24.6正多边形和圆(2)(正多边形的画法).
- 格式:docx
- 大小:158.68 KB
- 文档页数:8
专题11 正多边形和圆概念规律重在理解一、正多边形和圆1.正多边形的定义:各边相等,各角也相等的多边形叫做正多边形。
2.正多边形和圆的关系:只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
二、正多边形的对称性1.正多边形的轴对称性。
正多边形都是轴对称图形。
一个正n边形共有n条对称轴,每条对称轴都通过正n 边形的中心。
2.正多边形的中心对称性。
边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。
3.正多边形的画法。
先用量角器或尺规等分圆,再做正多边形。
三、正多边形的性质任何正多边形都有一个外接圆和一个内切圆.(1)正多边形的外接圆和内切圆的公共圆心,叫作正多边形的中心.(2)外接圆的半径叫作正多边形的半径.(3)内切圆的半径叫作正多边形的边心距.(4)正多边形每一条边所对的圆心角,叫做正多边形的中心角.正多边形的每个中心角都等于360n四、正多边形的有关计算(1)正n边形的中心角怎么计算?(2)正n边形的边长a,半径R,边心距r之间有什么关系?(3)边长a,边心距r的正n边形的面积如何计算?特别重要:圆内接正多边形的辅助线(1)连半径,得中心角;(2)作边心距,构造直角三角形.典例解析掌握方法【例题1】(2021贵州贵阳)如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是()A.144°B.130°C.129°D.108°【答案】A【解析】先根据五边形的内角和求∠E=∠D=108°,由切线的性质得:∠OAE=∠OCD=90°,最后利用五边形的内角和相减可得结论.正五边形的内角=(5﹣2)×180°÷5=108°,∴∠E=∠D=108°,∵AE、CD分别与⊙O相切于A、C两点,∴∠OAE=∠OCD=90°,∴∠AOC=540°﹣90°﹣90°﹣108°﹣108°=144°.FA GB HC ID JE是五边形ABCDE的外接圆的切线,则【例题2】(2021南京)如图,,,,,∠+∠+∠+∠+∠=______︒.BAF CBG DCH EDI AEJ【答案】180︒【解析】由切线性质可知切线垂直于半径,所以要求的5个角的和等于5个直角减去五边形的内角和的一半.如图:过圆心连接五边形ABCDE的各顶点,∠+∠+∠+∠+∠则OAB OBC OCD ODE OEA=∠+∠+∠+∠+∠OBA OCB ODC OED OAE1=-⨯︒=︒(52)1802702∴BAF CBG DCH EDI AEJ∠+∠+∠+∠+∠=⨯︒-∠+∠+∠+∠+∠590()OAB OBC OCD ODE OEA=︒-︒450270=︒.180【例题3】如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A.30°B.35°C.45°D.60°【答案】A【解析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB 的度数,利用弦切角定理∠PAB.连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°,故选A.23,点P为六边形内任一点.则点P到各边距离之和是【例题4】如图,正六边形ABCDEF的边长为多少?【答案】18【解析】过P作AB的垂线,分别交AB、DE于H、K,连接BD,作CG⊥BD于G.∵六边形ABCDEF是正六边形∴AB∥DE,AF∥CD,BC∥EF,∴P到AF与CD的距离之和,及P到EF、BC的距离之和均为HK的长.∵BC=CD,∠BCD=∠ABC=∠CDE=120°,∴∠CBD=∠BDC=30°,BD∥HK,且BD=HK∵CG⊥BD,∴BD=2BG=2×BC×cos∠CBD=6.∴点P到各边距离之和=3BD=3×6=18.各种题型强化训练一、选择题1.(2021江苏连云港)如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,MN=1,则△AMN 周长的最小值是()A.3 B.4 C.5 D.6【答案】B【解析】由正方形的性质,知点C是点A关于BD的对称点,过点C作CA′∥BD,且使CA′=1,连接AA′交BD于点N,取NM=1,连接AM、CM,则点M、N为所求点,进而求解.解:⊙O的面积为2π,则圆的半径为=AC,由正方形的性质,知点C是点A关于BD的对称点,过点C作CA′∥BD,且使CA′=1,连接AA′交BD于点N,取NM=1、CM、N为所求点,理由:∵A′C∥MN,且A′C=MN,则A′N=CM=AM,故△AMN的周长=AM+AN+MN=AA′+6为最小,则A′A==2,则△AMN的周长的最小值为3+1=8.2.一元钱硬币的直径约为24mm,则用它能完全覆盖住的正六边形的边长最大不能超过()A.12mm B.12mm C.6mm D.6mm【答案】A【解析】理解清楚题意,此题实际考查的是一个直径为24mm的圆内接正六边形的边长.已知圆内接半径r为12mm,则OB=12,∴BD=OB•sin30°=12×=6,则BC=2×6=12,可知边长为12mm,就是完全覆盖住的正六边形的边长最大.3.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2, B.2,π C., D.2,【答案】D【解析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.连接OB,∵OB=4, ∴BM=2, ∴OM=2,==π,故选D .4.如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为( )A .34πB .1234πC .2438πD .34π【答案】A【解析】正六边形的面积加上六个小半圆的面积,再减去中间大圆的面积即可得到结果. 正六边形的面积为:142362432⨯⨯=六个小半圆的面积为:22312ππ⋅⨯=,中间大圆的面积为:2416ππ⋅=, 所以阴影部分的面积为:24312162434πππ+-=-. 二、填空题1.如图是由两个长方形组成的工件平面图(单位:mm ),直线l 是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是 mm .【答案】50.【解析】根据已知条件得到CM=30,AN=40,根据勾股定理列方程得到OM=40,由勾股定理得到结论.如图,设圆心为O,连接AO,CO∵直线l是它的对称轴,∴CM=30,AN=40,∵CM2+OM2=AN2+ON2,∴302+OM2=402+(70﹣OM)2,解得:OM=40,∴OC==50,∴能完全覆盖这个平面图形的圆面的最小半径是50mm.2.(2020•徐州)如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为.【答案】10.【解析】连接OA,OB,根据圆周角定理得到∠AOB=2∠ADB=36°,于是得到结论.连接OA,OB,∵A、B、C、D为一个正多边形的顶点,O为正多边形的中心,∴点A、B、C、D在以点O为圆心,OA为半径的同一个圆上,∵∠ADB=18°,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数103.(2020•南京)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.【答案】2.【解析】连接BF,BE,过点A作AT⊥BF于T,证明S△PEF=S△BEF,求出△BEF的面积即可.连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BE,AB=AF,∴BT=FT,∠BAT=∠F AT=60°,∴BT=FT=AB•sin60°,∴BF=2BT=2,∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S△PEF=S△BEF•EF•BF224.(2020•成都)如图,六边形ABCDEF是正六边形,曲线FA1B1C1D1E1F1…叫做“正六边形的渐开线”,,,,,,,…的圆心依次按A,B,C,D,E,F循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB=1时,曲线F A1B1C1D1E1F1的长度是.【答案】7π.【解析】利用弧长公式计算即可解决问题.的长,的长,的长,的长,的长,的长,∴曲线F A1B1C1D1E1F1的长度7π,5.(2020•贵阳)如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是度.【答案】120.【分析】连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.【解析】连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOD=120°6.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为_____.【答案】6【解析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式列方程求解计算即可.∵正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r,∴2120224360rππ⨯⨯=,2224,3rππ∴=236,r∴=解得r=6.(负根舍去)则正六边形的边长为6.故答案为:6.7.(2020•连云港)如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2、B3,则直线l与A1A2的夹角α=°.【答案】48.【分析】延长A1A2交A4A3的延长线于C,设l交A1A2于E、交A4A3于D,由正六边形的性质得出∠A1A2A3=∠A2A3A4=120°,得出∠CA2A3=∠A2A3C=60°,则∠C=60°,由正五边形的性质得出∠B2B3B4=108°,由平行线的性质得出∠EDA4=∠B2B3B4=108°,则∠EDC=72°,再由三角形内角和定理即可得出答案.【解析】延长A1A2交A4A3的延长线于C,设l交A1A2于E、交A4A3于D,如图所示:∵六边形A1A2A3A4A5A6是正六边形,六边形的内角和=(6﹣2)×180°=720°,∴∠A1A2A3=∠A2A3A4120°,∴∠CA2A3=∠A2A3C=180°﹣120°=60°,∴∠C=180°﹣60°﹣60°=60°,∵五边形B1B2B3B4B5是正五边形,五边形的内角和=(5﹣2)×180°=540°,∴∠B2B3B4108°,∵A3A4∥B3B4,∴∠EDA4=∠B2B3B4=108°,∴∠EDC=180°﹣108°=72°,∴α=∠CED=180°﹣∠C﹣∠EDC=180°﹣60°﹣72°=48°。
正多边形与圆及正多边形的画法内容:1.正多边形和圆的有关概念:正多边形的外接圆,正多边形的中心,•正多边形的半径,正多边形的中心角,正多边形的边心距.2.在正多边形和圆中,圆的半径、边长、边心距中心角之间的等量关系.3.正多边形的画法.问题:1.什么叫正多边形?2.从你身边举出两三个正多边形的实例,正多边形具有轴对称、•中心对称吗?其对称轴有几条,对称中心是哪一点?1.各边相等,各角也相等的多边形是正多边形.2.实例略.正多边形是轴对称图形,对称轴有无数多条;•正多边形是中心对称图形,其对称中心是正多边形对应顶点的连线交点.探究:如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,•正六边形ABCDEF,连结AD、CF交于一点,以O为圆心,OA为半径作圆,那么肯定B、C、•D、E、F都在这个圆上.因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.我们以圆内接正六边形为例证明.如图所示的圆,把⊙O•分成相等的6•段弧,依次连接各分点得到六边ABCDEF,下面证明,它是正六边形.根据正多边形的定义,各边相等、各角相等、六边形ABCDEF是⊙O的内接正六边形,⊙O是正六边形ABCDEF的外接圆.为了今后学习和应用的方便,•我们把一个正多边形的外接圆的圆心叫做这个多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.中心到正多边形的一边的距离叫做正多边形的边心距.例1.已知正六边形ABCDEF ,如图所示,其外接圆的半径是a ,•求正六边形的周长和面积.例2.利用你手中的工具画一个边长为3cm 的正五边形.例3.在直径为AB 的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB ,顶点C 在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC•的矩形水池DEFN ,其中D 、E 在AB 上,如图24-94的设计方案是使AC=8,BC=6. (1)求△ABC 的边AB 上的高h .(2)设DN=x ,且h DN NFh AB-=,当x 取何值时,水池DEFN 的面积最大? (3)实际施工时,发现在AB 上距B 点1.85的M 处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.hF DEC BANG课时作业1.如图1所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是().A.60° B.45° C.30° D.22.5°(1) (2) (3)2.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是(). A.36° B.60° C.72° D.108°3.若半径为5cm的一段弧长等于半径为2cm的圆的周长,•则这段弧所对的圆心角为()A.18° B.36° C.72° D.144°4.已知正六边形边长为a,则它的内切圆面积为_______.5.在△ABC中,∠ACB=90°,∠B=15°,以C为圆心,CA长为半径的圆交AB于D,如图2所示,若AC=6,则AD的长为________.6.四边形ABCD为⊙O的内接梯形,如图3所示,AB∥CD,且CD为直径,•如果⊙O 的半径等于r,∠C=60°,那图中△OAB的边长AB是______;△ODA的周长是_______;∠BOC的度数是________.7.等边△ABC的边长为a,求其内切圆的内接正方形DEFG的面积.8.如图所示,•已知⊙O•的周长等于6 cm,•求以它的半径为边长的正六边形ABCDEF 的面积.9.如图所示,正五边形ABCDE的对角线AC、BE相交于M.(1)求证:四边形CDEM是菱形;(2)设MF2=BE·BM,若AB=4,求BE的长.。
活动1
多姿多彩的正多边形:生活中的正多边形图案
1
24.6正多边形和圆
2
正多边形的画法
II
O
几种常见的正多边形
活动2由扌正,边形虚<产・丄渚实酥屮韦广^^ 的走用*L 所<4合■正9it形;6足槽乂*务* 力走—0
怎样画一个正多边形呢?已知©O的半径为2<3«,求作圆的内接正三角形.
这种作法是不是等①用*角器度*,使
ZAOB=ZBOC=ZCOA
=120°•
②用*角《或30・角的三角板度*,使
ZBAO=ZCAO=30° •
分圆呢?为什么呢?请说依据。
丁活动3
你能用等分圆的方法画出正四边形、正五边形、正六边形吗?
用量角器等分圆
由在同圆中相等的弦所对的弧相等可知,在一个圆中, 先用量角器作一个等于竺的圆心角,这个角所对的
1 〃
弧就是圆周的丄,然后在圆周上一次截取这条弧的等n
弧,就得到圆的兄等份点,从而作出止ZI边形。
活动3
正六边形
你能画出正四边形.正五边形、
吗?
D
90。
、、
在七年级上册4.6节“用尺规作线段与角" 的“教学
活动”中,曾介绍过画正五角星, 你述记得是怎么画
的吗?下面就來研究这样画的道理。
(正五角星就是这样作出的)
活动4 用尺规等分圆周
对于一些特殊的正n边形,还可以用直尺和圆规來等分圆周。
止四边形的作法
如图24-57 ( 1 ),用直尺和圆规作OO
的两条相互垂直的育径,就可以把©O 分
成4等份,从而作出止四边形。
C 我们再逐次平分各边所对的弧,就可
以作出正八边形[图24-57 (2)]、正十六
边形等。
活动4
也能够这样进行尺规作图吗?
活动5
用尺规等分岡周
对于•些特殊的正n 边形, 止六边形的作法
如图24-58 (I),设OO 的半径为R,通常先作出©O !一条直径AB,然后分别以点A, B 为圆心.R 为半径作 L 与OO 交于点C, D, E, F,从而得到OO 的6等份点, :出止八边形。
24-58
只 申已知©O 的互 相垂 $直径即得圆内 接正方
形,再过圆心作
各边的垂线与OO 相交, 或作各中心角的角平分
线与©O 相交,即得 接正
八边形,照此方法 为什么?
依次可作正十六边形、 正三十二边形、正六十 四边形
可以用直尺和圆规來等分圆周’ A
D
C
R
园 B
B
24-58
如果再逐次等分各边所对的弧,就可作出正十二边形、 止二十四边形等。
我们可以连接6等份圆周的相同两个点,得到正三角形, 如图24-58 (2) O
活动5
也能这样理解吗?
f 以半径长在
周上截取六段相 等的弧,依次连 结各等分点,则 作出正六边形・ 先作出正六边 形,则可作正三 角形,正十二边 形,正二十四边 形
为什么?
B
B
/)
活动6
说说作正多边形的方法有哪些?
归纳
(1) 用量角器等分圆周作正n边形;
(2) 用尺规作正方形及由此扩展作正八边形,用尺规作正六边形及由此扩展作正12边形、正三角形.
活动7
作业。