根与系数之间关系应用一
- 格式:doc
- 大小:215.00 KB
- 文档页数:13
一元二次方程根与系数的关系及应用题一、 根与系数的关系(韦达定理);1、定理来源,用配方法推导出来的一元二次方程的求根公式中,由两个根的相互运算而得,2、定理内容,(1)12b x x a +=- (2) 12cx x a=3、定理特征:和与积的形式特点。
4、定理的延伸:当二次项系数为1时,两根之和等于一次项系数的相反数,两根之积为常数项。
5、解一元二次方程的又一种方法:观察法,总结观察法的知识要点:用了根的定义和韦达定理,是一种综合性题目,是竞赛中常见的一种题型。
若0a b c ++=,则有:11x =,2c x a =,(2)若0a b c -+=,则有:11x =-,2cx a= 这里的0a b c ++=是指各项系数不变号和为零的情况,这里的0a b c -+=是指要改变一次项系数符号后和为零的情况。
如: (1)2543215432210x x ++= (2)()219981997199910x x -⨯-=例1.(1)如果x x 12、是方程3x x 2720-+=的两个根,那么x x 12+=_______ x x 12=_______. (2)如果x x 12、是方程2x x 2350--=的两个根,那么x x 12+=________ x x 12=________. (3)如果方程20542=--x x 的两个根是x 1和x 2,则21x x +________ 21x x =_________.例2 已知32-是一元二次方程042=+-c x x 的一个根,则方程的另一根是 ;例3 已知关于x 的一元二次方程230x x --=的两个实数根分别为βα、,求: (1)11αβ+;(2)()()33++βα的值; (3)22αβ+; (4)αβ-.例 4 已知βα、是关于x 的一元二次方程()03222=+++m x m x 的两个不相等的实数根,且满足1-11=+βα,求m 的值.例5 △ABC 的一边长为4,另外两边是方程23150x x m -+=的两根,求m 的取值范围.变式练习:1.设1x ,2x是方程220x -+=的两根,求1211x x +的值.2.下列方程中,两根均为正数的有 个。
一元二次方程根与系数关系及应用题(习题)例题示范例1:设x1,x2是方程2760x x ++=的两个根,利用根与系数的关系,求221211x x +的值. 解:那个地点a=1,b=7,c=6.∴x1+x2=-7,x1·x2=6例2:某商场服装部销售一种名牌衬衫,平均每天售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价2元时,平均每天可多卖出3件.若商场要求该服装部每天盈利1 200元,每件衬衫应降价多少元?解:设衬衫应降价x 元,依照题意,得解得:x1=20,x2=0(不合题意,舍去)∴每件衬衫应降价20元.巩固练习某品牌服装原售价为173元,通过连续两次降价后售价为127元,设平均每次降价x%,则所列方程为_______________.小丽要在一幅长为80 cm ,宽为50 cm 的矩形风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅矩形挂图,使整幅挂图的面积是5 400 cm2,设金色纸边的宽度为x cm ,则x 满足的方程是_______________.一种商品经连续两次降价后,价格是原先的14,若两次降价的百分率相同,则那个百分率为_______________.若x1,x2是一元二次方程23540x x --=的两个根,则x1+x2与12x x ⋅的值分别是_____________.若关于x 的方程2250x x a -+-=有两个正根,则a 的取值范畴是_______________.设x1,x2是方程23620x x +-=的两个根,利用根与系数的关系,求下列各式的值.(1)12(1)(1)x x ++; (2)221212x x x x +;(3)1211x x +; (4)212()x x -.关于x 的一元二次方程22(21)10x k x k ++++=有两个不相等的实数根x1,x2. (1)求实数k 的取值范畴.(2)若方程两实数根x1,x2满足1212x x x x +=⋅,求k 的值.某市为争创全国文明卫生都市,2021年市政府对市区绿化工程投入的资金是2 000万元,2021年投入的资金是2 420万元,且从2021年到2021年,每年投入资金的年平均增长率相同.(1)求该市政府对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市政府在2021年需投入多少万元?小明家有一块长为8 m ,宽为6 m 的矩形空地,妈妈预备在该空地上建筑一个花园,并使花园面积为空地面积的一半.小明设计了如下的两种方案供妈妈选择,请你选择其中的一种方案帮小明求出图中的x 值.方案一200件的售价每提高0.5元,售时,才能使每天的利润为1 210元?汽车站水果批发市场经销一种水果,假如每千克盈利10元,每天可售出500千克.经市场调查发觉,在进价不变的情形下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克.假如市场每天销售这种水果盈利了6 000元,同时顾客又得到了实惠,那么每千克这种水果盈利了多少元?摸索小结从应用题处理框架角度来回忆经济型应用题:①明白得题意,梳理信息(列表、画图)借助_____方式梳理信息,注意从变化基础,变化关系,目标情形三个层面来进行分别梳理,操作时注意边写边进行表达.②建立数学模型依照题目中包蕴的经济关系或其他增长变化关系建立数学模型. 若满足等量关系,则建立_______模型.若满足不等关系,则建立_______模型.若描述的是两个变量的关系,则建立_______模型.通常利用函数性质来求解最大最小,最多最少的问题.③求解验证数据是否专门,结果是否符合题目要求及取值范畴;结果是否符合实际意义.结合本章知识图梳理本章知识,并回答下列问题:①解一元二次方程的差不多思想是___________,即通过_____或_____把一个一元二次方程转化为两个一元一次方程来解.②一元二次方程的解法中,_______是由________推导而来.③一元二次方程___________能够用来快速检验方程的解的正确性.【参考答案】巩固练习173(1-x%)2=127(50+2x)(80+2x)=5 40050%(1)53-; (2)43; (3)3; (4)203. (1)34k > (2)k=2 (1)10% (2)2 928.2万元方案一中x=2,方案二中x=2.将每件商品提高9元出售时,才能使每天的利润为1 210元.每千克这种水果盈利了15元.摸索小结①列表;②方程;不等式;函数;①降次;配方;因式分解;②公式法;配方法;③根与系数关系。
代数:一元二次方程根与系数的关系一、一元二次方程的根与系数关系:二、一元二次方程的根与系数关系的应用应用1,验根,不解方程求一元二次方程两根和与两根积,检验两个数是不是一元二次方程的两个根. 应用2,已知方程的一个根,求另一根及方程中未知参数. 应用3,不解方程,利用定理求出关于x 1,x 2的对称式的值..,11,,,11,,213231212132312221等等如x x x x x x x x x x x x ++++++ 应用4,已知方程的两根,求作这个一元二次方程. 应用5,已知两数的和与积,求这两个数. 应用6,求作一个新的一元二次方程,使它的两根与已知方程的两根有某些特殊关系. 应用7,已知方程两个根满足某种关系,确定方程中字母系数的值.应用8,解决其他问题,如讨论根的范围,根的符号及判定三角形的形状等.三、相关练习1.不解方程,求下列各方程两根之和,两根之积.x x 1.025.0.12-= x x 21231.22+= 22322.32=+x x )(4)(.42222222b a b a a b xx b a ≠-=-- 2.已知方程5x 2+kx-6=0的一个根是2,求它的另一个根及k 的值.已知方程7x 2+kx-5=0的一个根是3,求另一个根及k 的值.3.利用根与系数的关系,求一元二次方程2x 2+3x-1=0两个根的(1)平方和,(2)倒数和,(3)立方和,(4)x 1-x 2,(5)1221x x x x + 4.设x 1、x 2是方程3x 2-9x-7=0的两个根,不解方程,求下列各式的值.221122221221)2()1(x x x x x x x x ++ (3)(2x 1+5)(2x 2+5) (4)x 1-x 25.求作一个一元二次方程,使它的两个根是212,313- 6.已知两数和是8,积是-9,求这两个数.7.已知方程2x 2+4x-3=0,不解方程,求作一个一元二次方程,使它的一个根为已知方程两根差的平方,另一根为已知方程两根和的倒数.试求且和分别满足方程、已知实数,1,030311.822≠=-+=-+ab b b a ab a (一)选择题 1.如果方程03622=+-x x 的两个实数根分别为21,x x ,那么21x x ⋅的值是( )(A )3 (B )–3 (C )23-(D )32-2.若21,x x 是方程0532=-+x x 的两个根,则()()1121++x x 的值为( ) (A )–7 (B )1 (C )291+- (D )291--3.方程2x 2-ax +10=0的一个根为2,则a 的值为 ( ) (A) 25 (B )29- (C )49 (D )9 4.已知方程 2x 2+kx -2k +1=0 两实根的平方和为429 ,则k 的值是: (A) -11 (B) 3或-11 (C) 3 (D) 以上都不对5.若方程 x 2-kx +6=0 的两根分别比方程x 2+kx +6=0 的两根大5,则k 的值是:(A) 5 (B) -5 (C) 852 (D) 856.方程x 2-ax -2a=0的两根之和为4a -3,则两根之积为 ( )(A) 1 (B )-2 (C )2 (D )-1(二)填空题1.已知方程01932=+-m x x 的一个根是1,则它的另一个根是_____,m 的值为______。
一元二次方程根与系数的关系及应用教学目标掌握根与系数关系,灵活应用根与系数关系解题重难点分析重点:1、根与系数关系的公式; 2、根的关系变形; 3、列一元二次方程。
难点:1、根与系数关系的变形及运算; 2、应用题中一元二次方程的列法。
知识点梳理1、一元二次方程根与系数关系若一元二次方程02=++c bx ax (0≠a )有两个实数根2142b b ac x a -+-=,2242b b ac x a ---=,则有2212442222b b ac b b ac b bx x a a a a-+-----+=+==-; 2222122244(4)42244b b ac b b ac b b ac ac cx x a a a a a-+------=⋅===。
即根与系数的关系为a b x x -=+21,acx x =⋅21以上关系称为韦达定理。
2、特殊根问题3、列一元二次方程解应用题的一般步骤可归结为“审、设、列、解、验、答”,具体如下: (1)审题:仔细阅读题目、分析题意,明确题目要求,弄清已知数、未知数以及它们之间(2)设未知数:一种方法是直接设所要求的量为x ;另一种方法是设与所求量有关系,且具有关键性作用的未知量为,而所求量能用的代数式表示;(3)列方程:根据题中已知量和未知量之间的关系列出方程; (4)解方程。
(5)检验:检验未知数的值是否满足所列出的方程,还必须检验它是否能使实际问题有意义。
若不符合实际意义则应舍去;(6)写出答案:书写答案,要注意不要遗漏单位和名称。
知识点1:探索根与系数关系【例1】解下列方程,并填写表格:方 程+知识点2:根与系数关系的应用(1)已知一元二次方程,求两根关系【例1】若1x ,2x 分别是一元二次方程0822=--x x 的两根。
(1)求21x x +的值; (2)求21x x ⋅的值; (3)求2111x x +的值 (4)求的值【随堂练习】1、已知方程0132=--x x 的两根为1x ,2x ,求)3)(3(21--x x 的值。
一元二次方程中根的判别式以及根与系数关系的应用【主体知识归纳】1.一元二次方程的根的判别式:b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式.通常用符号“Δ”来表示.2.对于一元二次方程ax2+bx+c=0(a≠0),当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根.反过来也成立.3.如果关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根是x1,x2,b那么x1+x2=-ac,x1x2=a4. 如果关于x的一元二次方程x2+px+q=0(a≠0)的两个根是x1,x2,那么x1+x2=-p,x1x2=q【基础知识讲解】1.根的判别式以及根与系数的关系都体现了根与系数之间的联系22.根的判别式是指Δ=b2-4ac,而不是指Δ=.b4ac3.根的判别式与根与系数的关系都是在一元二次方程一般形式下得出的,因此,必须把所给的方程化为一般形式再判别根的情况.要注意方程中各项系数的符号.4.如果说一元二次方程有实根,那么应当包括有两个不相等的实数根和有两个相等的实数根两种情况,此时b2-4ac≥0,不要丢掉等号.5. 利用一元二次方程的根与系数的关系的前提是:(1)二次项系数a≠0,即保证是一元二次方程;(2)由于我们目前只研究实数根的问题,故还要考虑实数根存在的前提,即:b2-4ac≥06.判别式有以下应用:(1)不解方程,判定一元二次方程根的情况;(2)根据一元二次方程根的情况,确定方程中未知系数的取值范围;(3)应用判别式进行有关的证明.根与系数的关系有以下应用:(1)已知一根,求另一根及求知系数;(2)不解方程,求与方程两根有关的代数式的值;(3)已知两数,求以这两数为跟的方程;已知两数的和与积,求这两个数(4)确定方程中字母系数的取值范围(5)确定根的符号。
【例题罗列】根的判别式类型1:不解方程,判别下列方程的根的情况:(1)3x2-2x-1=0;(2)y2=2y-4;(3)(2k2+1)x2-2kx+1=0;(4)9x2-(p+7)x+p-3=0.(系数中有字母的情况)解:(1)∵Δ=(-2)2-4×3×(-1)=4+12>0,∴原方程有两个不相等的实数根.(2)原方程就是y2-2y+4=0.∵Δ=(-2)2-4×1×4=4-16<0,∴原方程无实数根.(3)∵2k2+1≠0,∴原方程为一元二次方程.又∵Δ=(-2k)2-4(2k2+1)×1=-4k2-4<0,∴原方程无实数根.(4)Δ=[-(p+7)]2-4×9×(p-3)=(p-11)2+36,∵不论p取何实数,(p-11)2均为非负数,∴(p-11)2+36>0,即Δ>0,∴原方程有两个不相等的实数根.升级:如果关于x的方程x2+2x=m+9没有实数根,试判断关于y的方程y2+my-2m+5=0的根的情况.这是一类需要自己找出隐含条件的题解:∵x2+2x-m-9=0没有实数根,∴Δ1=22-4(-m-9)=4m+40<0,即m<-10.又y 2+my -2m +5=0的判断式Δ2.Δ2=m 2-4(-2m +5)=m 2+8m -20当m <-10时,m 2+8m -20>0,即Δ2>0.∴方程y 2+my -2m +5=0有两个不相等的实数根.类型2:1.已知关于x 的一元二次方程(k -1)x 2+2kx +k +3=0.k 取什么值时,(1)方程有两个不相等的实数根? (2)方程有两个相等的实数根? (3)方程没有实数根?解:Δ=(2k )2-4(k -1)(k +3)=-8k +12.(1)当-8k +12>0,且k -1≠0,即k <且k ≠1时,方程有两个不相等23的实数根;(2)当-8k +12=0,且k -1≠0,即k =时,方程有两个相等的实数根;23(3)当-8k +12<0,且k -1≠0,即k >时,方程没有实数根.23说明:当已知方程为一元二次方程时,要特别注意隐含的条件:二次项系数不等于零.2.已知a 、b 、c 是△ABC 的三边,且方程a(1+x 2)+2bx-c(1-x 2)=0有两个相等的实数根,则此三角形为( )A 、等腰三角形 B 、等边三角形 C 、直角三角形 D 、斜三角形 看到有两个相同的实数根立即判断 应用根的判别式解:原方程可化为(a+c )x 2+2bx +a-c =0,Δ=(2b)2-4(a +c )(a -c )=0得到a 2=b 2+c 2,因此此三角形为直角三角形。
根与系数的关系及应用根是数学中的重要概念,常常出现在方程、多项式以及数列等中。
根作为方程的解,与系数密切相关,其关系的研究对于解方程、揭示方程性质等方面具有重要的意义。
本文将探讨根与系数之间的关系,并介绍其在数学中的应用。
一、根与系数的关系根与系数之间的关系可以通过方程来研究。
假设有一个二次方程:ax^2 + bx + c = 0(其中a、b、c为实数,且a≠0),其中方程的根分别为x1和x2。
根据二次方程的求根公式,我们可以得到:x1,2 = [ -b ± √(b^2 - 4ac) ] / 2a从这个公式可以看出,根与系数之间存在着一定的关系。
首先,根的取值与系数b和c的符号有关。
当b^2 - 4ac > 0时,方程有两个不相等的实根;当b^2 - 4ac = 0时,方程有两个相等的实根;当b^2 - 4ac < 0时,方程无实根。
其次,根的取值还与a的值有关,a的符号决定了根的正负。
除了二次方程,一次方程的根与系数之间也存在着关系。
对于 ax + b = 0(其中a和b为实数,且a≠0),其根为x = -b/a。
可以看出,在一次方程中,根的取值与系数a和b之间有线性关系。
二、根与系数的应用根与系数之间的关系在数学中有广泛的应用。
以下将介绍一些常见的应用场景。
1. 解方程根与系数的关系在解方程中起到了关键的作用。
通过根与系数的关系,我们可以利用求根公式快速求解各种形式的方程,如二次方程、一次方程以及更高次的多项式方程。
这极大地简化了方程的求解过程,使我们能够更高效地得到方程的解。
2. 研究方程性质根与系数之间的关系也可以用来研究方程的性质。
例如,通过分析方程根的数量和性质,可以判断方程的图像在坐标平面上的形状,从而帮助我们更好地理解和应用方程。
3. 数列的通项公式根与系数的关系还可以应用于数列的求解中。
对于递推数列 an =c1r^(n-1) + c2r^(n-2) + ... + cn,其中r是常数,c1、c2、...、cn为系数,则该数列的通项公式可以表示为 an = d1x1^(n-1) + d2x2^(n-2) + ... + dnxn,其中x1、x2、...、xn为方程 cx^n + c1x^(n-1) + c2x^(n-2) + ... +cn = 0 的根,d1、d2、...、dn为常数。
根与系数关系应用2.甲乙二人解同一个方程x 2+mx+n=0,甲看错了常数项,求得两个根为4和-1,乙看错了一次项系数,得到两个根为2和-9,请你写出这个方程是 ,它的解1.在Rt △ABC 中,斜边AB=5,BC 、AC 是一元二次方程x 2-(2m-1)x+4(m-1)=0 的两个实数根,则m 等于2.关于x 的方程x 2-ax+2a=0的两根的平方和是5,则a 的值是3.一元二次方程:(m-1)x 2+(m 2-3m+2)x-8=0互为相反数根,则m=1.若α、β是方程x 2-x-2006=0的两个实数根,则α+β2的值是2.设a ,b 是方程x 2-x-2010=0的两个实数根,则a 2+2a+3b 的值为3.若α、β是方程x 2+2x-2009=0的两个根,则:α2+3α+β的值为1.设x 1,x 2是方程x 2+x-4=0的两个实数根,则x 13-5x 22+10=2.已知x 1,x 2是方程x 2+3x+1=0的两个实数根,则x 13+8x 2+20=1.若非零实数a ,b (a ≠b )满足a 2-a -2007=0,b 2-b -2007=0,则:b a 11+ = 2.若非零实数a ,b 满足a 2-a -2007=0,b 2-b -2007=0,则:b a a b+ =1.如果方程x 2-4x+c=0的一个根是2+根的分布情况1.已知关于x的方程x2-kx+k2-1=0,(1)k为何值时,方程有两个正根;(2)k为何值时,方程有一正一负的根;2.①关于x的二次方程mx2-2(m-1)x-4=0(m≠0)的两根一个比1大,另一个比1小,求m的取值范围②已知一元二次方程(k2+1)x2-(4-k)x+1=0的一个根大于1,另一个根小于1,求整数k的值3.①当m为何正整数时,关于x的一元二次方程x2-2(m-2)x+m2-4m-5=0的两个实数根都小于3?②若关于x的方程x2+(m-4)x+6-m=0的二根都大于2,求实数m的范围4.①已知关于x的方程x2-5x+a-1=0的一根大于3,另一根小于-1,求a的取值范围②已知一元二次方程7x2-(k+13)x-k+2=0有两个实数根x1,x2,且满足0<x1<1,1<x2<2,求k的取值范围5.已知函数y=3x2+2(1-a)x-a(a+2)(1)求证:函数的图象与x轴一定有交点;(2)若方程3x2+2(1-a)x-a(a+2)=0的两个根均大于-1且小于1,求a的取值范围.特殊的根1.①已知a、b、c为有理数,且a+b-2c≠0.求证:方程(a+b-2c)x2+(b+c-2a)x+(c+a-2b)=0必有有理数根②设m是不为零的整数,关于x的二次方程mx2-(m-1)x+1=0有有理根,求m的值2.①如果关于x的方程kx2+(2k-1)x+k-1=0只有整数解,试探索整数k的值②m是什么整数时,方程(m2-1)x2-6(3m-1)x+72=0有两个不相等的正整数根4.已知方程x2-3x+a+4=0有两个整数根.(1)求证:这两个整数根一个是奇数根,一个是偶数根;(2)求证:a是负数;(3)当方程的两个整数根同号时,求a的值及这两个根5.已知关于x的方程mx2-(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实根都是整数,求正整数m的值.应用1.①当k为何实数时,方程x2+(k+1)x+2=0和方程x2-x-k=0有且只有一个相同的实数根,并求出这个相同的根②设a、b、c为三个不同的实数,使得方程x2+ax+1=0和x2+bx+c=0有一个相同的实数根,并且使方程x2+x+a=0和x2+cx+b=0也有一个相同的实数根,试求a+b+c的值2.①设a,b是方程x2+57x+1=0的两根,c,d是方程x2-57x+1=0的两根,则(a+c)(b+c)(a-d)(b-d)的值为②已知关于x的一元二次方程x2+cx+a=0的两个整数根恰好比方程x2+ax+b=0的两个根都大1,求a+b+c的值.4.已知关于x的方程x2-4|x|+k=0.(1)若方程有四个不同的整数根,求k的值求出这四个根;(2)若方程有三个不同的整数根,求k的值及这三个根1.已知二次函数y1=x2-(k+2)x+2,y2=x2-kx-2k+2,(1)若二次函数y1=x2-(k+2)x+2与y轴的交点为A,与x轴的交点为B、C,(2)不论k为何值时,二次函数y2=x2-kx-2k+2的图象都过定点,求这个定点坐标;若经过定点和原点的直线与y2中某个二次函数图象相切时,求这个二次函数y2的解析式.2.已知关于x的方程x2-(2k-3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)试说明x1<0,x2<0;(3)若抛物线y=x2-(2k-3)x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OA•OB-3,求k的值.3.已知:在平面直角坐标系xOy中,过点P(0,2)任作一条与抛物线y=ax2(a>0)交于两点的直线,设交点分别为A、B.若∠AOB=90°.(1)判断A、B两点纵坐标的乘积是否为一个确定的值,并说明理由;(2)确定抛物线y=ax2(a>0)的解析式;。
第3天一元二次方程的根与系数的关系与解决实际问题【知识回顾】1.根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:△当△>0时,方程有两个不相等的两个实数根;△当△=0时,方程有两个相等的两个实数根;△当△<0时,方程无实数根.上面的结论反过来也成立.2.根与系数的关系(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,12bx xa+=-,12cx xa⋅=.(3)常用根与系数的关系解决以下问题:△不解方程,判断两个数是不是一元二次方程的两个根.△已知方程及方程的一个根,求另1一个根及未知数.△不解方程求关于根的式子的值,如求,x12+x22等等.△判断两根的符号.△求作新方程.△由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.3.由实际问题抽象出一元二次方程在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.一.选择题(共10小题)1.(2020·云南一模)若α、β是一元二次方程x2+2x﹣6=0的两根,则11+αβ的值是()A.13-B.13C.﹣3D.3【答案】B【解析】△α、β是一元二次方程x2+2x﹣6=0的两根,△α+β=﹣2,αβ=﹣6,则11+-21 +===-63αβαβαβ,故选B.2.(2020·四川省射洪县射洪中学外国语实验学校期中)下列一元二次方程两实数根和为-42的是()A.2240x x--=B.2440x x-+= C.24100x x++=D.2450x x-=+【答案】D【解析】A中1222 1x x -+=-=,故错误;B中12-44 1x x+=-=,故错误;C中24164024<0b ac∆=-=-=-,故错误;D中124-4 1x x+=-=,故准确;故答案选D.3.(2020·四川省射洪县射洪中学外国语实验学校月考)方程22310m m-+=和方程224m m-=-所有实数根之和为()A.72B.32C.32-D.92【答案】B【解析】34△方程22310m m -+=根的判别式2=(-3)42110∆-⨯⨯=>△方程22310m m -+=有两个实数根△两根之和为32△方程224m m -=-的根的判别式2=(-2)414-120∆-⨯⨯=<△方程224m m -=-无实数根△方程22310m m -+=和方程224m m -=-所有实数根之和为32故选:B 4.(2020·渠县第四中学期中)已知x 1,x 2是一元二次方程x 2-2x -1=0的两根,则x 1+x 2-x 1·x 2的值是( )A .1B .3C .-1D .-3 【答案】B【解析】由题意知:122x x +=,12-1x x ⋅=,△原式=2-(-1)=3故选B .5.(2020·江苏如东二模)若x 1,x 2是方程x 2﹣3x ﹣2=0的两个根,则x 1+x 2﹣x 1•x 2的值是( ) A .﹣5B .﹣1C .5D .15【答案】C【解析】根据题意得x 1+x 2=3,x 1x 2=﹣2,所以x 1+x 2﹣x 1•x 2=3﹣(﹣2)=5.故选:C .6.(2020·内蒙古海勃湾期末)一元二次方程2310x x -+=的两个根为12,x x ,则2121232x x x x ++-的值是( )A .10B .9C .8D .7【答案】D【解析】 1x 为一元二次方程2310x x -+=的根,21131x x ∴=-,2121232x x x x ∴++-=()12121212313233x x x x x x x x -++-=++-.根据题意得123x x +=,121=x x ,212123233137x x x x ∴++-=⨯+-=.故选:D .7.(2020·银川市第十五中学一模)已知关于x 的方程x 2-4x +c +1=0有两个相等的实数根,则常数c的值为( )A.-1B.3C.1D.0【答案】B【解析】△方程x2−4x+c+1=0有两个相等的实数根,△△=(−4)2−4(c+1)=12−4c=0,解得:c=3.故答案选B.8.(2019·广东郁南月考)某中学要组织一次篮球比赛,赛制为单循环形式(毎两队之间都赛一场),计划安排21场比赛,求参加的球队支数,如果设参加的球队支数为x,则可列方程为()A.12x(x+1)=21B.x(x+1)=21C.12x(x﹣1)=21D.x(x﹣1)=21【答案】C【解析】解:设邀请x个队,每个队都要赛(x-1)场,但两队之间只有一场比赛,由题意得:12x(x-1)=21,故选:C.9.(2020·深圳市宝安区北亭实验学校)若一个三角形的两边长分别为2和6,第三边是方程x2-10x+21=0的一根,则这个三角形的周长为( )67A .7B .3或7C .15D .11或15【答案】C【解析】x 2−10x+21=0,(x−3)(x−7)=0,则x−3=0,x−7=0,解得:x=3或7, 当x=3时,2+3=5<6,不能组成三角形,故x=3不合题意舍去,当x=7时,2+6=8>7,可以组成三角形,则三角形的周长为2+6+7=15,故答案选C.10.(2020·湖南隆回一模)扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯B .()()130********x x --=⨯⨯8C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 【答案】D【解析】 设花带的宽度为xm ,则可列方程为330220203(4())0x x --=⨯⨯, 故选D .二.填空题(共5小题) 11.(2020·江苏高淳期末)一元二次方程x 2+mx+2m=0的两个实根分别为x 1,x 2,若x 1+x 2=1,则x 1x 2=______.【答案】-2.【解析】根据题意得x 1+x 2=-m=1,x 1x 2=2m ,所以m=-1,所以x 1x 2=-2.12.(2020·温州市第二十三中学)已知关于x 的方程260x x a ++=有一个根是-2,则方程的另一个根是___________.【答案】-4【解析】因为已知关于x 的方程260x x a ++=有一个根是-2,9 所以由12b x x a+=-得2226,4x x -+=-∴=-. 故答案为-4. 13.(2020·四川省射洪县射洪中学外国语实验学校期中)若,a b 是方程2220060x x +-=的两根,则23a a b ++= .【答案】2004.【解析】2220060x x +-=的两根△a+b=-2,222006a a +=,△223=2+a =2006-2=2004++++a a b a a b故答案为:200414.(2020·四川省射洪县射洪中学外国语实验学校期中)如果关于x 的一元二次方程()20ax b ab =>的两个根分别是11x m =+与224x m =-,那么b a的值为__________. 【答案】4【解析】方程化为一般式为:ax 2-b=0x 1+x 2=m+1+2m -4=0 △x 1·x 2=(m+1)(2m -4)=-b a △10解方程△,得m=1把m=1代入△,得b a=-2×(-2)=4. 故答案为:4.15.(2019·上海交大附中)设方程( 1) (11)(11)(21)x x x x ++++++(1)(21)0x x ++=的两根为12,x x ,则()()1211x x ++=______. 【答案】2003【解析】(1)(11)(11)(21)1)(20(1)x x x x x x ++++++++=, 221211x x x ∴++++23223122210x x x ++++=, 23662630x x ∴++=.△3a =,66b =,263c =,224664326343563156b ac ∆=-=-⨯⨯=-=12000>, 1212263223x x b a a x c x =-=∴+=-=,. ()()()1212122631112213x x x x x x ++=+++=-+=2003. 故答案为:2003. 三.解析题(共5小题)1116.(2019·广东郁南月考)关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】(1)△Δ=4(k -1)2-4k 2≥0,△-8k +4≥0,△k ≤12; (2)△x 1+x 2=2(k -1),x 1x 2=k 2,△2(k -1)=1-k 2,△k 1=1,k 2=-3.△k ≤12,△k =-3. 17.(2020·甘肃省庆阳市第五中学期末)已知关于x 的一元二次方程()222120x k x k k -+++=有两个实数根12,x x .(1)求实数k 的取值范围.(2)是否存在实数k ,使得()22121216x x x x +-=成立?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)14k ≤;(2)存在这样的实数k ,k 的值为3-. 【解析】(1)由题意得:方程的根的判别式[]22(21)4(2)0k k k ∆=-+-+≥,12 解得14k ≤; (2)由一元二次方程根与系数的关系得:2121221,2x x k x x k k +=+=+,则()()2222121211221223x x x x x x x x x x +-=++-, ()212123x x x x =+-, ()()222132k k k =+-+, 221k k =-+,当()22121216x x x x +-=时,22116k k -+=, 即22150k k --=,因式分解得:(3)(5)0k k +-=,解得3k =-或154k =>(不符题意,舍去), 故存在这样的实数k ,k 的值为3-.18.(2020·四川南充月考)关于x 的方程2220x mx m m -+-=有两个不相等的实数根12,x x .(1)求m 的取值范围.(2)若221212x x +=,求211214x x x x +-的值.13【答案】(1)0m >;(3)0【解析】(1)△1a =,2b m =-,2c m m =-,△()()2224241b ac m m m =-=--⨯⨯- 40m =>△0m >;(2)由根与系数的关系,得:212122x x m x x m m +==-,,△221212x x +=,△()21212212x x x x +-=,△()224212m m m --=, △2+60m m -=,解得2m =或3m =-(舍去),△原方程为2420x x -+=,△212112420x x x x =-+=,,△211214220x x x x +-=-+=.19.(2020·湖南茶陵期末)已知关于x 的一元二次方程240x x m -+=.14(1)若方程有实数根,求实数m 的取值范围;(2)若方程的两个实根为12,x x ,且满足12326x x +=,求实数m 的值.【答案】(1)4m ≤;(2)12=-m .【解析】(1)△原方程有实数根,△方程的根的判别式1640m ∆=-≥,解得4m ≤;(2)由一元二次方程的根与系数的关系得:12441x x -+=-=, 又121211322()246x x x x x x +=++=⨯+=,12x ∴=-,将12x =-代入原方程得:2(2)4(2)0m --⨯-+=,解得12=-m .20.(2020·渠县第四中学期中)某商场试销一件成本为60元的服装,规定试销期间销售单价不低于成本单价,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y =kx +b ,且x =65时,y =55;x =75时,y =45.(1)求y 与x 的函数关系式;(2)若该商场想获得利润500元,求销售单价.【答案】(1)y =-x +120(60≤x≤120);(2)销售单价为70元或110元.【解析】解:(1)根据题意,得6555 7545k bk b+=⎧⎨+=⎩解得1120 kb=-⎧⎨=⎩△一次函数关系式为y=-x+120(60≤x≤120).(2)(-x+120)(x-60)=500,整理得x2-180x+7700=0.解得x1=70,x2=110,答:当销售单价为70元或110元时,该商场获得500元利润.15。
第4讲:根与系数的关系十一种常见应用--专题三 类型一:已知方程一根,求另一根及待定系数已知方程062=-+kx x 的一个根为2,求它的另一根及k 的值。
练1. 已知方程042=+-m x x 的一个根为-2,求方程的另一根及m 的值。
类型二:已知方程,求含两根的代数式的值已知1x ,2x 是方程0242=+-x x 的两根,求下列各式的值;(1)2111x x + (2)221)(x x -练2. 已知1x ,2x 是方程0522=--x x 的两根,求下列两个代数式的值:(1)2111x x +(2))5)(5(21++x x类型三:已知两个根,求含两未知数的代数式的值已知方程01522=--m m 与01522=--n n 且n m ≠,求nm 11+的值。
练3. 化简求值:已知131+=x ,131-=x ,是方程02=++c bx x 的两个根,求代数式)11(4)2(222c b b b c b +•---的值。
类型四:已知方程及其根满足关系式,求字母的取值范围已知关于x 的一元二次方程0132=++-k x x 的两根的平方和小于5,求k 的取值范围。
练4. 若关于x 的一元二次方程0322=-+-k x x 的两根的平方和小于6,求k 的取值范围?类型五:已知方程及其根满足的关系式,求字母的值已知关于x 的方程04)2(222=++-+m x m x 有两个实数根,且两根的平方和比两根的积大21,求m 的值。
练5. 若m 是非负整数,且关于x 的方程022)1(2=++--m mx x m 有两个实数根,求m 的值及其对应方程的根。
类型六:已知方程,判断根的符号不解方程,判断方程07322=-+x x 两根的符号。
练6. 不解方程,判断下列方程根的符号(如果两根异号,试确定是正根还是负根的绝对值大)0532=--x x ,03622=+-x x 。
类型七:已知两根求一元二次方程已知-1和3是某个二次项系数为1的一元二次方程的根,请写出这个方程。
一元二次方程根的判别式,根与系数关系◆回顾归纳1.一元二次方程ax2+bx+c=0(a≠0)的根的判别式,常用符号“△”表示,即△=•______;△>0时,方程_____;△=0时,方程______;△<0时,方程______.2.如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,则x1+x2=____,x1x2=____.◆课堂测控1.(1)一元二次方程3x2+4x+1=0中,△=_____,因此该方程_____实数根.(2)一元二次方程ax2+2x+1=0有两个相等的实数根,则a=_____.2.若方程x2-2x-1=0的两个实数根为x1,x2,则x1+x2=______.3.一元二次方程x2+x-2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.有一个实数根4.设一元二次方程x2-6x+4=0的两实根分别为x1和x2,则x1+x2=_____,x1·x2=______.5.等腰三角形ABC中,BC=8,AB,AC的长是关于x的方程x2-10x+m=0的两根,求m的值.解:当AB或AC的长为8时,64-10×8+m=0,∴m=_____;当AB=AC时,方程x2-10x+m=0有两个相等的实数根,则△=0,即______,∴m=____.测试点2 一元二次方程根与系数的关系6.一元二次方程x2-5x+6=0的一个实数根x1=2,则另一个实数根x2=(•)A.3 B.-3 C.6 D.-67.设一元二次方程x2-2x-4=0的两个实数为x1和x2,则下列结论正确的是()A.x1+x2=2 B.x1+x2=-4 C.x1x2=-2 D.x1x2=48.已知x=-1是一元二次方程x2+mx+1=0的一个根,那么m的值是()A.0 B.1 C.2 D.-29.已知x1,x2是方程x2+3x=4的两根,则()A.x1+x2=-3,x1·x2=-4 B.x1+x2=3,x1·x2=4C.x1+x2=-3,x1·x2=4 D.x1+x2=3,x1·x2=-410.阅读材料:设一元二次方程ax 2+bx+c=0的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a.根据该材料填空: (1)已知x 1,x 2是方程x 2+6x+3=0的两实数根,则2112x x x x 的值为_____. (2)已知x 1,x 2是方程x 2-9x+18=0的两个根,那么x 1-x 2=_______.◆课后测控1.若关于x 的一元二次方程x 2+2x -k=0没有实数根,则k 的取值范围是_____.2.在解方程x 2+bx+c=0时,甲看错了b ,解得两根为-1和6;乙看错了c ,•解得两根为-3与4,那么正确的方程是______.3.已知一个等腰三角形两边长为方程x 2-6x+8=0的两根,•则此等腰三角形的周长为_____.4.若关于x 的方程x 2-(m+2)x+m=0的根的判别式△=5,则m=_____.5.方程x (x+1)=3(x+1)的解情况是______.6.关于x 的一元二次方程kx 2-6x+1=0有两个不相等的实数根,•则k•的取值范围是_____.7.已知关于x 的方程x 2-2ax+a 2-2a+2=0的两个实数根x 1,x 2,满足x 12+x 22=2,•则a•的值是_____.8.已知一元二次方程x 2+3x+1=0的两根为x 1和x 2,那么(1+x 1)(1+x 2)的值为______.9.如果一元二次方程3x 2-2x=0的两个根是x 1和x 2,那么x 1·x 2等于( )A .2B .0C .23D .-2310.已知α、β满足α+β=5,且αβ=6,则以α、β为两根的一元二次方程是( )A .x 2+5x+6=0B .x 2-5x+6=0C .x 2-5x -6=0D .x 2+5x -6=011.如果关于x 的方程2x 2-7x+m=0的两实数根互为倒数,那么m 的值为( )A .12B .-12C .2D .-2 12.若关于x 的方程kx 2+2x -1=0有两个不相等的实数根,则k•的取值范围是( )A .k>-1B .k<-1C .k≥-1且k≠0D .k>-1且k≠013.已知关于x 的一元二次方程x 2-mx+2m -1=0的两个实数根的平方和为7,那么m 的值是( )A .5B .-1C .5或-1D .-5或114.关于x 的一元二次方程x 2-5x+p 2-2p+5=0的一个根为1,则实数p•的值是( )A .4B .0或2C .1D .-115.已知关于x 的方程x 2-m=2x 有两个不相等的实数根,求m 的取值范围.16.已知关于x的一元二次方程x2+(2m-3)x+m2=0•的两个不相等的实数根α、β满足11αβ+=1,求m的值.17.若0是关于x的方程(m-2)x2+3x+m2+2m-8=0的解,求实数m的值,并讨论此方程解的情况.18.若关于x的一元二次方程x2+(m+1)x+m+4=0两实根的平方和为2,求m的值.解:设方程的两个实根为x1,x2,那么x1+x2=m+1,x1x2=m+4.∴x12+x22=(x1+x2)2-2x1x2=(m+1)2-2(m+4)=m2-7=2.即m2=9,解得m=3.答:错误或不完整之处有:__________.◆拓展创新实数k取何值时,一元二次方程x2-(2k-3)x+2k-4=0.(1)有两个正根;(2)有两个异号根,并且正根的绝对值较大;(3)一根大于3,一根小于3.一元二次方程应用题(一)传染问题与循环问题1.市政府为了解决市民看病难的问题,决定下调药品的价格。
课题:一元二次方程的根与系数关系的应用一、复习导入:上节课我们学习了一元二次方程的根与系数的关系(也就是韦达定理),具体内容如下:如果方程那么、的两个实数根是,)0(0212x x a c bx ax ≠=++ac x x a b x x =-=+2121, 另外我们还研究了韦达定理的逆定理,内容如下:如果实数21x x 、满足ac x x a b x x =-=+2121,,那么21x x 、是一元二次方程 02=++c bx ax 的两个根.最后我们研究了韦达定理的两个重要推论,内容如下:推论1:如果方程02=++q px x 的两个根是21x x 、,那么.,2121q x x p x x =-=+推论2:以两个数21x x 、为根的一元二次方程(二次项系数为1)是.0)(21212=++-x x x x x x今天我继续来研究一元二次方程的根与系数关系的应用二、讲授新课:一元二次方程的根与系数关系的应用应用1:验根,不解方程,利用韦达定理可以检验两个数是不是一元二次方程的两个根例题1:不解方程,检验下列方程的解是否正确. 方程13,130232212-=+==+-x x x x 的两根为. 解:()()()2131313,3213)13(2121=-=-+==-++=+x x x x 满足21,x x ac x x a b x x =-=+2121, 13,1321-=+=∴x x 是方程的根02322=+-x x .应用2:由已知方程的一个根,求出另一个根及未知系数.例题2:已知方程01022=-+kx x 的一个根是2-.则=k ,它的另一根为 .解法一:是方程2- 01022=-+kx x 的根,()(),010222-2=--+⨯•∴k 代人原方程得把1.1-=-=∴k k 01022=-+kx x ,解得另一根为25.(传统方法)解法二:设方程的另一根为1x ,则,521-=-x ∴.251=x 又(),2252k -=+- ∴1-25.1的值是,故方程的另一根是k k -=(韦达定理应用) 应用3:不解方程,可以利用韦达定理求关于21x x 、的(非)对称式的值. 如:2121122121222111,,,11,x x x x x x x x x x x x --+++等等这类为对称式,而2121231,3x x x x x +++等等这类为非对称式.注意:如果把含21x x 、的代数式中的21x x 、互换,代数式不变,那么,我们就称这类代数式为关于21x x 、的对称式,否则称为非对称式.例题3:已知21x x 、是方程21122036x x x x x x +=++的两实数根,则的值为 212124x x x -+的值为 解:⑴ 21x x 、是方程的两个根,0362=++x x ∴3,62121=-=+x x x x ∴()()10363633262221212212121222112=-=⨯--=-+=+=+x x x x x x x x x x x x x x ⑵ 1x 是方程的根,0362=++x x ∴036121=++x x ,即36121--=x x ∴212124x x x -+=()93232224362121211=-+-=---=-+--x x x x x x x 应用4:已知方程的两根,求这个一元二次方程. 例题4:求一个一元二次方程,使它的两根是:21,321-==x x 解: 21,321-==x x ∴23,252121-==+x x x x ∴该方程可以是023252=--x x ,可化为03522=--x x 应用5:已知两数的和与积,求这两个数.例题:已知的值求满足b a ab b a b a ,,3,2,-=-=+解: 3,2-=-=+ab b a ,∴的两根可以看作方程032,2=-+x x b a ∴方程0322=-+x x 可化为()()013=-+x x ,∴3,11,3-===-=b a b a 或 应用6:已知方程两个根满足某种关系,确定方程中字母系数的值.例题6:已知方程()042222=++-+m x m x 有两个实根且它们的平方和比它们的积大21,求m 的值.解:设方程的两根为21x x 、,∴()4,2222121+=--=+m x x m x x又 21212221=-+x x x x ,∴()21321221=-+x x x x ∴()[]()21432222=+---m m ,整理得017162=--m m ,∴1,1721-==m m 当17=m 时,0<∆,原方程无实根.当1-=m 时,0>∆,原方程有两个不相等的实根. ∴1-=m应用7:证明方程系数之间的特殊关系例题7:设方程02=++q px x 的两根之差等于方程02=++p qx x 的两根之差,求证:4-=+=q p q p 或证明:设方程02=++q px x 的两根为21x x 、,02=++p qx x 的两根为43x x 、 由题意知4321x x x x -=-,故有24432322212122x x x x x x x x +-=+-从而有()()432432122144x x x x x x x x -+=-+① 根据韦达定理,有p x x q x x q x x p x x =-=+=-=+43432121,,,②把②带入①,有p q q p 4422-=-,即04422=-+-q p q p即()()()04=-+-+q p q p q p ,即()()04=++-q p q p故040=++=-q p q p 或,即4-=+=q p q p 或应用8:解决其它问题,如讨论根的范围,判定三角形的形状等例题8:已知c b a ,,是ABC ∆的三边,关于x 的一元二次方程()x b a x 22++ -0222=⎪⎪⎭⎫ ⎝⎛+a c b a 的两根之和与两根之积相等,判定三角形的形状 解:设方程的两根为21x x 、,根据题意知2121x x x x =+①根据韦达定理,有()⎪⎪⎭⎫ ⎝⎛+-=+-=+a c b a x x b a x x 22,221221②把②带入①,有()⎪⎪⎭⎫ ⎝⎛+-=+-a c b a b a 2222,即222c b a =+,故是直角三角形应用9:根的分布问题利用根的判别式和根与系数的关系,可进一步确定根的分布问题,这也是中考命题的热点,现总结规律如下:对于一元二次方程212,),0(0x x a c bx ax 设其两根为≠=++⑴方程有实数根:0≥∆;⑵方程无实数根:0<∆⑶方程有两个相等实数根:0=∆;⑷方程有两个不相等实数根:0>∆ ⑸方程有两个正实数根:0,0,02121>>+≥∆x x x x⑹方程有两个负实数根:0,0,02121><+≥∆x x x x⑺方程有一正一负实数根:0,021<>∆x x⑻方程有一正一负实数根且正根的绝对值大:0,0,02121<>+>∆x x x x ⑼方程有一正一负实数根且负根的绝对值大:0,0,02121<<+>∆x x x x ⑽方程仅有一正实数根:0,002121=>+<c x x x x 或⑾方程仅有一负实数根:0,002121=<+<c x x x x 或⑿方程有一根为0:0=c ;⒀方程有两根都为0:0==c b⒁方程仅有一根为0:0,0=≠c b⒂方程两根互为相反数:0,021≤=x x b ;⒃两根互为倒数:1,021=≥∆x x ⒄两根互为负倒数:1,021-=>∆x x ;⒅一根大于m ,一根小于m (m 为实数):()()0,021<-->∆m x m x ⒆两根都大于m :()()()()0,0,02121>-->-+-≥∆m x m x m x m x ⒇两根都小于m :()()()()0,0,02121>--<-+-≥∆m x m x m x m x 例题9:已知关于x 的两个方程()04422=-+++m x m x ①与()0322=-+-+m x n mx ②,方程①有两个不相等的负实数根,方程②有两个实数根.求证方程②两根符号相同解: 方程()04422=-+++m x m x 有两个不相等的负实数根,设这两个负实数根分别为21,x x ,0,0,02121><+>∆∴x x x x即()()024,024,04842>-<+->-⨯-+m m m m ,解不等式组得4>m ,由方程②有两个实数根,可知0≠m ,∴当4>m 时,03>-mm ,即方程②两根之积为正,所以方程②两根符号相同.三、总结归纳:通过这节课我们不仅把上节课韦达定理的内容复习了一下,另外我们又重点研究了韦达定理的应用,相信在座的每一位都印象深刻,相信未来遇到类似的题型大家都能迎刃解决,相信我们的合作会越来越好。
一元二次方程根与系数关系的应用一元二次方程根与系数的关系,又名韦达定理,是中学数学方程中根与系数的重要关系,它在训练学生数学思维、培养学生模型思想、创新意识、运用知识解决问题能力等方面有着十分重要的意义。
因此,多年来,运用一元二次方程根与系数关系解答的试题一直是中考和初中数学竞赛的重要内容,其题型多样,灵活性大,思路广阔,针对性强,是考查学生能力的重要题型。
一、定理的内容设x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两个实数根,由求根公式得:x1+x2=-,x1x2=。
这就是一元二次方程的根与系数的关系,也称为韦达定理。
二、韦达定理几种常见变形1.x12+x22=(x1+x2)2-2x1x2。
2.(x1-x1)2=(x1+x2)2-4x1x2。
3.(x1+a)(x2+a)=x1x2+a(x1+x2)+a2。
4.|x1-x2|=(x1+x2)2+4x1x2。
5. +=。
6.+==-2。
三、运用韦达定理构建一元二次方程若x1、x2是一元二次方程的两个实数根,且x1+x2=a,x1x2=b。
那么以x1、x2为根的一元二次方程为x2-ax+b=0。
下面谈谈定理的应用:1.关于两根的对称式求值。
关于两根的对称式求值,常常将代数式化为含有两根和与两根积的式子,再代入求值。
例1.若x1、x2是一元二次方程2x2-3x-1=0的两个根,利用根与系数的关系求下列各式的值:①+;②+;③(x1-2)(x2-2);④x12+x22;⑤(x1-x2)2;⑥|x1-x2|。
例中6个小题是上面几种常见变形的直接运用,熟悉这几种变形,不难求出相应的结果。
2.关于两根的非对称式的求值。
对于含有两根的非对称式子,常常根据根的定义降次,化高次为低次,化不对称为对称;或根据定理构造对称式,化分为整,化繁为简,从而求解问题。
(1)运用根的定义降次,化为对称式。
例2.设x1、x2是一元二次方程x2-x-2013=0的两个实数根,求x13+2014x2-2013的值。
一元二次方程根与系数的关系例1. 已知方程的一个根是,求它的另一个根及b的值。
例2. 已知方程的两根为,求下列代数式的值:(1);(2);(3)例3. 已知:是两个不相等的实数,且满足,那么求的值。
例4. 已知关于x的一元二次方程与有一个相同的根,求k的值。
例5. 已知方程(1)若方程两根之差为5,求k。
(2)若方程一根是另一根2倍,求这两根之积。
例6. 已知方程两根之比为1:3,判别式值为16,求a、b的值。
例7. 已知是关于x的一元二次方程的两个实数根。
(1)用含m的代数式表示;(2)当时,求m的值。
例8. 已知方程的两根为,求一个一元二次方程,使它两根为和。
【模拟试题】(答题时间:40分钟)一. 选择题。
1. 已知是关于x的一元二次方程的一个根,则k与另一根分别为()A. 2,-1B. -1,2C. -2,1D. 1,-22. 已知方程的两根互为相反数,则m的值是()A. 4B. -4C. 1D. -13. 若方程有两根,一根大于1,一根小于1.则k的取值范围是()A. B. C. D.4. 若方程的两根中,只有一个是0,那么()A. B.C. D. 不能确定5. 方程的大根与小根之差等于()A. B. C. 1 D.6. 以为根的,且二次项系数为1的一元二次方程是()A. B.C. D.二. 填空题。
7. 关于x的一元二次方程的两根互为倒数,则m=________。
8. 已知一元二次方程两根比2:3,则a,b,c之间的关系是______。
9. 已知方程的两根,且,则________。
10. 已知是方程的两根,不解方程可得:________,________,________。
11. 已知,则以为根的一元二次方程是______ ________________________。
三. 解答题。
12. 已知方程的两个实根中,其中一个是另一个的2倍,求m的值。
13.已知方程的两根不解方程,求和的值。
1、一元二次方程)0(02≠=++a c bx ax 的求根公式为2、一元二次方程)0(02≠=++a c bx ax 根的判别式为:ac b 42-=∆(1) 当0>∆时,方程有两个不相等的实数根。
(2) 当0=∆时,方程有两个相等的实数根。
(3) 当0<∆时,方程没有实数根。
反之:方程有两个不相等的实数根,则 ;方程有两个相等的实数根,则 ;方程没有实数根,则 。
[韦达定理相关知识]1若一元二次方程)0(02≠=++a c bx ax 有两个实数根21x x 和,那么=+21x x ,=•21x x 。
我们把这两个结论称为一元二次方程根与系数的关系,简称韦达定理。
2、如果一元二次方程02=++q px x 的两个根是21x x 和,则=+21x x ,=•21x x 。
3、以21x x 和为根的一元二次方程(二次项系数为1)是0)(21212=•++-x x x x x x4、在一元二次方程)0(02≠=++a c bx ax 中,有一根为0,则=c ;有一根为1,则=++c b a ;有一根为1-,则=+-c b a ;若两根互为倒数,则=c ;若两根互为相反数,则=b 。
5、二次三项式的因式分解(公式法)在分解二次三项式c bx ax ++2的因式时,如果可用公式求出方程 )0(02≠=++a c bx ax 的两个根21x x 和,那么))((212x x x x a c bx ax --=++.如果方程)0(02≠=++a c bx ax 无根,则此二次三项式c bx ax ++2不能分解.[基础运用]例1:已知方程02)1(32=+--x k x 的一个根是1,则另一个根是 ,=k 。
变式训练:1、已知1-=x 是方程0232=++k x x 的一个根,则另一根和k 的值分别是多少?2、方程062=--kx x 的两个根都是整数,则k 的值是多少?例2:设21x x 和是方程03422=-+x x ,的两个根,利用根与系数关系求下列各式的值:(1)2221x x + (2))1)(1(21++x x (3)2111x x + (4)221)(x x -变式训练:1、已知关于x 的方程01032=+-k x x 有实数根,求满足下列条件的k 值:(1)有两个实数根。
方法专题 根与系数的关系的应用应用一 利用根与系数的关系求代数式的值1.方程x 2+9x +9=0的两根为x 1,x 2,则x 1+x 2-x 1x 2的值为( )A.-18B.18C.9D.02.已知x 1,x 2是方程x 2-4x +2=0的两个实数根,则(x 1-1)(x 2-1)的值为________.3.若m ,n 是方程x 2-x -2020=0的两个实数根,则代数式m 2+2m +3n 的值为________.4.已知x 1,x 2是一元二次方程x 2+2x -k -1=0的两根,且x 1x 2=-3,则k 的值为( )A.1B.2C.3D.45.(2019·贵港)若α,β是关于x 的一元二次方程x 2-2x +m =0的两实根,且 α1 + β1 =-32 ,则m 等于( ) A.-2 B.-3 C.2 D.36.(2019·鄂州)关于x 的一元二次方程x 2-4x +m =0的两实数根分别为x 1,x 2,且x 1+3x 2=5,则m 的值为( ) A. 47 B. 57 C. 67 D.07.已知关于x 的方程x 2+(2m +1)x +m 2=0有两个根x 1,x 2.(1)求m 的取值范围;(2)当x 12+x 1x 2=0时,求m 的值.8.已知关于x 的一元二次方程ax 2-(a +1)x +4a =0有两个不相等的实数根x 1,x 2. (1)求a 的最小整数值;(2)当x 1-x 2=1时,求a 的值9.已知△ABC 的两边AB ,AC 的长是关于x 的一元二次方程x 2-(2k +3)x +k 2+3k +2=0的两个实数根,第三边BC 的长为5.(1)试说明方程必有两个不相等的实数根;(2)当k 为何值时,△ABC 是以BC 为斜边的直角三角形?。
一元二次方程根与系数的关系的5种应用一元二次方程根与系数的关系的应用是初中数学的重点内容,也是中考必考的热门内容.与“一元二次方程根与系数的关系”有关的题型形式灵活多样,常见的形式有下面5种,要求同学们要熟练掌握.一,已知两根求作新方程例1,求一个一元二次方程,使它的两根为1x 、2x ,且满足221210x x +=,123x x =.答案:x 2+4x+3=0或x 2-4x+3=0解析:由221210x x +=,可得102)(21221=-+x x x x ,又因为123x x =,所以16)(221=+x x ,421±=+x x ,所以此方程为:x 2+4x+3=0或x 2-4x+3=0 二,已知关于两根关系式的值,求系数.例2,如果关于x 的方程x 2+mx+1=0的两个根的差为1,那么m 等于( )A .±2B .±3C .±5 D .± 6答案:C解析:根据题意,方程的两根1x 、2x ,满足1x -2x =1(设1x >2x ),所以(1x -2x )2=12,得14)(21221=-+x x x x .又因为,根据根与系数的关系, m x x -=+21,121=•x x ,所以114)(2=•--m ,所以m=± 5 三,已知一元二次方程,求两根关系式的值例3,已知1x 、2x 是方程,032=--x x 的两个根,那么2221x x +的值是( )A .1B .5C .7D .449 答案:C解析:根据根与系数的关系, 121=+x x ,321-=•x x ,又因为2212x x +=212212)(x x x x -+,所以2212x x +=7. 四,已知一根,求另一根及系数例4,已知关于x的一元二次方程x2-(k+1) x-6=0的一个根是2,求方程的另一根和k的值.解析:设方程的另一根为x1,由根与系数的关系:2 x1=-6,解得x1=-3.由根与系数的关系:-3+2= k+1,所以k=-2..五,知两数和,两数积,求两数例5,已知,两数和为8,两数积是7,求这两数.答案:1和7解析,根据根与系数的关系,这两数是方程2x-8x+7=0的两根,解得,x1=1,x2=7,所以这两数是1和7.。
2013根与系数关系应用
一.填空题(共30小题)
1.(2012•泸州)设x1,x2是一元二次方程x2﹣3x﹣1=0的两个实数根,则x12+x22+4x1x2的值为_________.2.(2012•鄂州)设x1、x2是一元二次方程x2+5x﹣3=0的两个实根,且,则a=
_________.
3.(2011•苏州)已知a、b是一元二次方程x2﹣2x﹣1=0的两个实数根,则代数式(a﹣b)(a+b﹣2)+ab的值等于_________.
4.(2011•德州)若x1,x2是方程x2+x﹣1=0的两个根,则x12+x22=_________.
5.(2010•雅安)已知一元二次方程x2﹣mx+m﹣2=0的两个实数根为x1、x2,且x1x2(x1+x2)=3,则m的值是
_________.
6.(2010•芜湖)已知x1、x2为方程x2+3x+1=0的两实根,则x13+8x2+20=_________.
7.(2010•成都)设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为_________.
8.(2009•天津)若分式的值为0,则x的值等于_________.
9.(2008•鄂州)已知α,β为方程x2+4x+2=0的二实根,则α3+14β+50=_________.
10.(2007•芜湖)已知2﹣是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是_________.11.(2007•宿迁)设x1,x2是方程x(x﹣1)+3(x﹣1)=0的两根,则|x1﹣x2|=_________.12.(2006•株洲)已知a、b是关于x的方程x2﹣(2k+1)x+k(k+1)=0的两个实数根,则a2+b2的最小值是_________.13.(2006•日照)已知,关于x的方程x2+=1,那么x++1的值为_________.14.(2006•南充)如果α、β是一元二次方程x2+3x﹣1=0的两个根,那么α2+2α﹣β的值是_________.
15.(2001•甘肃)如果二次三项式3x2﹣4x+2k在实数范围内总能分解成两个一次因式的乘积,则k的取值范围是_________.
16.(2001•东城区)若2x2﹣5x+﹣5=0,则2x2﹣5x﹣1的值为_________.
17.(2000•辽宁)已知α,β是方程x2+2x﹣5=0的两个实数根,则α2+αβ+2α的值为_________.
18.(1999•温州)若m、n是关于x的方程x2+(p﹣2)x+1=0的两实根,则代数式(m2+mp+1)(n2+np+1)的值等于_________.
19.(1999•福州)已知m、n是一元二次方程x2﹣3x+1=0的两根,那么代数式2m2+4n2﹣6n+1999的值=_________.20.(2013•南通二模)设m,n是方程x2﹣x﹣2012=0的两个实数根,则m2+n的值为_________.21.(2013•昆山市一模)如果α、β是一元二次方程x2+3x﹣2=0的两个根,则α2+2α﹣β的值是_________.22.(2013•海门市二模)已知α,β为方程x2+4x+2=0的两实根,则α2﹣4β+5=_________.23.(2012•思明区质检)已知m2=m+1,4n2=2n+1,若m≠2n,则m+2n=_________.
24.(2012•启东市模拟)已知a,b为一元二次方程x2+2x﹣9=0的两个根,那么a2+a﹣b的值为_________.25.(2012•梁子湖区模拟)将代数式x2+4x﹣1化成(x+p)2+q的形式为_________.
26.(2012•锦江区一模)已知m、n是方程x2﹣2010x+2011=0的两根,则(n2﹣2011n+2012)与(m2﹣2011m+2012)的积是_________.
27.(2012•汉川市模拟)如果α,β是一元二次方程x2+4x﹣1=0的两个根,则α2+3α﹣β的值是_________.28.(2012•房山区二模)把代数式m2+4m﹣1化为(m+a)2+b的形式,其中a、b为常数,则a+b=_________.
29.(2011•郑州模拟)若P=a﹣2,Q=a2+3a(a为实数),则P、Q的大小关系为
_________.
30.(2011•宜兴市模拟)已知a+b=4m+2,ab=1,若19a2+149ab+19b2的值为2011,则m=_________.
2013年10月薛淼的初中数学组卷
参考答案与试题解析
一.填空题(共30小题)
1.(2012•泸州)设x1,x2是一元二次方程x2﹣3x﹣1=0的两个实数根,则x12+x22+4x1x2的值为7.
化成
﹣=
2.(2012•鄂州)设x1、x2是一元二次方程x2+5x﹣3=0的两个实根,且,则a=10.
3.(2011•苏州)已知a、b是一元二次方程x2﹣2x﹣1=0的两个实数根,则代数式(a﹣b)(a+b﹣2)+ab的值等于﹣1.
4.(2011•德州)若x1,x2是方程x2+x﹣1=0的两个根,则x12+x22=3.
﹣﹣==
5.(2010•雅安)已知一元二次方程x2﹣mx+m﹣2=0的两个实数根为x1、x2,且x1x2(x1+x2)=3,则m的值是3或﹣1.
,.
6.(2010•芜湖)已知x1、x2为方程x2+3x+1=0的两实根,则x13+8x2+20=﹣1.
7.(2010•成都)设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为7.
8.(2009•天津)若分式的值为0,则x的值等于2.
9.(2008•鄂州)已知α,β为方程x2+4x+2=0的二实根,则α3+14β+50=2.
﹣.
10.(2007•芜湖)已知2﹣是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是.
,并且一次项系数也已知,根据两根之和公式可以求出方程的另一根.
=4.
11.(2007•宿迁)设x1,x2是方程x(x﹣1)+3(x﹣1)=0的两根,则|x1﹣x2|=4.
12.(2006•株洲)已知a、b是关于x的方程x2﹣(2k+1)x+k(k+1)=0的两个实数根,则a2+b2的最小值是.
),
.
13.(2006•日照)已知,关于x的方程x2+=1,那么x++1的值为﹣2.
+1
)•)
+1
x++1=2
x+
14.(2006•南充)如果α、β是一元二次方程x2+3x﹣1=0的两个根,那么α2+2α﹣β的值是4.
15.(2001•甘肃)如果二次三项式3x2﹣4x+2k在实数范围内总能分解成两个一次因式的乘积,则k的取值范围是k≤.
.
.
16.(2001•东城区)若2x2﹣5x+﹣5=0,则2x2﹣5x﹣1的值为2或0.
﹣
17.(2000•辽宁)已知α,β是方程x2+2x﹣5=0的两个实数根,则α2+αβ+2α的值为0.
18.(1999•温州)若m、n是关于x的方程x2+(p﹣2)x+1=0的两实根,则代数式(m2+mp+1)(n2+np+1)的值等于4.
19.(1999•福州)已知m、n是一元二次方程x2﹣3x+1=0的两根,那么代数式2m2+4n2﹣6n+1999的值=2011.
20.(2013•南通二模)设m,n是方程x2﹣x﹣2012=0的两个实数根,则m2+n的值为2013.
21.(2013•昆山市一模)如果α、β是一元二次方程x2+3x﹣2=0的两个根,则α2+2α﹣β的值是5.
,=
22.(2013•海门市二模)已知α,β为方程x2+4x+2=0的两实根,则α2﹣4β+5=19.
23.(2012•思明区质检)已知m2=m+1,4n2=2n+1,若m≠2n,则m+2n=1.
=1
﹣
24.(2012•启东市模拟)已知a,b为一元二次方程x2+2x﹣9=0的两个根,那么a2+a﹣b的值为11.
=
()﹣(
=
(﹣(﹣)﹣(
25.(2012•梁子湖区模拟)将代数式x2+4x﹣1化成(x+p)2+q的形式为(x+2)2﹣5.
26.(2012•锦江区一模)已知m、n是方程x2﹣2010x+2011=0的两根,则(n2﹣2011n+2012)与(m2﹣2011m+2012)的积是2.
27.(2012•汉川市模拟)如果α,β是一元二次方程x2+4x﹣1=0的两个根,则α2+3α﹣β的值是5.
,.也考查了一元二次方程的解.
28.(2012•房山区二模)把代数式m2+4m﹣1化为(m+a)2+b的形式,其中a、b为常数,则a+b=﹣3.
29.(2011•郑州模拟)若P=a﹣2,Q=a2+3a(a为实数),则P、Q的大小关系为
P<Q.
30.(2011•宜兴市模拟)已知a+b=4m+2,ab=1,若19a2+149ab+19b2的值为2011,则m=2或﹣3.。