龙格库塔方法ppt课件
- 格式:ppt
- 大小:1.22 MB
- 文档页数:23
第四讲龙格-库塔⽅法龙格-库塔⽅法3.2 Runge-Kutta法3.2.1 显式Runge-Kutta法的⼀般形式上节已给出与初值问题(1.2.1)等价的积分形式(3.2.1)只要对右端积分⽤不同的数值求积公式近似就可得到不同的求解初值问题(1.2.1)的数值⽅法,若⽤显式单步法(3.2.2)当,即数值求积⽤左矩形公式,它就是Euler法(3.1.2),⽅法只有⼀阶精度,若取(3.2.3)就是改进Euler法,这时数值求积公式是梯形公式的⼀种近似,计算时要⽤⼆个右端函数f的值,但⽅法是⼆阶精度的.若要得到更⾼阶的公式,则求积分时必须⽤更多的f值,根据数值积分公式,可将(3.2.1)右端积分表⽰为注意,右端f中还不能直接得到,需要像改进Euler法(3.1.11)⼀样,⽤前⾯已算得的f值表⽰为(3.2.3),⼀般情况可将(3.2.2)的表⽰为(3.2.4)其中这⾥均为待定常数,公式(3.2.2),(3.2.4)称为r级的显式Runge-Kutta法,简称R-K⽅法.它每步计算r个f值(即),⽽k由前⾯(i-1)个已算出的表⽰,故公式是显式的.例i如当r=2时,公式可表⽰为(3.2.5) 其中.改进Euler 法(3.1.11)就是⼀个⼆级显式R-K ⽅法.参数取不同的值,可得到不同公式.3.2.2 ⼆、三级显式R-K ⽅法对r=2的显式R-K ⽅法(3.2.5),要求选择参数,使公式的精度阶p 尽量⾼,由局部截断误差定义11122211()()[(,())(,)]n n n n n n n T y x y x h c f x y x c f x a h y b hk ++=--+++ (3.2.6)令,对(3.2.6)式在处按Taylor 公式展开,由于将上述结果代⼊(3.2.6)得要使公式(3.2.5)具有的阶p=2,即,必须(3.2.7)即由此三式求的解不唯⼀.因r=2,由(3.2.5)式可知,于是有解(3.2.8)它表明使(3.2.5)具有⼆阶的⽅法很多,只要都可得到⼆阶精度R-K⽅法.若取,则,则得改进Euler法(3.1.11),若取,则得,此时(3.2.5)为(3.2.9)其中称为中点公式.改进的Euler法(3.1.11)及中点公式(3.2.9)是两个常⽤的⼆级R-K⽅法,注意⼆级R-K⽅法只能达到⼆阶,⽽不可能达到三阶.因为r=2只有4个参数,要达到p=3则在(3.2.6)的展开式中要增加3项,即增加三个⽅程,加上(3.2.7)的三个⽅程,共计六个⽅程求4个待定参数,验证得出是⽆解的.当然r=2,p=2的R-K⽅法(3.2.5)当取其他数时,也可得到其他公式,但系数较复杂,⼀般不再给出.对r=3的情形,要计算三个k值,即其中将按⼆元函数在处按Taylor公式展开,然后代⼊局部截断误差表达式,可得可得三阶⽅法,其系数共有8个,所应满⾜的⽅程为(3.2.10)这是8个未知数6个⽅程的⽅程组,解也是不唯⼀的,通常.⼀种常见的三级三阶R-K⽅法是下⾯的三级Kutta⽅法:(3.2.11)附:R-K 的三级Kutta ⽅法程序如下function y = DELGKT3_kuta(f, h,a,b,y0,varvec) format long; N = (b-a)/h;y = zeros(N+1,1); y(1) = y0; x = a:h:b;var = findsym(f); for i=2:N+1K1 = Funval(f,varvec,[x(i-1) y(i-1)]);K2 = Funval(f,varvec,[x(i-1)+h/2 y(i-1)+K1*h/2]); K3 = Funval(f,varvec,[x(i-1)+h y(i-1)-h*K1+K2*2*h]);y(i) = y(i-1)+h*(K1+4*K2+K3)/6; %满⾜c1+c2+c3=1,(1/6 4/6 1/6)endformat short; 3.2.3 四阶R-K ⽅法及步长的⾃动选择利⽤⼆元函数Taylor 展开式可以确定(3.2.4)中r=4,p=4的R-K ⽅法,其迭代公式为111223344()n n y y h c k c k c k c k +=++++其中1(,)n n k f x y =,2221(,(,))n n n n k f x a h y b hf x y =++,⽽33311322(,)n n k f x a h y b hk b hk =+++ 44411422433(,)n n k f x a h y b hk b hk b hk =++++共计13个参数待定,Taylor 展开分析局部截断误差,使得精度达到四阶,即误差为5()O h 。