探索与两定圆都相切的动圆圆心轨迹
- 格式:docx
- 大小:28.97 KB
- 文档页数:4
求动圆圆心的轨迹方程包头市第一中学---赵胜凡直线与圆相切,圆与圆相切是圆这一节的重要内容,它主要体现在圆的半径及其圆心距的数量关系上,从而利用这一特点求动圆圆心的轨迹或轨迹方程的问题在高考及资料中经常见到,显然此类问题简洁的解法就是利用圆的几何性质,这类问题一般不难,但比较灵活,学生在解决这类问题时不容易把握,经常出错,本人整理了一些常见类型,试图揭示其本质,使学生把握其规律,掌握这类问题。
类型1 动圆与直线相切,求动圆圆心的轨迹方程例1.已知动圆经过点F(0,3)且和直线y+3=0相切,求圆心的轨迹方程.解析:设所求圆心为(x,y),有已知可得3)3()0(22+=-+-y y x ,化简并整理的 y x 122=,是一条抛物线,其中顶点为(0,0),焦点为(0,3)例2. 求与圆C :0422=-+x y x 相切且与y 轴相切的动圆圆心P 的轨迹方程. 解析:圆C 即4222=+-y x )(,设动圆的圆心为)(y x P ,(1)若动圆P 与圆C 相外切,则2222+=+-x y x )(,所以x x y 442+=,即 时,x y 82= (x>0)或02=y (x<0).(2)若动圆P 与圆C 内切,则0=y (x>0,且2≠x ) 综上 ,所求轨迹方程为x y 82= (x>0)或y=0 ( 2,0≠≠x x 且)点评:本题两圆的位置关系注意不要忘记动圆P 与定圆C 内切的情况 .类型2 动圆与已知定圆相切,求动圆圆心的轨迹方程例3 . 过已知圆C 内一个定点A 作圆'C 与已知圆C 内切,则圆心的轨迹是( )A.线段B.圆C.椭圆D.圆或椭圆解析:若点A 为圆C 的圆心,则点'C 的轨迹为圆,若点A 不是圆C 的圆心,由两圆内切可知A C R CC ''-= 即R A C CC =+''(其中R 为圆C 的半径),因此点'C 的轨迹为椭圆.故选D评析:此题学生容易忽略点A 为圆心时的一种情况,从而错选C. 例4.已知一个动圆M 与定圆C :100422=++y x )(,且过点A (4,0),求这个动圆圆心M 的轨迹方程. 解:根据已知条件得MA MC -=10,即10=+MA MC ,又8=CA ,由椭圆的定义知,点M 的轨迹为以A,C 为焦点的椭圆,其中a=5, c=4,所以92=b 因此所求轨迹为192522=+y x . 例5.已知定点A (3,0)和定圆C :16322=++y x )(,动圆P 和圆C 相切,并过点A ,求动圆圆心P 的轨迹方程. 解析:设动圆的半径为r,且圆心坐标为)(y x ,, 根据已知条件⎩⎨⎧=+=r PA r PC 4,或⎩⎨⎧=-=rPA r PC 4,即 4±=-PA PC ,有双曲线的定义知动圆圆心P 的轨迹为以),(),,(0303A C -为焦点且实轴长2a=4的双曲线,其方程为15422=-y x . 评析:观察例4及例5不难发现其条件基本相同但结论差异很大,一个是椭圆,另一个是双曲线.其原因在于定点与定圆的的位置关系不同,例4中的点A 在定圆内,而例5中的点A 在定圆外.这类题目还可以这样变化,变式:已知点)0,2(A ,定圆C :16)2(22=++y x ,动圆P 与圆C 相切且过点A ,求点P 的轨迹方程.其结论应该为y=0 )且(2,2≠->x x ,此时点A 在定圆上,可见在其他条件不变的情况下影响轨迹类型的主要是点A 与定圆的关系.类型3.动圆与已知两圆相切,求动圆圆心的轨迹方程.例6. 求与圆13:221=++y x C )(及93:222=+-y x C )(都外切的动圆圆心C 的轨迹方程. 解析:设动圆C 的半径为r ,根据已知条件知r 11+=CC 及r 32+=CC ,所以212=-CC CC <6,则动点C 的轨迹为双曲线的左支,又a=1,c=3,所以82=b ,因此点C 的轨迹方程为)(01822≤=-x y x . 评析:本例学生以忽略限制条件0≤x 导致出错.若将此题条件圆2C 的方程改为1322=+-y x )(,其余条件不变,此时动圆圆心的轨迹将变为线段21C C 的垂直平分线.例7.已知一个动圆M 与定圆1004:221=++y x C )(相内切,与定圆44:222=+-y x C )(相外切,求这个动圆圆心M 的轨迹方程. 解:设动圆圆心M 的坐标为)(y x ,半径为r,由题意得r 101-=MC ,r 22+=MC 所以1221=+MC MC ,所以点M 的轨迹为以21,C C 为焦点的椭圆,且长轴2a=12,焦距2c=8,即a=6,c=4,所以202=b ,故所求轨迹方程为1203622=+y x . 点评:通过以上两例发现相切关系不一样所得方程类型也不一样.通过以上例题,我们不难发现,这些题目的共同特点都是相切,不管是动圆与直线还是与定圆,条件都相差不多,解题过程也大体相同(结合圆锥曲线的第一定义),但轨迹的类型各不相同,解题时稍不注意就会出错,以上就是本人对这类问题的一点粗浅认识,希望能对大家有所帮助.。
轨迹方程的六种求法整理求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考.求轨迹方程的一般方法:1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。
设点。
列式。
化简。
说明等,圆锥曲线标准方程的推导。
1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,求点P 的轨迹。
26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅ (1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二、定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.1、 若动圆与圆4)2(22=++y x 外切且与直线x =2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x =4的距离,故所求轨迹是以(-2,0)为焦点,直线x =4为准线的抛物线,并且p =6,顶点是(1,0),开口向左,所以方程是)1(122--=x y .选(B ).2、一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M ,半径为r ,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支3、在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠.注意:求轨迹方程时要注意轨迹的纯粹性与完备性.4、设Q 是圆x 2+y 2=4上动点另点A (3。
动点轨迹方程的求法一、直接法按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时.例1已知直角坐标平面上点Q 2,0和圆C :,动点M 到圆C 的切线长与的比等于常数如图,求动点M 的轨迹方程,说明它表示什么曲线.解析:设Mx ,y ,直线MN 切圆C 于N ,则有,,即,,.整理得,这就是动点M的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆.二、代入法若动点Mx,y 依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况.例2,已知抛物线,定点A 3,1,B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 解析:设,,由题设,P 分线段AB 的比,,∴,,解得, 又点B 在抛物线上,其坐标适合抛物线方程,∴,,整理得点P 的轨迹方程为其轨迹为抛物线.三、定义法若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现. 例3,若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是A ,,,,,,,,,,,,,,B122=+y x MQ ()0>λλλ=MQMN λ=-MQONMO 22λ=+--+2222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45=x )0,45(2222222)1(3112-+=+-λλλλy x )-()0,12(22-λλ13122-+λλ12+=x y ),(),,(11y x B y x P 2==PBAPλ.2121,212311++=++=y y x x 2123,232311-=-=y y x x 12+=x y .1)2323()2123(2+-=-x y ),31(32)31(2-=-x y 4)2(22=++y x 012122=+-x y 012122=-+x yC ,,,,,,,,,,,,,,,,,,,D解析:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心-2,0的距离等于它到定直线x =4的距离,故所求轨迹是以-2,0为焦点,直线x =4为准线的抛物线,并且p =6,顶点是1,0,开口向左,所以方程是.选B .例4,一动圆与两圆和都外切,则动圆圆心轨迹为 A 抛物线,,,,,,,,,B 圆,,,,,,,,C 双曲线的一支,,,,,D 椭圆解析:如图,设动圆圆心为M ,半径为r ,则有动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支,选C .四、参数法若动点Px ,y 的坐标x 与y 之间的关系不易直接找到,而动点变化受到另一变量的制约,则可求出x 、y 关于另一变量的参数方程,再化为普通方程.例5设椭圆中心为原点O ,一个焦点为F 0,1,长轴和短轴的长度之比为t .1求椭圆的方程;2设经过原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q ,点P 在该直线上,且,当t 变化时,求点P 的轨迹方程,并说明轨迹是什么图形.解析:1设所求椭圆方程为由题意得解得,,,,,所以椭圆方程为. 2设点解方程组得,,,,,由和得其中t >1.消去t ,得点P 轨迹方程为和.其082=+x y 082=-x y )1(122--=x y 122=+y x 012822=+-+x y x .1,2,1=-+=+=MO MC r MC r MO 12-=t t OQOP ).0(12222>>b a b x a y =+⎪⎩⎪⎨⎧==-,,122t ba b a ⎪⎪⎩⎪⎪⎨⎧-=-=.11.122222t b t t a 222222)1()1(t y t x t t =-+-),,(),,(11y x Q y x P ⎩⎨⎧==-+-,,)1()1(1122122122tx y t y t x t t ⎪⎪⎩⎪⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 12-=t t OQ OP 1x x OQ OP =⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,2,2,2222ty t x t y t x 或)22(222>=x y x )22(222-<-=x y x轨迹为抛物线在直线右侧的部分和抛物线在直线在侧的部分. 五、交轨法一般用于求二动曲线交点的轨迹方程.其过程是选出一个适当的参数,求出二动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程.例6,已知两点以及一条直线:y =x ,设长为的线段AB 在直线上移动,求直线PA 和QB 交点M 的轨迹方程.解析:PA 和QB 的交点Mx ,y 随A 、B 的移动而变化,故可设,则PA :Q QB :消去t ,得当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以点M的轨迹方程是以上是求动点轨迹方程的主要方法,也是常用方法,如果动点的运动和角度有明显的关系,还可考虑用复数法或极坐标法求轨迹方程.但无论用何方法,都要注意所求轨迹方程中变量的取值范围.y x 222=22=x y x 222-=22-=x )2,0(),2,2(Q P -ι2λ)1,1(),,(++t t B t t A ),2)(2(222-≠++-=-t x t t y ).1(112-≠+-=-t x t t y .082222=+-+-y x y x .0822222=+--+-y x x y x。
轨迹问题再探究(圆轨问题)主从联动模型专注陕西中考数学研究关注刘⽼师微信公众号“龙哥与数学”,和你⼀起挑战中考数学,冲刺名校。
轨迹问题再探索---圆轨模型导读在前⾯的学习中,我们已经认识了轨迹,知道在初中阶段,我们会遇到两种轨迹问题,⼀它们分别对应不同的知识点。
圆弧上的点到定点的距离等于定个是圆弧,⼀个是线段。
它们分别对应不同的知识点。
圆弧上的点到定点的距离等于定个是圆弧,⼀个是线段。
长,线段上的点到直线的距离也等于定长。
但是在实际的考查过程中,我们往往不是事先知道动点所形成的轨迹。
⽽需要我们结合题⽬中的条件,来分析出问题是不是轨迹问题,是哪种轨迹问题,它们常见的处理⽅法⼜是什么呢?在随后的讲解中,将逐步为⼤家揭开谜底。
敬请您的期待。
⾸先我们先给轨迹下个定义,简单的说就是:动点在空间或者平⾯内移动,它所通过的全部路径叫做这个点的轨迹。
我们在理解这个定义时,可从下列⼏个⽅⾯考虑:(1)符合⼀定条件的动点所形成的图形,或者说,符合⼀定条件的点的全体所组成的集合,叫做满⾜该条件的点的轨迹。
(2)凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性)。
(3)另外凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
我们要记住两点:平⾯轨迹⼀般是曲线,空间轨迹⼀般是曲⾯。
常见的平⾯内点的轨迹1.到定点的距离等于定长的点的轨迹,是以定点为圆⼼,定长为半径的圆。
2.到已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线。
3.到已知⾓的两边距离相等的点的轨迹,是这个⾓的⾓平分线。
4.到直线L的距离等于定长D的点的轨迹,是平⾏于这条直线,并且到这条直线的距离等于定长的的两条直线。
5.到两条平⾏线距离相等的点的轨迹,是和这两条平⾏线平⾏且距离相等的⼀条直线。
6.到两定点距离和等于常数(⼤于两定点的距离)的点的轨迹是以两定点为焦点的椭圆。
7.到两定点的距离的差的绝对值等于常数(⼩于两定点的距离)的点的轨迹,是以两定点为焦点的双曲线。
专题:解析几何中的动点轨迹问题学大苏分教研中心 周坤轨迹方程的探求是解析几何中的基本问题之一,也是近几年各省高考中的常见题型之一。
解答这类问题,需要善于揭示问题的内部规律及知识之间的相互联系。
本专题分成四个部分,首先从题目类型出发,总结常见的几类动点轨迹问题,并给出典型例题;其次从方法入手,总结若干技法(包含高考和竞赛要求,够你用的了...);然后,精选若干练习题,并给出详细解析与答案,务必完全弄懂;最后,回顾高考,列出近几年高考中的动点轨迹原题。
OK ,不废话了,开始进入正题吧...Part 1 几类动点轨迹问题一、动线段定比分点的轨迹例1 已知线段AB 的长为5,并且它的两个端点A 、B 分别在x 轴和y 轴上滑动,点P 在段AB 上,(0)AP PB λλ=>,求点P 的轨迹。
()()()00P x y A a B b 解:设,,,,,,()()011101a a xx y b b y λλλλλλλ+⋅⎧⎧=+=⎪⎪⎪+⎨⎨++⋅=⎪⎪=⎩⎪+⎩, 2225a b +=代入()()222221125y x λλλ+++=()()222221252511x y λλλ+=++222514P x y λ=+=当时,点的轨迹是圆;① 1P y λ>当时,点的轨迹是焦点在轴上的椭圆;②01P x λ<<当时,点的轨迹是焦点在轴上的椭圆③;例2 已知定点A(3,1),动点B 在圆O 224x y +=上,点P 在线段AB 上,且BP:PA=1:2,求点P 的轨迹的方程.()()113P x y B x y AB BP =-解:设,,,,有()()()()1133131313x x y y ⎧+-=⎪+-⎪⎨+-⎪=⎪+-⎩11332312x x y y -⎧=⎪⎪⎨-⎪=⎪⎩化简即:22114x y +=代入223331422x y --⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭得 所以点P 的轨迹为()22116139x y ⎛⎫-+-= ⎪⎝⎭二、两条动直线的交点问题例3 已知两点P (-1,3),Q (1,3)以及一条直线:l y x =,设长为2的线段AB 在l 上移动(点A 在B 的左下方),求直线PA 、QB 交点M 的轨迹的方程 ()()()11M x y A t t B t t ++解:设,,,,,, ()()1313PM x y PA t t =+-=+-,,,, ()()131113QM x y QB t t =--=+-+-,,,, ////PM PAQM QB ∴,,()()()()()()()1313123x t t y x t t y ⎧+-=+-⎪∴⎨--=-⎪⎩34222x y t x y x t x y +⎧=⎪-+⎪⎨-⎪=⎪-+⎩32242x y x x y x y +-=-+-+()()()()32422x y x y x y x +-+=-+-228y x -=例4 已知12A A 、是双曲线22221(0,0)x y a b a b-=>>的两个顶点,线段MN 为垂直于实轴的弦,求直线1MA 与2NA 的交点P 的轨迹()()()()()11111200P x y M x y N x y A a A a --解:设,,,,,,,,,,1122A P A MA P A N k k k k =⎧⎪⎨=⎪⎩ 1111y yx a x ay y x a x a⎧=⎪++⎪⎨-⎪=⎪-+⎩ 1111y y y yx a x a x a x a-⋅=⋅+-+- 22122221y y x a x a =--- 2211221x y a b -= 22221112221y x x a b a a-∴=-= 2212221y b x a a=- 22222y b x a a ∴=-- 222222a y b x a b =-+()2222010x y a b x x a b >>+=≠当时,是焦点在轴上的椭圆,;2220a b x y a =>+=当时,是圆;()2222010x y b a y x a b>>+=≠当时,是焦点在轴上的椭圆,;三、动圆圆心轨迹问题例5 已知动圆M 与定圆2216x y +=相切,并且与x 轴也相切,求动圆圆心M 的轨迹()()0M x y y ≠解:设,,224M x y y +=-当圆与定圆内切时,,224M x y y +=+当圆与定圆内切时, 224x y y ∴+=±222168x y y y +=±+2816y x ±=-M 的轨迹是两条抛物线(挖去它们的交点) ()()2211202088y x y y x y =-≠=-+≠或例6 已知圆221:(3)4C x y ++=,222:(3)100C x y -+=,圆M 与圆1C 和圆2C 都相切,求动圆圆心M 的轨迹()()11113,0,3,0,6,C C C C -=解:,M r 设动圆的半径为12(1),,M C C 若圆与外切与内切则122,10MC r MC r ⎧=+⎪⎨=-⎪⎩121112,MC MC C C +=>12M C C 的轨迹是以、为焦点的椭圆,2126263a a c c ====,,,,22227b a c =-=,2213627x y +=椭圆的方程为12,M C C (2)若圆与、都内切则12210MC r MC r⎧=-⎪⎨=-⎪⎩ 12118MC MC C C +=>12M C C 的轨迹是以、为焦点的椭圆2222842637a a c c b a c =====-=,,,,, 221167x y +=椭圆的方程为四、动圆锥曲线中相关点的轨迹例7 已知双曲线过(3,0)A -和(3,0)B ,它的一个焦点是1(0,4)F -,求它的另一个焦点2F 的轨迹()2F x y 解:设,,2121AF AF BF BF -=-由双曲线定义, ()()()()2222113004530045AF BF =--+-==-+-=,,2255AF BF -=-若,222255AF BF AF BF ∴-=-=,,204F x y =≠±的轨迹是直线()2255AF BF -=-+若,22106AF BF AB +=>=,2F A B 的轨迹是以、为焦点的椭圆,210,5,26,3,4,a a c c b ===== 22142516x y y +=≠±椭圆方程为()22204142516x y F x y y =≠±+=≠±的轨迹是直线()或椭圆()例8 已知圆的方程为224x y +=,动抛物线过点(1,0)A -和(1,0)B ,且以圆的切线为准线,求抛物线的焦点F 的轨迹方程()F x y l M 解:设焦点,,准线与圆相切于,1111AA l A BB l B ⊥⊥作于,于,1124AF BF AA BB OM +=+==,F A B 的轨迹是以、为焦点的椭圆,2422213a c AB a c b ======,,,,,()221043x y F y +=≠轨迹的方程是Part 2 求动点轨迹的十类方法一、直接法根据已知条件及一些基本公式如两点间距离公式、点到直线的距离公式、直线的斜率公式、切线长公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
高中数学动点轨迹问题专题讲解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学动点轨迹问题专题讲解)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学动点轨迹问题专题讲解的全部内容。
动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有:(1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可.(5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D)221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(16x y ++=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y +=6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >)变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .(212y x =)8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .(4kx =(28k y >))9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时,弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时, 立,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-. 当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y , 当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG .∵ GM AB λ=,点M 在x 轴上,∴ (,0)3xM .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法)(2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=. ∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k +=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++,∴ 223(,)1313kb bN k k -++.∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k++=--+, ∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠. ∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且k ≠. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅. (Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+,(0,4)MN =,(,2)PN x y =--,48MP MN y ⋅=+.4PN MN ⋅=,……………………………………………3分∵MP MN PN MN ⋅=⋅, ∴48y += 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=;(2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k =-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=. 1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=. 即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k kk k +⋅-+⋅-++ 90+=.2516k =,得54k =±. 故存在直线l :534y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=. (I )建立适当的直角坐标系,求动点P 的轨迹方程; B ,(II)若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、范令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值围.建解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,立平面直角坐标系xoy ,设点(,)P x y , 则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2xM .∵0PM FQ ⋅=,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得1242121-==+∴x x kx x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y (8)分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x FB FA y x FB y x FA841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y 又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分 由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k 解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PM PN =. (1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-,且||AB ≤≤l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =得(,0)M x -,(0, )2y P ,(,)2y PM x =--,(1,)2y PF =-,又0PM PF ⋅=,∴204yx -+=,即动点N程为24y x =.(2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=,0MN MP +=. (1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-、(, 1)MF a =-、(, )MP x a y =-.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =.(2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-,O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =. (2)设P 点坐标为(,)x y (0x >),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为 又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-, 由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得 2222363(31)31t t t =---考虑几何求法!! 解之得:2115t = ,满足2103t <<. 故所求直线l0y --=0y +-=. 12.设A,B分别是直线5y x =和5y x =-上的两个动点,并且||20AB =,动点P 满足OP OA OB =+.记动点P 的轨迹为C .(I) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线y x =和y x =上的点,故可设11()A x x,22(,)B x x . ∵OP OA OB =+,∴1212,)x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=.(II)设N(s,t),M(x,y),则由λ=,可得(x,y-16)=λ (s,t—16).故x sλ=,16(16)y tλ=+-.∵ M、N在曲线C上,∴⎪⎪⎩⎪⎪⎨⎧=+-+=+1.16)1616t(25s1,16t25s22222λλλ消去s得116)1616t(16)t16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得17152tλλ-=.又4t≤,∴421517≤-λλ.解得3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ).13.设双曲线22213y xa-=的两个焦点分别为1F、2F,离心率为2.(1)求此双曲线的渐近线1l、2l的方程;(3y x=±)(2)若A、B分别为1l、2l上的动点,且122||5||AB F F=,求线段AB的中点M的轨迹方程,并说明是什么曲线.(22317525x y+=)提示:||1010AB=⇒=,又113y x=-,223y x=,则1221()3y y x x+=-,2112()3y y x x-=+.又122x x x=+,122y y y=+代入距离公式即可.(3)过点(1, 0)N是否存在直线l,使l与双曲线交于P、Q两点,且0OP OQ⋅=,若存在,求出直线l的方程;若不存在,说明理由.(不存在)到直线l的距离14.已知点(1, 0)F,直线:2l x=,设动点P为d ,已知2||2PF d =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB(O 为坐标原点).(1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =) (2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b-=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围. 解:(I )依题意有: 2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D(00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >1k 2<,且k≠0. ∴k的取值范围是113(,(,0)(0,)(,)3223-∞--+∞.…………………14分 17.已知向量OA =(2,0),OC =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM —d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角;(3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >), 则直线MF 的斜率为k -,方程为200()y y k x y -=-. ∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=,∴002200022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值). 所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=- 由2002y y x y y x⎧-=-⎪⎨=⎪⎩得200((1),1)E y y -- 同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->.20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+.(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=,求实数λ的取值范围.。
探索与两定圆都相切的动圆圆心轨迹
两圆的位关系有五种:相离、外切、相交、内切和内含. 笔者就两定圆的五种不同位置关系进
行研究.为计算方便,取两定圆的半径r1、r2(r1≠r2),两定圆圆心连线的中点为坐标原点,建立直角坐标系.
1.两定圆相离
设两定圆圆心为C1(-c,0)、C2(c,0),半径分别为r1、r2,r1≠r2,动圆圆心为C(x,y),则⊙C1:(x+c)2+y2=r12,⊙C2:(x-c)2+y2=r22.
(1)当圆C 与圆C1、C2 都外切时,设切点分别为A、B,则|CA|=|CB|
当r1>r2 时,|C C1|>|C C2|,即x>0,点C的轨迹为双曲线
的右支;
当r1<r2 时,|C C1|<|C C2|,即x<0,点C的轨迹为双曲线
的左支;
所以点C 的轨迹为双曲线的一支.
(当r1=r2时,|C C1|=|C C2|,点C的轨迹为线段C1 C2的垂直平分线,即y轴).
(2)当圆C 与圆C1、C2 都内切时,设切点分别为A、B,则|CA|=|CB|
当r1>r2 时,|C C1|<|C C2|,即x<0,点C的轨迹为双曲线的左支;
当r1<r2 时,|C C1|>|C C2|,即x>0,点C的轨迹为双曲线的右支;所以点C 的轨迹为双
曲线的一支,且其轨迹方程为
(3)当动圆C 与两个定圆一个内切一个外切时,
若圆C 与圆C1外切、与C2内切时,设切点分别为A、B,则|CA|=|CB|,且|C C1|>|C C2|,即x>0.
点C 的轨迹是双曲线的右支.
若当圆C 与圆C1内切、与C2外切时,设切点分别为A、B,则|CA|=|CB|,
点C 的轨迹为双曲线的左支.
所以动圆圆心C 的轨迹是以定圆圆心C1、C2为焦点的双曲线,其轨迹方程为
综合(1)、(2)、(3)可知:若两定圆⊙C1 与⊙C2 相离,当动圆C与定圆C1、C2都外
切或都内切时,动圆圆心C 的轨迹是双曲线一支;当动圆C 与定圆C1、C2 其中一个内切,
而与另一个外切时,动圆圆心C 的轨迹是双曲线的两支.
2.两定圆外切
当两定圆⊙C1与⊙C2外切时,在(1)中,
∵|CA|=|CC1|+r1,|CB|=|CC2|+r2,|CA|=|CB|,
∴|C C1|+r1=|C C2|+r2
∴|C C1|-|C C2|=r2-r1
在(2)中,CA|=|CC1|-r1,|CB|=|CC2|-r2,|CA|=|CB|,
∴|C C1|-r1=|C C2|-r2
∴|C C1|-|C C2|=r1-r2
由(1)和(2)可知,都有||C C1|-|C C2||=|r1-r2|,且|r1-r2| 为定值,所以动圆圆心C 的轨迹是以定点C1、C2为焦点的双曲线.
3.两定圆相交
两定圆相交时,动圆与两相交定圆同时相切的位置关系有如下三种情况:(1)与两相交定圆同时外切;(2)同时内切于两相交定圆;(3)与两相交定圆同时内切.
动圆圆心C 的轨迹方程可以分三种情况分别求得,三个轨迹合成一条双曲线(动圆圆心C 的轨迹也可以就其中一个图形对两定圆的半径进行讨论而求得).所以,动圆与两相交定圆同时相切时,动圆圆心C 的轨迹是以定点C1、C2为焦点的双曲线(或其中一个部分).4.两定圆内切或两定圆内含
如本文开始所述,当两定圆内切(两定圆内切时,特殊情况为直线的一部分)或两定圆内含时,动圆C 的圆心的轨迹是以定圆圆心C1、C2为焦点的椭圆.
由以上各种情况的分析,若已知两定圆⊙C1、⊙C2的半径分别为r1、r2(r1≠r2),可得到以下结论:
①当两定圆相离、相交或外切时,与这两定圆都相切的动圆圆心的轨迹是以C1、C2为焦点的双曲线.
②当两定圆内切或内含时,与这两定圆都相切的动圆圆心的轨迹是以C1、C2为焦点的椭圆(特殊情况除外).
③当两定圆为同心圆时,与这两定圆都相切的动圆圆心的轨迹是一个圆.
④当两定圆内切时,与这两定圆都相切与切点的动圆圆心的轨迹是一条直线(不包含切点).
特殊情况:当r1=r2时,与这两定圆都相切的动圆圆心的轨迹一般为直线.
总之,与两定圆相切的动圆圆心的轨迹一般是二次曲线(特殊情况轨迹是圆或直线或直线的一部分)理学角度分析,孩子分心的程度与年龄成反比。
5—7 岁的孩子能够集中注意力15 分钟左右,7—10 岁20 分钟左右。
可见,让刘洋这样的小学生全神贯注地坐上40分钟认真听讲,完全是不现实的。
另外,过度的学习压力易造成心理疲劳。
象刘洋这样的同学,由于长期受到老师的批评,学习压力过大,多半会造成分神、贪玩,屡做屡错的后果。
笔者在调查过程中,询问了很多像
刘洋一样的同学,他们在学习上的相同点概括起来大致有:因为没有对数学产生较好的兴趣,注意力很难集中,并且容易受外界的干扰,所以学习上虽然花费的时间很多,但是成绩很难
提高;没有求知欲,当然对玩感兴趣,致使课堂上搞小动作,也会把自己喜欢的东西藏在抽
屉里,趁老师不注意偷偷地看;没有学习兴趣,做题时,听老师讲解似乎很明白,但因为没
把老师的讲解内容放在心上,所以,下次遇到这样的问题,还会犯同样的错误。
●处方:上述案例,孩子上课之所以做小动作,不管是从生理角度,还是从心理角度来分析,都是正常的。
反过来说,老师用批评之类的教育方法强迫孩子就范,达到注意力集中的短暂
目的倒是不正常的。
如何根据孩子的生理、心理特点,科学合理地培养孩子的注意力,笔者在教学实践中大胆改
进传统的“40 分钟”教学时间,巧设“课堂精彩五分钟”。
这时教学时间的基本分配方法是:20
分钟(学习)—5 分钟(玩)—15 分钟(学习)。
也就是:当学生在教师有组织地学习了20
分钟时,注意力开始涣散,这时结合教学内容设计5 分钟玩的时间,让大脑得以适当的休息,再进行15 分钟的学习。
这“5 分钟”该怎样“玩”最有效呢?
1“. 静下来”———5 分钟注意力专注游戏
专注是培养注意力的基础。
关注学生的注意力问题,就是要训练学生把注意力持续地集中在
某个事物上达一段时间,而这个过程不会被外界环境所干扰。
如学过长方体后,笔者组织5 分钟搭积木:每个小组的同学都全神贯注,要在摞起来的12
层高的长方体积木上再搭上4 层。
因为太专心,负责动手操作的同学,手有些发抖。
他知道
只有在不碰翻的情况下,把下一块积木搭上去才能成功。
这时,负责干扰的同学对着他的耳
朵喊了一声,并有意弄出点噪音来,还时不时地与他说话,试图分散他的注意力。
但他完全
不为所动,深呼吸,放松肌肉,眼睛紧盯着目标,暗暗告诉自己:“只看眼前的目标”。
果然,他成功地把4 块积木全搭上去了,小组里一片沸腾……
类似的游戏内容还有“五分钟听故事”、“五分钟拼图竞赛”等等。
这些内容看似简单,但需要
参与者集中注意力,具备较好的动作协调能力和较强的抗干扰能力,目的是教会学生注意专
注的技能。
2“. 追上去”———5 分钟注意广度游戏
笔者在教学一年级“认识几何形体”时,穿插了5 分钟“追上去”的游戏:找一些长方体、正方体、球体等放在盒子里,同桌的一个同学迅速打开盒子,让另一个同学看两秒,然后又迅速
合上盒子,让看的人说出盒内长方体、正方体、球体的个数。
这种游戏其实是为了训练学生
的注意广度。
令人意外的是,笔者在引导学生总结游戏收获时,有个调皮的小男孩竟然神气
十足地说:“通过这个游戏,我发明了一种‘追上去’的听讲方法。
课堂上,如果老师要讲课了,我的练习还没写完怎么办?我也要先‘追上去’听老师的讲课内容,别落下!没完成的练习课
后补上。
”多么新颖有趣的听课方法啊!
3“. 两不误”———5 分钟注意分配游戏
我们大多强调“一心一意”,这主要强调的是注意的集中性和稳定性。
实际上,学生上课的时候,尤其需要一边听课一边记录老师所讲的内容。
为此,从低年级起就要注意引导训练。
“边听故事边笔算”、“两只手算不同的题”、“两只手做不同的动作”等等的“两不误”的五分钟
游戏,充分调动了学生的学习兴趣。
4“. 转回来”———5 分钟注意转移游戏
笔者发明了“转回来”记数游戏卡,具体做法是:随便写两个数字,一个在上面,一个在下面,例如:
35 4 0 4 8
72 9 7 4 5
第一种记数方法:把他们相加,两数之和写在下面数字的旁边,并把原来上面的那个数写在上面那个数的旁边;
第二种记数方法:把他们相减,两数之差写在上面数字的旁边,并把原来上面的那个数写在下面那个数的旁边。
同桌一个人先发出指令:“用第一种写法!”1 分钟后,再用第二种写法,这样轮换进行,按照要求记对得多者为胜。
课堂上的“转回来”游戏设计,较好的训练了学生的注意转移能力。
“再玩5 分种”的教学理念与做法不仅提高了学生学习兴趣,有利于低年级学生学习习惯的培养;而且培养了学生的注意力,为学生的可持续发展奠定了坚实的心理基础,具有较强的操作性与实践性,对低年级课堂组织教学具有重要的指导意义。