函数的极限重要极限无穷大与无穷小
- 格式:ppt
- 大小:1.23 MB
- 文档页数:50
1.函数与极限:数列极限、函数极限;无穷大与无穷小的性质;两个重要极限;函数的连续性与间断点;闭区间上连续函数的性质。
2.导数与微分:导数概念;函数的求导法则、二阶导数;函数的微分;洛比达法则;函数的单调性与极值。
3.不定积分与定积分:原函数与不定积分的概念;第一换元积分法与第二换元积分法;分部积分法;微积分基本公式、牛顿-莱布尼茨公式;定积分性质与计算;反常积分的计算。
4.微分方程:微分方程的基本概念、变量分离方程、齐次微分方程;一阶线性齐次微分方程、一阶线性非齐次微分方程、常数变易法。
5.多元函数微分:多元函数的概念、二元函数的极限和连续性;偏导数的概念、偏导数计算;全微分概念、全微分的计算;多元函数的极值及其求法。
6.二重积分:二重积分的计算;重积分的应用。
7.无穷级数:常数项级数的概念和性质、收敛法则;幂级数的概念及收敛半径、收敛域;函数展开成幂级数的方法;掌握判别无穷级数、正项级数和交错级数的敛散性的方法;理解绝对收敛与条件收敛的关系。
第4、5讲 无穷小(大)与极限运算(无穷小的比较)及两个重要极限 一、计划学时:2节 二、内容三、要求 四、重点 五、难点六、教学过程:(一) 无穷小与无穷大 一、无穷小量定义1 在某一极限过程中,以0为极限的变量,称为该极限过程中的无穷小量,简称为无穷小。
无穷小量只是极限的一个特殊情况(A =0),因而可由极限的不等式定义得到无穷小的精确定义,共有七种,先以x →x 0为例给出无穷小的精确定义:定义2 设函数f (x )当|x |充分大时有定义。
若 ∀ M >0,∃ X >0,∍ |x |> X ⇒ ⎪f (x ) ⎪>M ,则称函数f (x )当x →∞时为无穷大量,记为)()(∞→∞→x x f 或∞=∞→)(lim x f x . 注 由无穷大定义知,无穷大不是数,再大的数也不是无穷大。
且若函数是无穷大,则函数必无极限。
但为描述函数的这种变化趋势的性态,也称函数的极限是无穷大。
如:x →0时,x 1是无穷大;x → -1时,2)1(1x +也是无穷大;x →∞时,1-ln x 是无穷大。
显然这些无穷大的变化趋势不相同,随着x →∞,的值非负且越来越大,而1-ln x 则取负值且绝对值越来越大,在数学上加以区别就是正无穷大+∞与负无穷大-∞。
将定义2中的“|x |> X ”相应地改为“x < X ”和“x >-X ”即可得到x →∞时正无穷大和负无穷大的定义。
共有21种无穷大的定义。
例2 证明∞=-→11lim 1x x . 证 ∀ M >0,要使⎪f (x ) ⎪=│11-x │>M ,只要 | x -1|< M 1,取 δ =M1,则当δ<-<|1|0x 时,⇒ │11-x │>M , ∴ ∞=-→11lim1x x . 注❶ 证明无穷大的思想方法完全同于极限证明部分。
❷ 从图形(图10—13)上看直线 x =1是曲线y = 的垂直渐近线。
高数期末必考知识点总结大一高数期末必考知识点总结高等数学是大一学生必须学习的一门重要课程,它在培养学生的数学思维、分析问题和解决问题的能力方面起着重要的作用。
期末考试是对学生整个学期所学知识的总结和检验,因此掌握必考的知识点至关重要。
本文将对高数期末必考的知识点进行总结和梳理,以帮助大家更好地备考。
一、函数与极限1. 函数的基本概念和性质:定义域、值域、奇偶性等。
2. 极限的定义与性质:极限存在准则、无穷大与无穷小、夹逼定理等。
3. 重要极限的求解方法:基本初等函数的极限、无穷小的比较、洛必达法则等。
二、导数与微分1. 导数的定义与性质:导数的几何意义、导数的四则运算、高阶导数等。
2. 基本初等函数的导数:常数函数、幂函数、指数函数、对数函数等。
3. 隐函数与反函数的导数:隐函数求导、反函数的导数等。
4. 微分的定义与性质:微分的几何意义、微分中值定理等。
三、不定积分与定积分1. 不定积分的定义与基本性质:不定积分的线性性质、换元积分法等。
2. 基本初等函数的不定积分:幂函数的不定积分、三角函数的不定积分等。
3. 定积分的定义与性质:定积分的几何意义、定积分的性质等。
4. 定积分的计算方法:换元法、分部积分法、定积分的性质等。
四、微分方程1. 微分方程的基本概念:微分方程的定义、阶数、解的概念等。
2. 一阶微分方程:可分离变量的微分方程、齐次线性微分方程等。
3. 高阶线性微分方程:齐次线性微分方程、非齐次线性微分方程等。
4. 常微分方程的初值问题:初值问题的存在唯一性、解的连续性。
五、级数1. 数项级数的概念与性质:数项级数的定义、级数的收敛与发散、级数的性质等。
2. 常见级数的判别法:比较判别法、比值判别法、根值判别法等。
3. 幂级数:幂级数的收敛半径、收敛域的判定、幂级数的和函数等。
综上所述,高数期末必考的知识点主要包括函数与极限、导数与微分、不定积分与定积分、微分方程以及级数等。
在备考期末考试时,同学们要重点复习这些知识点,并通过大量的练习题来巩固和提高自己的理论水平和解题能力。
极限的计算两个重要极限初等函数的极限是微积分中的重要概念之一,它能够帮助我们研究函数在其中一点的趋势。
在微积分中,极限是指当自变量趋近于其中一特定值时,函数的取值趋近于一个确定的值。
可以说,极限是描述函数在无穷接近其中一特定点时的行为。
在本文中,我们将探讨两个重要的极限:无穷大极限和无穷小极限。
1.无穷大极限无穷大极限也称为“函数趋向于无穷”的极限。
当自变量趋近于一些特定值时,函数的取值趋向于正无穷或负无穷。
例如,考虑函数f(x)=x^2,当x趋近于正无穷时,f(x)也趋向于正无穷。
这意味着不论多大的正实数M,只要x足够大,都能找到一个正实数N,使得当x>N时,f(x)>M成立。
我们可以用数学符号表示无穷大极限:lim(x→∞) f(x) = ∞类似地,当x趋近于负无穷时,f(x)也趋向于负无穷,可以表示为:lim(x→-∞) f(x) = -∞2.无穷小极限无穷小极限也称为“函数趋向于零”的极限。
当自变量趋近于一些特定值时,函数的取值趋向于零。
例如,考虑函数f(x)=1/x,当x趋近于正无穷时,f(x)趋向于零。
这意味着无论多小的正实数ε,只要x足够大,都能找到一个正实数N,使得当x>N时,f(x),<ε成立。
我们可以用数学符号表示无穷小极限:lim(x→∞) f(x) = 0类似地,当x趋近于负无穷时,f(x)也趋向于零,可以表示为:lim(x→-∞) f(x) = 03.极限的计算方法计算极限的方法有很多种,常见的有代入法、夹逼定理、洛必达法则等。
代入法是最简单直接的计算极限的方法,即直接将极限点的值代入函数中进行计算。
但有时函数在极限点处可能没有定义,此时代入法就不适用。
夹逼定理是一种常用的计算极限的方法,该原理是利用一个已知的不等式夹住相同极限点的函数,以确定其极限值。
洛必达法则是一种用于解决极限问题的有力工具。
它可以用来解决函数极限的不定型问题,它的基本思想是将极限问题转化为导数问题,通过求导数来确定极限值。
全国大一高数考的知识点大学数学是理科类学生必修的一门课程,其中高等数学是大学数学的重要组成部分,也是高校各类理科专业的重点课程之一。
全国大一高数考试所涉及的知识点非常广泛,包括微积分、线性代数等不同领域的内容。
接下来,我们将从几个主要方面回顾一下全国大一高数考试常见的知识点,希望能够对广大高校大一学生有所帮助。
微积分是高等数学中最重要的一个分支,全国大一高数考试常涉及以下几个方面的内容:1. 无穷小量与极限:大一学生要理解无穷小量的概念,掌握极限的概念与运算法则,包括函数的极限、无穷大与无穷小的比较等。
2. 连续与导数:全国大一高数考试会涉及到函数的连续性以及导数的定义,例如函数的连续性与不连续点的判定、导数的定义与求法等。
3. 微分学的应用:微分学是微积分的应用数学分支,全国大一高数考试经常会出现微分学的应用题,例如最大最小值问题、曲线的切线与法线方程等。
此外,代数是大学数学中另一个重要组成部分,全国大一高数考试通常会覆盖以下内容:1. 矩阵与行列式:全国大一高数考试会考察矩阵的运算、矩阵的逆与转置、行列式的性质与运算等内容。
2. 向量与空间几何:向量是代数中的重要概念,全国大一高数考试会涉及向量的运算、数量积与向量积等内容,同时也会考察空间几何中的点、线、面的相关性质。
3. 多项式与方程:全国大一高数考试通常会出现多项式的运算、多项式方程的解法等内容。
除了微积分和代数,概率论与数理统计也是全国大一高数考试的重点内容之一:1. 随机变量与概率分布:全国大一高数考试会考察随机变量与概率分布的相关知识,例如离散型随机变量与连续型随机变量的定义与特征。
2. 数理统计:全国大一高数考试会考察样本与总体统计量、抽样分布与中心极限定理、统计推断等内容。
除此之外,全国大一高数考试还可能考察其他领域的基本知识点,如数列、级数、极限等。
这些内容对于高等数学的学习以及后续专业知识的掌握都有重要意义。
总结起来,全国大一高数考试的知识点十分广泛,包括微积分、代数、概率论与数理统计等多个领域。
大一必考高数知识点在大一的学习生活中,高等数学是必修课程之一,对于学习理工科的同学来说,掌握好高数知识点非常重要。
下面将介绍一些大一必考的高数知识点,帮助同学们更好地应对高数考试。
一、函数与极限1. 函数的定义与性质:介绍函数的定义、定义域、值域等概念,以及奇函数和偶函数的性质。
2. 函数的极限:介绍函数极限的定义、左极限和右极限的概念,以及常见函数的极限计算方法。
3. 无穷大与无穷小:讲解无穷大和无穷小的定义,以及无穷小的判定方法。
二、导数与微分1. 导数的定义:介绍导数的定义,讨论导数存在的条件,并给出常见函数的导数计算方法。
2. 导数的应用:介绍导数在几何与物理问题中的应用,如切线与法线、相关变率、最值等。
3. 微分的概念:引入微分的概念,讨论微分与导数的关系,并解释微分的几何意义。
三、不定积分与定积分1. 不定积分的定义:介绍不定积分的定义,给出常见函数的不定积分计算方法,如幂函数、指数函数、三角函数等。
2. 定积分的概念:介绍定积分的定义,讨论定积分的性质,如线性性、区间可加性等。
3. 定积分的应用:介绍定积分在几何与物理问题中的应用,如曲线长度、平面面积、体积、质量等。
四、级数1. 数项级数:讲解数项级数的定义与判敛条件,介绍常见级数的性质,如正项级数、比较判别法、比值判别法等。
2. 幂级数:介绍幂级数的定义与收敛半径,讨论幂级数的收敛性以及幂函数展开。
五、微分方程1. 微分方程的基本概念:介绍常微分方程的分类,讲解微分方程的阶、线性与非线性等概念。
2. 一阶常微分方程:讨论一阶常微分方程的可分离变量、线性方程、齐次方程等特殊类型的解法。
总结:以上介绍了大一必考的高数知识点,包括函数与极限、导数与微分、不定积分与定积分、级数以及微分方程等内容。
希望同学们能够认真学习这些知识点,充分理解概念和原理,并进行大量的练习,以提高解题能力和应对考试的能力。
祝大家在高数考试中取得优异的成绩!。
无穷大和无穷小是数学中的概念,常常出现在极限和无穷级数等领域中。
理解无穷大和无穷小的概念对于数学的研究和应用至关重要。
在此,我们将探讨如何理解无穷大和无穷小。
首先,无穷大可以理解为一个趋向于正无穷或负无穷的数。
当一个数的绝对值越来越大,超过所有有限数,我们可以说它是无穷大。
举个例子,考虑函数f(x) = x^2,当 x 接近于正无穷时,f(x) 也趋向于正无穷。
这就是说,随着x 的增大,f(x)的值也会越来越大,超过所有有限数。
类似地,当 x 接近于负无穷时,f(x) 也趋向于正无穷。
因此,我们可以说 f(x) 在正无穷和负无穷处具有无穷大的极限。
然而,我们需要注意无穷大并不是一个确切的数值,而是一个数的性质。
它描述了一个数的增长或减小趋势,而不是一个具体的值。
因此,当我们说一个数是无穷大时,我们并不是在给出一个确定的值,而是在描述这个数相对于其他数的比较关系。
与无穷大相对应的是无穷小。
无穷小可以理解为一个趋向于零的数。
当一个数的绝对值越来越小,无限地接近于零,我们可以说它是无穷小。
举个例子,考虑函数 g(x) = 1/x,当 x 接近于正无穷时,g(x) 趋向于零。
这就是说,随着x 的增大,g(x) 的绝对值会越来越小,且无限接近于零。
因此,我们可以说g(x) 在正无穷处具有无穷小的极限。
与无穷大类似,无穷小也不是一个确切的数值,而是一个数的性质。
它描述了一个数的减小趋势,而不是一个具体的值。
因此,当我们说一个数是无穷小时,我们并不是在给出一个确定的值,而是在描述这个数相对于其他数的比较关系。
在数学中,我们常常使用无穷大和无穷小的概念来研究极限、无穷级数和微积分等领域。
通过理解无穷大和无穷小,我们可以更好地理解极限的概念。
例如,当我们说一个函数在某点处的极限为无穷大时,我们可以理解为在该点附近的数值对于无穷大来说越来越大。
类似地,当我们说一个函数在某点处的极限为无穷小时,我们可以理解为在该点附近的数值对于零来说越来越小。
数学函数极限知识点总结一、基本概念1.1 函数极限的概念函数极限是指当自变量趋于某个特定值时,函数的取值趋于某个确定的值。
具体地说,设函数f(x)在点x=a的某个邻域内有定义,如果存在一个常数A,对于任意给定的正数ε,总存在另一个正数δ,使得当0<|x-a|<δ时,就有|f(x)-A|<ε成立,那么称函数f(x)当x趋于a时的极限为A,记为lim(x→a)f(x)=A。
1.2 函数极限的图像解释在图像上,函数f(x)在点x=a处的极限为A,就是指当x趋于a时,函数曲线逐渐接近点(x,A)。
特别地,如果对于任意给定的ε,总存在一个正数δ,使得当0<|x-a|<δ时,函数曲线都在点(x,A)的ε-邻域内,那么称函数f(x)在点x=a处的极限存在,并且等于A。
1.3 函数极限的表达方式函数极限通常有三种表达方式,分别是极限右侧、极限左侧和双侧极限。
其中,当x趋于a时,如果函数f(x)的极限只依赖于x大于a时的情况,那么记为lim(x→a+)f(x)=A;如果函数f(x)的极限只依赖于x小于a时的情况,那么记为lim(x→a-)f(x)=A;如果函数f(x)的极限既依赖于x大于a时的情况,又依赖于x小于a时的情况,那么记为lim(x→a)f(x)=A。
1.4 无穷大与无穷小当函数f(x)在点x=a处的极限为无穷大时,即lim(x→a)f(x)=∞或lim(x→a)f(x)=-∞,就称函数f(x)在点x=a处的极限为无穷大;当函数f(x)在点x=a处的极限为0时,即lim(x→a)f(x)=0,就称函数f(x)在点x=a处的极限为无穷小。
二、求解方法2.1 用极限定义求解对于一般的函数极限问题,可以使用极限的定义求解。
具体地说,通过设定ε-δ的方式,利用函数的性质和运算规则,逐步推导出函数在特定点的极限。
通常包括利用夹挤定理、利用三角不等式、利用数列极限等方法来求解函数极限。