高二数学简单线性规划4
- 格式:ppt
- 大小:904.50 KB
- 文档页数:13
简单的线性规划(第一课时)二元一次不等式表示平面区域教学目的:1.理解二元一次不等式表示平面区域;2.掌握确定二元一次不等式表示的平面区域的方法;3.会画出二元一次不等式(组)表示的平面区域,并掌握步骤;教学重点:二元一次不等式表示平面区域.教学难点:如何确定二元一次不等式表示的平面区域。
教学过程:【创设问题情境】问题1:在平面直角坐标系中,二元一次方程x+y-1=0表示什么图形?请学生画出来.问题2:写出以二元一次方程x+y-1=0的解为坐标的点的集合(引出点集{(x,y) x+y-1=0})问题3:点集{(x,y) x+y-1≠0}在平面直角坐标系中表示什么图形?点集{(x,y) x+y-1>0}与点集{(x,y) x+y-1>0}又表示什么图形呢?【讲授新课】研究问题:在平面直角坐标系中,以二元一次不等式x+y-1>0的解为坐标的点的集合{(x,y) x+y-1>0}是什么图形?一、归纳猜想在平面直角坐标系中,所有的点被直线x+y-1=0分成三类:即在直线x+y-1=0在直线x+y-1=0的左下方的平面区域内;在直线x+y-1=0的右上方的平面区域内。
问题1:请同学们在平面直角坐标系中,作出A(2,0),B(0,2),C(1,1),D(2,2)四点,并说明它们分别在上面叙述的哪个区域内?问题2:请把A、B、C、D四点的坐标代入x+y-1中,发现所得的值的符号有什么规律?(看几何画板)由此引导学生归纳猜想:对直线l的右上方的点(x,y),x+y-1>0都成立;对直线l左下方的点(x,y),x+y-1<0成立.二、证明猜想如图,在直线x+y-1=0上任取一点P(x过点P作垂直于y轴的直线y= y0,在此直线上点P右侧的任意一点(x,y),都有x> x0, y= y0,所以, x+y> x0+ y0=0,所以, x+y-1> x0+ y0 -1=0,即x+y-1>0,1=0 因为点P(x0,y0)是直线x+y-1=0所以,对于直线x+y-1=0同理, 对直线l: x+y-1=0左下方的点(x,y),x+y-1<0成立所以,在平面直角坐标系中, 以二元一次不等式x+y-1>0的解为坐标的点的集合{(x,y) x+y-1>0}是在直线x+y-1=0右上方的平面区域,类似地,在平面直角坐标系中, 以二元一次不等式x+y-1<0的解为坐标的点的集合{(x,y) x+y-1<0}是在直线x+y-1=0左下方的平面区域.提出:直线-x+y-1=0的两侧的点的坐标代入-x+y-1中,得到的数值的符号,仍然会“同侧同号,异侧异号”吗?通过分析引导学生得出一般二元一次不等式表示平面区域的有关结论.三、一般二元一次不等式表示平面区域结论:在平面直角坐标系中,• (1)二元一次不等式Ax +By +C >0表示直线Ax +By +C =0某一侧所 • 有点组成的平面区域,Ax +By +C <0则表示直线另一侧所有点组成 • 的平面区域; (同侧同号,异侧异号) (2)有等则实,无等则虚;(3)试点定域,原点优先.四、例题:例1:画出不等式x -y +5>0表示的平面区域;分析:先作出直线x -y +5=0为边界(画成实线),再取原点验证不等式x -y +5>0所表示的平面区域.解:先画直线x -y +5=0为边界(画成实线),再取原点(0,0)代入x -y +5中,因为0-0+5>0,所以原点在不等式x -y +5>0所表示的平面区域内,不等式表示的区域如图所示.(看幻灯片)反思归纳:(1)画线定界(注意实、虚线);(2)试点定域.【随堂练习】(1)画出不等式x +y >0表示的平面区域;(2)画出不等式x ≤3表示的平面区域. (让学生完成) 例2:画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3,0,05x y x y x 表示的平面区域.x -y分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。
《简单的线性规划问题》教学设计一、教学内容解析线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,是辅助人们进行科学管理的数学方法,为合理地利用有限的人力、物力、财力等资源作出最优决策。
本节的教学重点是线性规划问题的图解法。
数形结合和化归思想是研究线性约束条件下求线性目标函数的最值问题的数学理论和方法,本节课重点体现了这一数学思想,将目标函数与直线的截距、斜率、两点距离联系起来,这样就能使学生对数形结合思想的理解和应用更透彻,为以后解析几何的学习和研究奠定了基础,使学生从更深层次地理解“以形助数”的作用。
二、教学目标设置(1)知识与技能:使学生了解线性规划的意义,利用数形结合及化归的数学方法,理解并掌握非线性目标函数及非线性约束条件下目标函数的最值求法;(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力;(3)情态、态度与价值观:激发学生动手操作、勇于探索的精神,培养学生发现问题、分析问题及解决问题的能力,体会数学活动充满着探索与创造。
三、教学重点难点教学重点:求非线性目标函数的最值;教学难点:能将代数问题转化为斜率或距离等几何问题;四、学情分析本节课学生在学习了简单线性规划问题的基础上,会画出平面区域,并且会计算简单线性目标函数的最值。
从数学知识上看,学生在此基础上还学习过直线的斜率,两点距离问题,直线与圆的位置关系,具备本节课所需知识要素。
从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这成了学生学习的困难。
五、教学方法本课以例题为载体,以学生为主体,以数学实验为手段,以问题解决为目的,激发学生动手操作、观察思考、猜想探究的兴趣。
注重引导帮助学生充分体验“从具体到一般”的抽象过程。
应用“数形结合”的思想方法,培养学生学会分析问题,解决问题的能力。
六、教学过程。
高中数学简单线性规划教案
目标:学生能够理解和应用简单线性规划概念,解决实际问题
一、引入
1. 引导学生回顾线性规划的基本概念:目标函数、约束条件等。
2. 引导学生思考以下问题:什么是线性规划?线性规划在生活中有哪些应用?
二、知识点讲解
1. 线性规划的定义:将问题转化为目标函数和约束条件的最优化问题。
2. 线性规划的基本步骤:确定目标函数、列出约束条件、求解最优解等。
3. 简单线性规划的例子:例如生产某种产品时的最优生产数量、销售某种商品时的最大利润等。
三、练习与应用
1. 让学生通过实际例子练习简单线性规划的求解过程。
2. 给学生一个生活中的实际问题,让他们尝试用线性规划方法解决。
四、总结与反思
1. 总结本节课所学的内容,强调线性规划的重要性和应用价值。
2. 让学生思考如何将线性规划应用到更复杂的实际问题中,并鼓励他们多做练习。
五、作业
1. 布置相关练习题和应用题作为作业,巩固本节课所学的知识。
2. 提醒学生在做作业时要注意思考问题的建模和求解方法。
六、拓展
1. 可以邀请专业人士或相关领域的学者给学生讲解线性规划在实际中的应用和发展趋势。
2. 可以组织学生参加线性规划竞赛或实践活动,增强他们的动手能力和实际应用能力。
3.3.2简单线性规划问题课前预习学案一、预习目标1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念。
2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题二、预习内容1.阅读课本引例,回答下列问题线性规划的有关概念:①线性约束条件②线性目标函数:③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④可行解、可行域和最优解:满足线性约束条件的解(x,y)叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解2..通过研究引例及例题5、6,你能总结出求线性规划问题的最值或最优解的步骤吗?那些问题较难解决?课内探究学案一、学习目标1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念。
2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题二、学习重难点学习重点:教学重点:用图解法解决简单的线性规划问题教学难点:准确求得线性规划问题的最优解三、学习过程(一)自主学习大家预习课本P87页,并回答以下几个问题:问题1. ①线性约束条件②线性目标函数:③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④可行解、可行域和最优解:(二) 合作探究,得出解决线性规划问题的一般步骤(三)典型例题例1、①求z=2x+y的最大值,使式中的x、y满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,yyxxy②求z=3x+5y的最大值和最小值,使式中的x、y满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535yxxyyx例2. 营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg 的蛋白质,0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg 脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元。
简单的线性规划内容导学内容导学:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性归划问题.1.可行域满足线性约束条件的解(,)x y 叫做可行解,由所有可行解组成的集合叫做可行域。
可行域一般是二元一次不等式(组)表示的平面区域,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.2.目标函数z Ax By C =++(,A B 不全为零)被称为目标函数.当0B ≠时,由z Ax By C =++得A z C y x B B -=-+.这样,二元一次函数就可视为斜率为A B -,在y 轴上截距为z C B-,且随z 变化的一组平行线.于是,把求z 的最大值和最小值的问题转化为:求直线与可行域有公点时,直线在y 轴上的截距的最大值或最上值问题.对线性目标函数z Ax By =+中的B 的符号一定要注意:当0B >时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴上截距最小时,z 值最小;当0B <时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.3.最优解的求法如果可行域是一个多边形,那么一般在某顶点处使目标函数取得最大值或最小值,最优解一般就是多边形的某个顶点,到底哪个顶点为最优解,可有两种确定方法:一是将目标函数的直线平行移动,最先通过或最后通过的顶点便是最优解;另一种方法可利用围成可行域的直线的斜率分别为,12n k k k <<<,而且目标函数的直线的斜率为k ,则当1i i k k k +<<时,直线i l 与1i l +相交的顶点一般是最优解.特别地,当表示线性目标函数的直线与可行域的某条边平行时()i k k =,其最优解可能有无数个.若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与表示线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.4.线性规划问题的解题步骤(1)建模 建模是解决线性规划问题极为重要的环节与技术.首先,要过文理关.理清题意,找清关系,列出关系表格.其次,要过数理关.即将各种关系数量化,实现实际问题与数学问题的转化.可分三步走:一设:设出所求的未知数.二列:列出线性约束条件.三建:建立目标函数.(2)求解 即过算理关,可以分为四步:一画:画出可行域,将代数问题化为几何问题.二移:采用平移的方法找出符合条件的平行线系中的直线.三求:求出最优解(,)x y .四答:即下结论,写出满足条件的最优解并求出目标函数z 的最值.(3)还原 把数学问题还原为实际问题,以便用来指导我们的生产实践.题型导析:线性规划问题的应用范围很广,简单的线性规划问题主要解决生产实际中资源配置和降低资源消耗两个方面的问题.(1)在人力、物力、资金等资源有限给定时,怎样利用对有限资源的合理配置,使产品结构更合理,收到的效益最大.例1:央视为改版后的《非常6+1》栏目播放两套宣传片.其中宣传片甲播映时间为3分30秒,广告时间为30秒,收视观众为60万,宣传片乙播映时间为1分钟,广告时间为1分钟,收视观众为20万.广告公司规定每周至少有3.5分钟广告,而电视台每周只能为该栏目宣传片提供不多于16分钟的节目时间.电视台每周应播映两套宣传片各多少次,才能使得收视观众最多?播放片甲 播放片乙 节目要求 片集时间(min )3.5 1 ≤16 广告时间(min )0.5 1 ≥3.5 收视观众(万) 60 20解:设电视台每周应播映片甲x 次, 片乙y 次,总收视观众为z 万人.则其线性约束条件为:42160.5 3.5,x y x y x y N +≤⎧⎪+≥⎨⎪∈⎩,目标函数为:6020z x y =+画出了可行域如下图由图可得:当3x =,2y =时,220max z =.答:电视台每周应播映甲种片集3次,乙种片集2次才能使得收视观众最多.小结:把实际问题转化成线性规划问题即建立数学模型是解决本题的关键.建模时要分清已知条件中,哪些属于约束条件,哪些与目标函数有关.(2)完成给定的某顶任务,怎样统一筹划安排资金、人力、物力,最大限度地降低资源消耗.例2.北京市某中学准备组织学生去国家体育场“鸟巢”参观.参观期间,校车每天至少要运送480名学生.该中学后勤集团有7辆小中巴、4辆大中巴,其中小中巴能载16人、大中巴能载32人. 已知每辆客车每天往返次数小中巴为5次、大中巴为3次,每次运输成本小中巴为48元,大中巴为60元.请问每天应派出小中巴、大中巴各多少辆,能使总费用最少?数量 往返次数 载人数 每次运输成本 总人数 小中巴 7 5 16 48 ≥480 大中巴 4 3 32 60x y z 5163324800704,x y x y x y N⋅+⋅≥⎧⎪≤≤⎪⎨≤≤⎪⎪∈⎩,目标函数为:240180z x y =+其可行域如下图:由网格法可得:2x =,4y =时,min 1200z .答:派4辆小中巴、2辆大中巴费用最少.小结:求解整点最优解的方法称为——网格法.网格法主要依赖作图,要规范地作出精确图形.解题中要注意利用数形结合思想、化归思想,几何方法等处理代数问题.。
线性规划知识梳理四川 何成宝一、画平面区域的步骤:(1)画线——画出不等式所对应的方程所表示的直线(如原不等式中带等号,则画成实线,否则画成虚线);(2)定侧——将某个区域位置明显的特殊点的坐标代入不等式,根据“同侧同号、异侧异号”的规律确定不等式所表示的平面区域在直线的哪一侧;(3)求“交”——如果平面区域是由不等式组决定的,则在确定了各个不等式所表示的区域后,再求这些区域的公共部分.这个公共部分就是不等式组所表示的平面区域.注:①直线1:y=kx+b 把平面上的点分成三类:在直线1上方的点;在直线1下方的点,其中y>kx+b 表示直线上方的半平面区域,y<kx+b 表示直线下方的半平面区域,而直线y=kx+b 是这两个平面区域的分界线。
②二元一次不等式Ax+By+C>0在直角坐标系中表示直线Ax+By+C=0某一侧的所有点组成的平面区域,对于在直线Ax+By+C=0的同一侧的所有点(x ,y ),实数Ax+By+C 的符号都相同,故只需在此直线的某一侧任取一点)(00y x ,(常取(0,0),将它的坐标代入Ax+By+C ,由其值的符号可判定Ax+By+C>0表示直线的那一侧,事实上,这就是所谓的“同侧同号,异侧异号”的符号法则。
二、简单的线性规划问题的求解步骤:(1)作图——画出约束条件 (不等式或不等式组) 所确定的平面区域和目标函数所表示的平面直线系中的任意一条直线 ;(2)平移——将 平行移动,以确定最优解所对应的点的位置;(3)求值—解有关方程组求出最优点的坐标,再代入目标函数,求出目标函数的最值. 注:(1)求线性目标函数的线性约束条件下的最值问题,便是线性规划问题。
(2)求线性目标函数在线性约束条件下的最值的一般步骤是:①列出线性约束条件及写出目标函数;②求出线性约束条件所表示的平面区域;③通过平面区域求出满足线性条件下的可行解;④用图形的直观性求最值;⑤检验由④求出的解是最优解或最优解的近似值或符合问题的实际意义。