多边形的半径正多边形的外接圆的半径叫做这个正多边形的半径。
(5)、正多边形的边心距正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
(6)、中心角正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
2、正多边形的对称性
(1)、正多边形的轴对称性
正多边形都是轴对称图形。
一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。
(2)、正多边形的中心对称性边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。
(3)、正多边形的画法先用量角器或尺规等分圆,再做正多边形。
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。
平面几何中的正多边形与圆的周长在平面几何中,正多边形与圆的周长是一个重要的概念。
正多边形是指所有边长相等且所有内角相等的多边形,而圆的周长则是指圆的边缘一周的长度。
本文将探讨正多边形和圆的周长的关系,并介绍一些计算正多边形和圆的周长的方法。
一、正多边形的周长正多边形的周长可以通过计算每条边的长度之和来得到。
设正多边形有n条边,边长为a,则正多边形的周长L可以表示为L = n * a。
例如,一个有6条边的正六边形,若每条边的长度为3cm,则正六边形的周长L = 6 * 3 = 18cm。
需要注意的是,正多边形的周长与边数以及边长有关。
当边数n增加时,正多边形的周长也会增加;当边长a增加时,正多边形的周长也会增加。
二、圆的周长在平面几何中,圆的周长又称为圆的周长或圆周长。
圆的周长C可以通过计算圆的直径或半径与圆周率π的乘积来得到。
根据定义,圆周率π的近似值约为3.14159。
1. 通过直径计算设圆的直径为d,则圆的周长C可以表示为C = π * d。
例如,一个直径为10cm的圆的周长C = 3.14159 * 10 = 31.4159cm。
2. 通过半径计算设圆的半径为r,则圆的周长C可以表示为C = 2 * π * r。
例如,一个半径为5cm的圆的周长C = 2 * 3.14159 * 5 = 31.4159cm。
需要注意的是,无论是通过直径还是半径计算,圆的周长都与圆周率π有关。
当直径或半径增加时,圆的周长也会增加。
三、正多边形与圆的周长的关系在考察正多边形和圆的周长时,我们可以发现一个有趣的现象。
当正多边形的边数n足够大时,正多边形的周长L会趋近于圆的周长C。
这可以通过以下推理来解释:首先,在一个给定的正多边形中,边数越多,每条边的长度a则越短,这意味着多边形的周长L越接近于n * a。
而当n趋近于无穷大时,正多边形的周长L趋近于无限,也就是周长无限长。
而圆的周长C是有限且确定的,不会随着边数的增加而增加。
24.3正多边形和圆一.【知识要点】1.把一个正多边形的外接圆的圆心叫做这个正多边形的,外接圆的半径叫做正多边形的,正多边形每一边所对的圆心角叫做正多边形的,中心到正多边形的一边的距离叫做正多边形的.【经典例题】1.分别求半径为R的圆内接正三角形、正方形、正六边形的边长、边心距、周长和面积(直接写出结果).2.下列说法:①各角相等的多边形是正多边形;②各边相等的多边形是正多边形;③各角相等的圆内接多边形是正多边形;④各顶点等分外接圆的多边形是正多边形.其中正确的有( )A.1个B.2个C.3个D.4个3.如果一个四边形的外接圆与内切圆是同心圆,那么这个四边形一定是( )A.矩形B.菱形C.正方形D.不能确定4.如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边三角形ABC的边长为______________.5.如图,正△ABC外接圆的半径为R,求正△ABC的边长、边心距、周长和面积.6.如图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则的值是()A.B. C.D. 27.如图,⊙O 是正六边形ABCDEF 的外接圆,点P 在⊙O 上(P 不与A ,B 重合),则∠APB 的度数为( )A .60°B .60°或120°C .30°D .30°或150°8.(2023绵阳期末第7题)如图,在平面直角坐标系中,正六边形OABCDE 的边长是4,则它的内切圆圆心M 的坐标是( )A .B .C .D .(2,4)EFGH26239.(2021绵阳期末第14题)如图,要拧开一个边长a=2cm的正六角形螺帽,则扳手张开的开口b至少要cm.10.如图,正五边形ABCDE中(1)求证:EB=EC;(2)若BE=2,CF⊥BE交AB于F,求AE+AF.11.如图,六边形ABCDEF为⊙O的内接正六边形,点P为CD的中点,则PAPB的值为三.【题库】【A】1.下列多边形中,是正多边形的是( ).A.菱形B.矩形C.等腰梯形D.正六边形2.下列多边形中,既是轴对称图形,又是中心对称图形的是( ).A.正三角形B.正方形C.正五边形D.平行四边形3.下列正多边形中,对称轴条数是6条的是( ).A.正三角形B.正方形C.正六边形D.正五边形4.正五边形的中心角是______________度.5.一个正多边形的中心角为90°,则它的边数为____________.6.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是()A.36°B.60°C.72°D.108°7.小明画出一个圆内接正三角形,如图所示,若在小明画的图形上再画出一个正六边形,试填写完整下面的步骤:(1)分别用圆规把AB⏜,BC ⏜,AC ⏜两等分,得出等分点____________. (2)顺次连接AD,BD,_____,EC,CF,______,六边形ADBECF 为所画的正六边形.8.如图,A,P,B,C 是☉O 上的四点,∠APC=∠CPB=60°.(1)求证:△ABC 是等边三角形;(2)已知△ABC 的边长为4 cm,求☉O 的半径.9.边长为a 的正六边形的面积等于( )A .243a B.2a C.2233a D.233a10.如图,正八边形ABCDEFGH 中,∠EAG 大小为( ) A .30° B .40° C .45° D .50°11.已知圆内接正六边形的半径为2,则正六边形的边长为( ).12.已知正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OH 的长为( ).A.2B. D.13.已知⊙O 的内接正方形的边长为4,则半径为( ).A.4B.2C.14.半径为1的圆内接正三角形的边心距为___________.15.边长为1的正六边形的半径为,中心角等于度,面积为.16.半径为4的正六边形的边心距为,中心角等于,面积为.17.如图,正八边形ABCDEFGH的半径为2,它的面积为.18.半径为3的圆内接正方形的边心距等于.19.下列图形中,既是轴对称图形,又是中心对称图形的有( )①正三角形;②正方形;③正五边形;④正六边形;⑤线段;⑥圆;⑦菱形;⑧平行四边形.A.3个B.4个C.5个D.6个20.(上海中考)如果一个正多边形的中心角为72°,那么这个正多边形的边数是( )A.4B.5C.6D.721.若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )A. C.6,3 D.22.如图,木工师傅从一块边长为60cm的正三角形木板上锯出一块正六边形木板,那么这块正六边形木板的边长为.23.如图,圆内接正△ABC的半径为R,试分别计算△ABC的边长,边心距及面积.【B】1.如图,在☉O中,OA=AB,OC⊥AB,则下列结论错误的是()A.弦AB的长等于圆内接正六边形的边长B.AC⏜=BC⏜C.弦AC的长等于圆内接正十二边形的边长D.∠BAC=30°2.已知☉O的面积为2π,则其内接正三角形的面积为()A.3√3B.3√6C.32√3 D.32√63.△OAB是以正多边形相邻的两个定点A,B与它的中心O为顶点的三角形,若△OAB的一个内角为70°,则该正多边形的边数为_____________.4.如图,有一圆内接正八边形ABCDEFGH,若△ADE的面积为10,则正八边形ABCDEFGH的面积为________________.5.如图,正六边形ABCDEF中,点M在AB边上,∠FMH=120°,MH与六边形外角的平分线BQ交于点H.(1)当点M不与点A,B重合时,求证:∠AFM=∠BMH;(2)当点M在正六边形ABCDEF一边AB上运动(点M不与点B重合)时,猜想FM与MH的数量关系,并对猜想的结果加以证明.6.若一个正方形的周长为24,则该正方形的边心距为()A.2B.3C.3D.27.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°8.(2022绵阳期末第11题)如图,点O是边长为4的正六边形ABCDEF的中心,对角线CE,DF相交于点G,则△GEF的面积为()A.2B.3C.D.9.半径相等的圆内接正三角形、正方形、正六边形的边长比为.10.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则EF=()GH2A.211.如图,五边形ABCDE是⊙O的内接正五边形,对角线AC、BD相交于点P,下列结论:①∠BAC=36°;②PB=PC;③四边形APDE是菱形;④AP=2BP.其中正确的结论是( ).A.①②③④B.①②③C.②③④D.①②④12.如图,正三角形的边长为12cm,剪去三个角后成为一个正六边形,则这个正六边形的内部任意一点到各边的距离和为cm.13.如图,正六边形ABCDEF中,P是边ED的中点,连接AP,求APAB的值.14.如图,⊙O的半径为2,求圆内接正十二边形的边长.【C】20cm,则正八边形的面积为1.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为2cm。
初中数学知识点:正多边形和圆知识点新一轮的中考复习又开始了,本站编辑为此特为大伙儿整理了正多边形和圆知识点,期望能够关心大伙儿复习,预祝大伙儿取得优异的成绩~正多边形和圆知识点1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就能够做出那个圆的内接正多边形,那个圆确实是那个正多边形的外接圆。
典型例题粉笔是校园中最常见的必备品.图1是一盒刚打开的六角形粉笔,总支数为50支.图2是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为_____mm.(,结果精确到1mm)答案:300解析:把图形中的边长的问题转化为正六边形的边长、边心距之间的运算即可.解:作B′M′∥C′D′,C′M′⊥B′M′于点M′.粉笔的半径是6mm.则边长是6mm.∵∠M′B′C′=60°∴B′M′=B′C′?cos60°=6×=3.边心距C′M′=6sin60°=3mm.则图(2)中,AB=CD=11×3=33mm.AD=BC=5×6+5×12+3=93mm.则周长是:2×33+2×93=66+186≈300mm.故答案是:300mm.同步练习题1判定题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则那个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2填空题:①一个外角等于它的一个内角的正多边形是正____边形.[②正八边形的中心角的度数为____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm ,面积是____cm.④面积等于cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线假如相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线假如相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D. :1④正六边形的两条平行边间距离是1,则边长是( )A . B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1: :C. 1: :3D.1:2:四、运算1.已知正方形面积为8cm2,求此正方形边心距.3.已知圆内接正三角形边心距为2cm,求它的边长.距长.长.8.已知圆外切正方形边长为2cm ,求该圆外切正三角形半径.10.已知圆内接正方形边长为m,求该圆外切正三角形边长.长.12.已知正方形边长为1cm,求它的外接圆的外切正六边形外接圆的半径.13.已知一个正三角形与一个正六边形面积相等,求两者边长之比.观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。
正多边形与圆一、重要知识点:1、各边相等、各角也相等的多边形叫做正多边形。
2、我们把正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.3、外接圆的半径叫做正多边形的半径.4、内切圆的半径叫做正多边形的边心距.5、正多边形每一边所对的外接圆圆心角叫做正多边形的中心角.6、正多边形也是轴对称图形,正n 边形就有n 条对称轴,当n 为偶数时,它又是中心对称图形.二、典型例题:1.各条边______ ,并且各个______ 也都相等的多边形叫做正多边形.2.把一个圆分成n (n ≥3)等份,依次连结各等分点所得的多边形是这个圆的______ . 3.一个正多边形的______________ 叫做这个正多边形的中心;______________叫做正多边形的半径;正多边形每一边所对的______ 叫做正多边形的中心角;中心到正多边形的一边的__________叫做正多边形的边心距.4.正n 边形的每一个内角等于__________,它的中心角等于________,它的每一个外角等于______. 5.设正n 边形的半径为R ,边长为a n ,边心距为r n ,则它们之间的数量关系是______ ,这个正n 边形的面积S n =________ .6.正八边形的一个内角等于_______ ,它的中心角等于_______ . 7.正六边形的边长a ,半径R ,边心距r 的比a ∶R ∶r =_______ . 8.同一圆的内接正方形和正六边形的周长比为_______ . 9.等边三角形的外接圆面积是内切圆面积的( ).A .3倍B .5倍C.4倍D .2倍10.已知正方形的周长为x ,它的外接圆半径为y ,则y 与x 的函数关系式是( ).A .x y 42=B .x y 82=C .x y 21=D .x y 22=11.有一个边长为12cm 的正六边形,若要剪一张圆形纸片完全盖住这个图形,则这个圆形纸片的半径最小是( ). A .10cm B .12cm C .14cm D .16cm12.已知:如图,正八边形A 1A 2A 3A 4A 5A 6A 7A 8内接于半径为R 的⊙O .(1)求A 1A 3的长;(2)求四边形A 1A 2A 3O 的面积;(3)求此正八边形的面积S .13.已知:如图,⊙O 的半径为R ,正方形ABCD ,A ′B ′C ′D 分别是⊙O 的内接正方形和外切正方形.求二者的边长比AB ∶A ′B ′和面积比S 内∶S 外.14.如图,有一个圆O 和两个正六边形1T ,2T .1T 的6个顶点都在圆周上,2T 的6条边都和圆O 相切(我们称1T ,2T 分别为圆O 的内接正六边形和外切正六边形). (1)设1T ,2T 的边长分别为a ,b ,圆O 的半径为r ,求a r :及b r :的值; (2)求正六边形1T ,2T 的面积比21:S S 的值.15.(1)如图1,圆内接ABC △中,AB BC CA OD ==,.OE 为O ⊙的半径,OD BC ⊥于点F ,OE AC ⊥于点G ,求证:阴影部分四边形OFCG 的面积是ABC △的面积的13.(2)如图2,若DOE ∠保持120°角度不变,求证:当DOE ∠绕着O 点旋转时,由两条半径和ABC △的两条边围成的图形(图中阴影部分)面积始终是ABC △的面积的13.练习:1.下列边长为a 的正多边形与边长为a 的正方形组合起来,不能镶嵌成平面的是( ) (1)正三角形 (2)正五边形 (3)正六边形 (4)正八边形A .(1)(2)B .(2)(3)C .(1)(3)D .(1)(4) 2.以下说法正确的是( )A .每个内角都是120°的六边形一定是正六边形.B .正n 边形的对称轴不一定有n 条.C .正n 边形的每一个外角度数等于它的中心角度数.D .正多边形一定既是轴对称图形,又是中心对称图形.3. 若同一个圆的内角正三角形、正方形、正六边形的边心距分别为r 3,r 4,r 6,则r 3:r 4:r 6等于( ) A. BC .1:2:3D . 3:2:1 4.如图,若正方形A 1B 1C 1D 1内接于正方形ABCD 的内接圆,则ABB A 11的值为( ) A .21 B .22 C .41 D .42图1图25. 已知正六边形ABCDEF 内接于⊙O ,图中阴影部分的面积为312,则⊙O 的半径为__________.6.如图,正方形ABCD 内接于⊙O ,点E 在AD 上,则∠BEC= .7.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相 等的无盖纸盒(侧面均垂直于底面,见图2),需在每一个顶点处剪去一 个四边形,例如图中的四边形AGA /H ,那么∠GA /H 的大小是 度.8.从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,则此正方形的边长为 . 9.如图五边形ABCDE 内接于⊙O,∠A=∠B=∠C=∠D=∠E .求证:五边形ABCDE 是正五边形10.如图,10-1、10-2、10-3、…、10-n 分别是⊙O 的内接正三角形ABC ,正四边形ABCD 、正五边形ABCDE 、…、正n 边形ABCD …,点M 、N 分别从点B 、C 开始以相同的速度在⊙O 上逆时针运动。