龙格 库塔方法 数学课的讲解
- 格式:ppt
- 大小:706.00 KB
- 文档页数:32
《四阶龙格—库塔法的原理及其应用》
龙格—库塔法(又称龙格库塔法)是由一系列有限的、独立的可能解组成的无穷序列,这些解中每个都与原来的数列相差一个常数。
它是20世纪30年代由匈牙利著名数学家龙格和库塔提出的,故得此名。
1.它的基本思想是:在n 阶方阵M 上定义一个函数,使得当n 趋于无穷时,它在m 中所表示的数值为M 的某种特征值,从而构造出一族具有某种特性的可计算函数f (x)= Mx+ C (其中C 为任意正整数)。
例如,若f (x)=(a-1) x+ C,则称之为(a-1) x 的龙格—库塔法。
2.它的应用很广泛,可以求解各类问题,且能将大量的未知数变换成少数几个已知数,因此它是近似计算的一种重要工具。
3.
它的优点主要有:(1)可以将多项式或不等式化成比较简单的形式;(2)对于同一问题可以用不同的方法来解决,并取得同样的结果;(3)适合处理高次多项式或者不等式,尤其适合处理多元函数的二次型。
四阶龙格-库塔法求解常微分方程的初值问题1.算法原理对于一阶常微分方程组的初值问题⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋯⋯==⋯⋯=⋯⋯⋯⋯=⋯⋯=0020********'212'2211'1)(,,)(,)())(,),(),(,()())(,),(),(,()())(,),(),(,()(n n n n n n n y x y y x y y x y x y x y x y x f x y x y x y x y x f x y x y x y x y x f x y , 其中b x a ≤≤。
若记Tn Tn Tn y x f y x f y x f y x f y y y y x y x y x y y x y )),(,),,(),,((),(),,,())(),(),(()(2102010021⋯⋯=⋯⋯=⋯⋯=,,则可将微分方程组写成向量形式⎩⎨⎧=≤≤=0')()),(,()(y a y b x a x y x f x y微分方程组初值问题在形式上和单个微分方程处置问题完全相同,只是数量函数在此变成了向量函数。
因此建立的单个一阶微分方程初值问题的数值解法,可以完全平移到求解一阶微分方程组的初值问题中,只不过是将单个方程中的函数转向向量函数即可。
标准4阶R-K 法的向量形式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++=++=++==++++=+),()21,2()21,2(),()22(61342312143211K y h x hf K K y h x hf K K y h x hf K y x hf K K K K K y y n n n n n n n n n n 其分量形式为n j K y K y K y h x hf K K y K y K y h x hf K K y K y K y h x hf K y y y x hf K K K K K y y n ni i i i j j n nii i i j j n nii i i j j ni i i i j j j j j j i j i j ,,2,1).,,,;(),2,2,2;2(),2,2,2;2(),,,,;(),22(6132321314222212131212111221143211,1,⋯⋯=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+⋯⋯+++=+⋯⋯+++=+⋯⋯+++=⋯⋯=++++=++,,2.程序框图3.源代码%该函数为四阶龙格-库塔法function [x,y]=method(df,xspan,y0,h)%df为常微分方程,xspan为取值区间,y0为初值向量,h为步长x=xspan(1):h:xspan(2);m=length(y0);n=length(x);y=zeros(m,n);y(:,1)=y0(:);for i=1:n-1k1=feval(df,x(i),y(:,i));k2=feval(df,x(i)+h/2,y(:,i)+h*k1/2);k3=feval(df,x(i)+h/2,y(:,i)+h*k2/2);k4=feval(df,x(i)+h,y(:,i)+h*k3);y(:,i+1)=y(:,i)+h*(k1+2*k2+2*k3+k4)/6;end%习题9.2clear;xspan=[0,1];%取值区间h=0.05;%步长y0=[-1,3,2];%初值df=@(x,y)[y(2);y(3);y(3)+y(2)-y(1)+2*x-3];[xt,y]=method(df,xspan,y0,h)syms t;yp=t*exp(t)+2*t-1;%微分方程的解析解yp1=xt.*exp(xt)+2*xt-1%计算区间内取值点上的精确解[xt',y(1,:)',yp1']%y(1,:)为数值解,yp1为精确解ezplot(yp,[0,1]);%画出解析解的图像hold on;plot(xt,y(1,:),'r');%画出数值解的图像4.计算结果。
龙格库塔方程1.介绍龙格-库塔(RK)方法是求解常微分方程(ODE)最常见的数值方法之一。
对于大多数非线性ODE问题,解析解并不存在或难以获得,因此需要使用数值方法来近似计算解。
RK方法通过迭代逼近ODE的解来得到精确性可控、收敛性好、易实现的数值解。
RK方法的基本思想是将ODE中的一阶导数转化为一组计算步骤,以得到相邻时间点之间的函数值和一阶导数的近似值,然后将其结合起来得到一个更精确的解。
2.RK方法的推导RK方法的推导过程是基于欧拉方法的,欧拉方法是RK方法的一阶近似。
假设有ODE$\frac{dx}{dt}=f(x,t)$,欧拉方法的迭代公式为$$x_{n+1}=x_n+hf(x_n,t_n)$$其中$h$是时间步长,$t_n=n*h$。
这个公式的意思是,从$x_n$开始,用一阶导数$f(x_n,t_n)$来列出切线,然后沿着切线向前移动$h$个单位,得到$x_{n+1}$。
更高阶的RK方法则基于更精细的近似。
例如,经典的四阶RK方法(RK4)迭代公式为:\begin{align*}k_1&=f(x_n,t_n)\\k_2&=f(x_n+\frac{h}{2}k_1,t_n+\frac{h}{2})\\k_3&=f(x_n+\frac{h}{2}k_2,t_n+\frac{h}{2})\\k_4&=f(x_n+h k_3,t_n+h)\\x_{n+1}&=x_n+\frac{h}{6}(k_1+2k_2+2k_3+k_4)\end{align*}其中,$k_1$是欧拉方法的一阶导数解,依次计算得到更高阶的导数近似值$k_2-k_4$。
3.RK方法的优势RK方法与其他数值方法相比具有众多优点。
首先,RK方法的精度可控。
通过增加迭代次数或者近似阶次,RK 方法可以获得任意高的精度。
这个特性非常适用于涉及长时间尺度和小尺度特征的问题,例如天气预报,需要同时精确地处理地球的自转和大气的扰动。
4阶经典龙格库塔公式求解微分方程4阶龙格库塔法(也称为四阶Runge-Kutta方法)是一种常用于求解常微分方程的数值方法。
它是由德国数学家卡尔·龙格以及他的学生马丁·威尔海姆·库塔于1901年独立提出的。
以下是详细的介绍。
1.问题描述我们考虑一个典型的常微分方程初值问题:dy/dx = f(x, y),y(x0) = y0其中,x0是给定的初始点,y(x)是我们要求解的函数,f(x,y)是已知的函数。
2.方法原理四阶龙格库塔方法的基本思想是通过使用全区间的函数信息来估计下一步的函数值。
在每个步骤中,我们计算四个不同的估计量,然后将它们组合起来以获取最终的解。
具体来说,我们首先计算在初始点x0上的斜率k1=f(x0,y0)。
然后我们计算在x0+h/2处的斜率k2=f(x0+h/2,y0+h/2*k1),其中h是步长。
以此类推,我们计算k3和k4分别在x0+h/2和x0+h处的斜率。
然后,我们通过加权组合这些斜率来计算下一个点的函数值y1:y1=y0+(h/6)*(k1+2*k2+2*k3+k4)。
3.算法步骤以下是使用四阶龙格库塔法求解常微分方程的详细步骤:步骤1:给定初始条件 y(x0) = y0,选择步长 h 和积分终点 x_end。
步骤2:计算积分步数n:n = (x_end - x0)/h。
步骤3:设置变量x=x0和y=y0,并将步长设置为h。
步骤4:对每个步数i=1,2,...,n,执行以下计算:4.1:计算斜率k1=f(x,y)。
4.2:计算斜率k2=f(x+h/2,y+h/2*k1)。
4.3:计算斜率k3=f(x+h/2,y+h/2*k2)。
4.4:计算斜率k4=f(x+h,y+h*k3)。
4.5:计算下一个点的函数值y1=y+(h/6)*(k1+2*k2+2*k3+k4)。
4.6:将x更新为x+h,y更新为y1步骤5:重复步骤4,直到达到积分终点 x_end。
龙格库塔高阶常微分方程组龙格库塔法(Runge-Kutta method)是一种数值解常微分方程的方法,它由卡尔·龙格(Carl Runge)和马丁·康托尔·库塔(Martin Kutta)分别独立发现。
这种方法常常被用来解决高阶常微分方程组,其优点在于精度高且适用范围广。
1. 龙格库塔法的基本原理我们来简要介绍一下龙格库塔法的基本原理。
对于一个一阶常微分方程y′=f(x,y),我们可以通过欧拉法进行数值解,其迭代公式为y_(n+1) = y_n + hf(x_n, y_n)。
而龙格库塔法则通过多个步骤的迭代来提高精度。
常见的四阶龙格库塔法的迭代公式如下:k1 = hf(x_n, y_n)k2 = hf(x_n+1/2h, y_n+1/2k1)k3 = hf(x_n+1/2h, y_n+1/2k2)k4 = hf(x_n+h, y_n+k3)y_(n+1) = y_n + 1/6(k1 + 2k2 + 2k3 + k4)2. 高阶常微分方程组的数值解对于高阶常微分方程组,我们可以通过变量替换的方式将其转化为一组一阶微分方程,然后利用龙格库塔法进行数值解。
以二阶常微分方程为例,我们可以令y1 = y,y2 = y',然后构造一组一阶微分方程:y1' = y2y2' = f(x,y1,y2)这样,我们就可以利用龙格库塔法对其进行数值解了。
3. 个人观点和理解在我看来,龙格库塔法是一种非常有效的数值解法,尤其适用于高阶常微分方程组。
通过多步迭代的方式,可以大大提高数值解的精度,从而在实际问题中得到更为可靠的结果。
当然,龙格库塔法也存在一定的局限性,比如对于一些特殊形式的方程可能不够有效,需要结合其他方法进行求解。
总结回顾通过本文的介绍,我们对龙格库塔法有了更深入的了解。
从基本原理到在高阶常微分方程组中的应用,我们了解了其在数值计算中的重要性。
我也分享了自己对这一方法的个人观点和理解。