PCB制作过程中激光直接成像的三种方式
- 格式:pdf
- 大小:237.19 KB
- 文档页数:3
光绘机的概念光绘机又叫做激光光绘机,是一种集激光光学技术、微电子技术和超精密机械于一体的的照排产品,用于在感光菲林胶片上绘制各种图形,图像,文字或符号。
PCB光绘机图激光光绘机原理激光光绘机的原理其实是很简单的,因为激光光绘机是用是用激光对菲林进行扫描产生图形的,其原理正如电视机显像管中电子枪扫描屏幕上的荧光物质一样。
首先,将印制电路板的图面映像到一个大存储阵列中,然后使激光束按照存储阵列中相应单元的值被打开或关闭(调制),从而得到所需要的工艺菲林。
激光光绘机采用激光做光源,有容易聚焦、能量集中等优点,对瞬间快速的底片曝光非常有利,绘制的底片边缘整齐、反差大、不虚光。
曝光采用扫描式,无论密度多大,均能在最短时间内完成曝光,绘制一张底片只需几分钟。
因此成为当今光绘行业的主流。
激光光绘机的光源多采用气体激光器,如氩、氦和氖等。
气体激光器的光源强度大但寿命却有限,约6000~10000h,因此使用一年多就需要更换光源。
现在一些光绘机生产厂家采用了半导体激光器作为光源,但较大功率的半导体激光器的生产还不很成熟。
现在激光光绘机因为原理简单,操作方便,被应用在了各行各业上,其中当然也包括PCB行业,在印刷线路板行业使用的光绘机我们把他叫做PCB光绘机。
PCB光绘操作的介绍PCB光绘操作的步骤不能说简单,也谈不上复杂,下面我们就一起来谈论一下关于PCB光绘的操作流程。
激光光绘系统由主控计算机、图形处理卡、激光光绘机和软件组成。
它是对计算机图像、文字和数据等信息进行处理,最终由激光光绘机输出制版菲林,属于计算机辅助制版系统。
根据系统配置的软件不同,它可以制作PCB光绘菲林、标牌面板菲林、丝网印刷菲林和彩色胶印分色菲林等多种菲林底版。
流程如下图所示:(PCB/LCD设计图)-->(CAM系统)-->(Gerber 文件) -->(光绘软件)-->(光栅图像处理器(RIP))-->(激光光绘机) -->(菲林冲片机)-->(菲林)在PCB光绘的时候,我们要做好很多的准备,其中包括软件的使用,软件使用时注意以下几点:光绘软件使用过程中,注意光绘文件的有序保存,最好不要将Gerber文件、光栅文件、临时文件等非程序文件置于软件安装目录中,以免删除时误删掉程序文件,破坏软件的运行。
激光选通成像原理
激光选通成像是一种基于激光技术的成像原理,它利用激光束的特性以及物体对激光的反射或散射来获取图像信息。
下面是激光选通成像的详细原理说明:
1. 激光发射:首先,使用激光器产生一束具有高能量和单色性质的激光束。
常用的激光器包括气体激光器、固体激光器和半导体激光器等。
2. 激光照射:将激光束照射到待成像的目标物体上。
激光束可以被物体表面反射或穿透物体后再次散射。
3. 选通装置:在激光束照射过程中,通过使用一个选通装置,例如光栅或薄膜,来选择特定波长或空间频率的激光光束。
这样可以排除其他波长或频率的干扰信号,提高成像的清晰度和准确性。
4. 接收器:在目标物体上的激光照射产生的反射或散射光经过选通装置后,进入接收器。
接收器可以是一个光敏元件,如光电二极管或光电倍增管,用于将光信号转换为电信号。
5. 信号处理:通过对接收到的电信号进行放大、滤波和调制等处理,可以提取出目标物体的图像信息。
这些处理方法可以根据具体的应用需求进行优化。
6. 图像重建:最后,经过信号处理后得到的电信号被传输到图像重建系统中,根据信号的强度和空间分布来重建出目标物体的图像。
图像重建可以采用不同的算法和技术,例如逆向投影、傅里叶变换等。
总之,激光选通成像利用激光的单色性和方向性,结合选通装置和信号处理技术,可以获取高分辨率、高对比度和三维信息的目标物体图像。
它在医学成像、工业检测、遥感等领域有着广泛的应用前景。
1。
丝网印刷直接制版(CTS)激光成像技术及设备激光技术介绍激光技术(见图1)的输出方式是由激光头产生光柱并进行曝光,曝光过程中把网版直接当作胶片。
激光曝光与喷墨制版的区别是激光成像使用激光而非油墨,从材料而言,即便宜又环保。
但激光曝光系统有一问题是需要专用感光胶,因为激光曝光的波段只有较窄的几个毫微米,曝光范围小,与感光范围在360nm~420mm内的传统感光胶的不匹配,所以只能使用专用感光胶。
这种系统在间接制网印版的工艺方面用的较多。
图2是激光曝光成像的主要技术环节。
图1 激光成像系统文 杨芳图2 Screen Setter成像系统(注:Reflector:反射镜;UV-lamp:UV灯;optical lens:光学镜头;DMD:数字微镜设备;Lens:镜头;stencil:网版。
)在激光成像制版中,也有人提出在非图文部分直接喷射感光胶再固化的方法,理由是这样就不需显影处理。
但是考虑到感光胶粘度、流动性、丝网网孔大小不同等因素,这种方法在实际操作中实用性不高,所以较少人去研究这种方法。
激光曝光系统除了CTS系统有的优点外,它的缺点就是对感光胶的使用要求比较严格。
这种技术最适用于每天重复使用同一种油墨在同一种介质上印刷的工作者。
Stencil Writer系统Stencil Writer系统由Berg Engneering公司生产,在1997年投入使用,它的应用主要集中于工业精细印刷和商业印刷。
此系统采用氩激光直接曝光成像,用于间接的丝印制版工艺(即先在感光片上形成镂空的图像,然后进行贴网的制版工艺)。
该系统配备了一款名为“Custom dot”的软件,能影印高质量、连续调的图像。
系统允许接受PC格式、MAC格式和Postscript level格式文件。
系统可达分辨率和速度分别为1270dpi和50%网点覆盖率10min 制1m2。
瑞士Safer公司提供的Safer LDS由于使用材料的恒定性,这种系统最受DVD 以及CD制造商的欢迎。
印刷制版中的激光技术应用的原理激光技术在印刷制版中的应用原理主要包括激光光束的形成、激光光束的调制和激光光束的投射。
激光光束的形成是通过激光器产生的。
激光器通常由激光介质、泵浦源和光学谐振腔组成。
激光介质的种类有很多,如气体、液体或固体等。
当激光介质处于激发态时,外界的泵浦源(如电流、光、化学反应等)可以使其处于受激辐射的状态,进而激发介质分子向较低能级跃迁。
这种辐射过程是自发辐射和受激辐射的综合效果,它产生了具有高能量、高亮度和高方向性的激光光束。
光学谐振腔是一个能够反射激光光线的结构,它可以反射光线,并将它们反复通过激光介质,从而提高激光光束的放大程度。
最终,通过一系列的过程,激光器可以产生高功率的激光光束。
激光光束的调制是为了满足印刷制版的要求。
调制一般包括功率调制和空间调制。
功率调制是通过改变输入光束的功率来实现的,可以通过控制激光的泵浦源或激发介质的参数来调节,以获得所需的功率输出。
空间调制是指通过空间光调制器(如光栅、液晶等)改变激光光束的相位和振幅来实现,以进一步调试光束的特性。
这样可以将光束聚焦到一个确定的位置,以便在制版过程中更好地控制激光的能量分布。
激光光束的投射是通过合适的光学系统来实现的,以便将光束准确地投射到印刷制版的目标上。
投射一般需要满足激光光束的均匀性、稳定性和焦距等要求,以确保最终的印刷质量。
激光光束的均匀性通过调节光束形状(如圆形、方形等)和能量分布来实现。
光束的稳定性通过合理设计和调节光学系统的参数来实现。
焦距的调节是基于制版材料的类型和厚度来实现的,以实现所需的刻印或曝光效果。
除了激光技术在印刷制版中的基本原理外,还有一些与激光技术相关的辅助技术也在印刷制版中得到了应用。
例如,激光束的散斑技术可以通过调整激光光源和光学系统来消除激光光束的散斑效应,从而获得更好的印刷效果。
激光束的光谱分析和调控技术可以用于实时监测激光光束的性能,并根据需求进行调节,以获得更好的印刷质量。
激光照排技术原理的应用1. 简介激光照排技术是指利用激光束通过光阻的选择性曝光,从而实现对印刷电路板(PCB)上光阻层进行图形化处理的技术。
它广泛应用于电子制造行业,可以提高PCB的制造效率和质量。
2. 激光照排技术的原理激光照排技术的原理主要包括以下几个步骤:2.1 光阻层涂布首先,在印刷电路板上涂布一层光敏感的光阻层。
这种光阻层通常由聚合物材料制成,可以通过激光的照射形成图形。
2.2 激光照射激光照排技术使用高能激光束对光阻层进行照射。
激光束的能量和照射时间的控制可以实现不同的曝光效果。
2.3 光阻层固化激光照射后,经过光阻层的光化学反应,使光阻层在照射区域发生固化。
未固化的部分可以通过洗涤剂去除。
2.4 显影通过显影工艺,去除未固化的光阻层,留下所需的图形。
显影液通常是一种有机溶剂,能够将未固化的光阻层溶解。
2.5 固化最后,对已显影的光阻层进行固化处理,以增强其耐蚀性和机械强度。
3. 激光照排技术的应用3.1 PCB制造激光照排技术在印刷电路板(PCB)的制造中广泛应用。
它可以实现高精度的图形化处理,提高制造的精度和效率。
激光照排技术能够处理复杂的PCB图形,包括细线宽、细间距、微小孔径等。
3.2 LED制造LED(Light Emitting Diode)制造是另一个应用激光照排技术的领域。
激光照射可以精确控制LED芯片的发光区域和形状,提高LED的亮度和均匀性。
3.3 模具制造激光照排技术还被广泛用于模具制造。
通过激光照射光阻层,可以在模具表面形成复杂的图案和结构。
这种技术可以提高模具的加工精度和效率。
3.4 3D打印在3D打印领域,激光照排技术被用于制造3D打印模型的成型层。
激光束可以精确照射光敏材料,从而实现复杂的3D结构。
3.5 光刻技术激光照排技术也是光刻技术中的一种重要方法。
通过激光的照射和制导,可以实现对光刻胶的局部曝光,从而制造微型元件和光学器件。
4. 结论激光照排技术是一种先进的图形化处理技术,广泛应用于电子制造、模具制造、3D打印等领域。
ldi直接成像技术原理LDI直接成像技术原理什么是LDI直接成像技术?LDI直接成像技术(Laser Direct Imaging)是一种先进的电路板制造技术,用于将图形直接绘制在电路板上,以替代传统的光绘工艺。
该技术通过使用激光器将图形直接投射到电路板上,从而大大提高了制造效率和精度。
LDI直接成像技术的工作原理1.投影系统: LDI直接成像技术使用一个高精度的光学投影系统,它由投影镜头、激光器和光学器件组成。
投影系统中的激光器会发出一束高能量的激光光束。
2.掩膜制作:在LDI直接成像技术中,首先需要根据设计要求制作一个掩膜。
掩膜是一个类似于传统光刻掩膜的遮罩,上面有要绘制的电路图案。
3.激光照射:接下来的步骤是将掩膜放置在电路板上,然后使用激光器对图案进行照射。
激光光束会通过光学器件,将图案投射到掩膜和电路板之间的空间中。
4.光敏材料曝光:接收到激光照射的电路板上涂有一层光敏材料。
当激光光束照射到光敏材料时,光敏材料会发生化学反应,从而使其变得光可见。
5.显影过程:经过光敏材料的曝光后,需要进行显影过程。
显影过程通过使用化学试剂将光敏材料中曝光的部分去除,从而形成所需的电路图案。
LDI直接成像技术的优势LDI直接成像技术相比传统的光刻工艺具有以下优势:•高精度: LDI直接成像技术使用高精度的光学投影系统,可以实现更高的精细度和解析度。
•高效率:由于直接将图案投射到电路板上,避免了传统光刻工艺中的多个步骤,因此大大提高了制造效率。
•减少污染: LDI直接成像技术减少了化学试剂的使用量,从而减少了对环境的污染。
•节省成本:由于工艺步骤减少,LDI直接成像技术可以减少生产成本和时间。
结论LDI直接成像技术是一种先进的电路板制造技术,通过使用激光器将图形直接投射到电路板上,大大提高了制造效率和精度。
该技术具有高精度、高效率、减少污染和节省成本等优势,被广泛应用于电子制造行业。
LDI直接成像技术的应用领域LDI直接成像技术在电子制造行业中有着广泛的应用,特别是在高密度电路板制造方面。
pcb内光成像流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!PCB 内光成像流程是 PCB 制造过程中的一个重要环节,它主要包括以下几个步骤:1. 底片制作:需要根据 PCB 的设计要求制作底片。
PCB曝光工艺及其成像影响析PCB曝光工艺及其成像影响析一、曝光曝光即在紫外光照射下,光引发剂吸收了光能分解成游离基,游离基再引发光聚合单体进行聚合交联反应,反应后形成不溶于稀碱溶液的体型大分子结构。
曝光一般在自动双面曝光机内进行,现在曝光机根据光源的冷却方式不同,可分风冷和水冷式两种。
二、曝光定位1)目视定位目视定位通常适用于使用重氮底版,重氮底版呈棕色或桔红色的半透明状态;但不透紫外光,透过重氮图像使底版的焊盘与印制板的孔重合对准,用胶带固定即可进行曝光。
2)脱销定位系统定位脱销定位系统包括照相软片冲孔器和双圆孔脱销定位器。
定位方法是:首先将正面、反面两张底版药膜相对在显微镜下对准;将对准的两张底版用软片冲孔器于底版有效图像外任冲两个定位孔,把冲好定位孔的底版任取一张去编钻孔程序,便能得到同时钻出元件孔及定位孔的数据带,一次性钻出元件孔及定位孔,印制板金属化孔及预镀铜后,便可用双圆孔脱销定位器定位曝光。
3)固定销钉定位此固定销钉分两套系统,一套固定照相底版,另一套固定印制板,通过调整两销钉的位置,实现照相底版与印制板的重合对准。
曝光后,聚合反应还要持续一段时间,为保证工艺的稳定性,曝光后不要立即揭去聚酯膜,以使聚合反应持续进行。
待显影前再揭去聚酯膜。
三、影响曝光成像质量的因素影响曝光成像质量的因素除干膜光致抗蚀剂的性能外,光源的选择、曝光时间(曝光量)的控制、照相底版的质量等都是影响曝光成像质量的重要因素。
1)光源的选择任何一种干膜都有其自身特有的光谱吸收曲线,而任何一种光源也都有其自身的发射光谱曲线。
如果某种干膜的光谱吸收主峰能与某种光源的光谱发射主峰相重叠或大部分重叠,则两者匹配良好,曝光效果最佳。
国产干膜的光谱吸收曲线表明,光谱吸收区为310-440nm(毫微米)。
从几种光源的光谱能量分布可看出,镐灯、高压汞灯、碘镓灯在310-440nm波长范围均有较大的相对辐射强度,是干膜曝光较理想的光源。
激光显影工艺流程
《激光显影工艺流程》
激光显影是一种利用激光光源将图像显影在感光材料上的工艺技术。
它在印刷、制版、电路板制造等领域都有广泛的应用。
下面将介绍激光显影的工艺流程。
首先,选择合适的感光材料。
感光材料通常包括光敏树脂和感光涂料,它们能够对激光光源的照射做出反应。
然后,通过数码图像处理技术将原始图像转换成激光能够识别和显影的图像。
接着,将感光材料放置在激光显影设备中,然后根据图像的要求进行曝光。
在曝光的过程中,激光光源会根据原始图像的信息在感光材料上进行扫描,使得感光材料在被照射的区域发生化学反应或者物理变化。
随后,将曝光后的感光材料进行显影。
显影是将没被曝光的部分去除,使得图像能够清晰地显现出来。
这个过程通常需要使用一些化学溶液或者物理方法来完成。
最后,对显影后的感光材料进行固定处理,以保证图像的持久性和稳定性。
固定处理通常是通过热处理或者化学溶液处理来完成的。
通过这样的工艺流程,激光显影技术可以在感光材料上制作出高分辨率、高精度的图像,从而满足不同行业对图像质量和精
细度的要求。
同时,激光显影工艺流程也能够大大提高生产效率和节约生产成本,是一种非常具有发展潜力的工艺技术。
PCB全制作流程中的激光直接成像技术应用Graph 1: trend of line & space at DYCONEX over the last 10 years The consequent use of LDI capability over the complete PCB manufacturing flowDaniel Schulze, Uwe KramerDYCONEX AGGrindelstrasse 408303 Bassersdorf, SwitzerlandT3.4 PCB QualityOral PresentationAbstractThe systematic implementation of optimized LDI (Laser Direct Imaging) photo resist types, LDI exposure units and fine line AOI (Automated Optical Inspection) equipment enhances the production technology and provides optimized PCB solutions for customers. This standardization results in a significantly faster and easier process flow with very precise registration. For high-reliability medical implants, full traceability can be obtained by adding individual serial numbers, date stamps and 2D barcodes for recording various process parameters.Design requirementsDriven by the assembly technology and analyzing the design requirements of the customers over the last 10 years a clear trend to smaller feature sizes is seen. A typical medical implantable product has afeature size of 50 μm line /space. Typical via diametersbetween 50 and 75 μm andpad sizes between 150 μm and 250 μm are standard tofind on these markets. Toassemble resistors of 0201packagingsizes will increase the requirements to the solder maskalignment as well down to25 μm alignment precision.During the quotation phase a detailed design rule check (DRC) has to be done to analyze customers design requirements. Dependent on these requirements like annular ring, layer to layer accuracy or solder mask to artwork accuracy the right registration systems have to be chosen to define the most cost effective and precise manufacturing flow.The graph below shows that the corresponding alignment accuracies are dependant on the customer design and finally used registration concept within the PCB manufacturing.Graph 3: registration concept dependant on customer design class using the annular ring as exampleGraph 2: typical misalignment failure modes Registration SystemsLaser via LDI Artwork Solder maskMechanical via LDI Artwork Solder maskPlasma via LDI Artwork Solder maskaverage compensationstep & repeat compensationaverage compensationindividual compensationindividual compensationindividual compensationindividual compensationaverage compensationaverage compensationaverage compensationaverage compensationEquipment requirementsThe challenge for PCB manufacturers is to constantly implement new manufacturing technologies to satisfy the customers growing demand in PCB complexity, cost efficiency and shorter delivery cycle times. In addition these requirements from the customers have to be linked to profitability of the supplier. Oneof the trends which has been observedduring the last years is the direct imagingtechnology. The growing market for directimaging tools reflects the increasingvariety of DI (Direct Imaging)technologies and vendors. Specializedsystems for different requirements are available. There are entry level systems,tools with double stage loading for faster throughput, high resolution systems and systems which cope with imaging of solder mask. All these systems offer a great variety of advantages over conventional film exposure which will be described in detail in the next chapters. Before starting with DI technology in production one needs to think about the specifications for the equipment. What should the tools be used for? What is the conversion strategy from film imaging to DI? Are there restrictions from customers which need to be addressed? Should and can the equipment operate in automated mode withoutoperator support? What advantages in detail are of interest for the production environment?Due to the demands of customers the requirements on DI systems are well defined. A film plotter has a resolution of 2.5 μm pixel size in comparison to a modern LDI with coherent light and 1 μm pixel size. Therefore LD I systems can offer resolutions higher than 20 μm line and space. Further requirements of the LDI equipment are registration performance better than 10 μm and programmable compensation schemes to include individual compensation together with step & repeat compensation. Furthermore, the systems need to be able to expose solder masks within a competitive process time. Customers are asking for full traceability during PCB manufacturing. Therefore, implementation of individual serial numbers, bar codes or date stamps during imaging is an important feature.After having defined all these prerequisites the process environment needs to be evaluated for matching the DI properties. Contrary to standard film foil exposure units most LDI systems use only one wavelength. Whenstarting with LDI processing inproduction photo resists are typicallynot optimized for direct imaging. Thismeans they either require longerexposure times compared to filmfoil Graph 4: film exposure and LDI exposure equipmentGraph 5: conventional exposure vs. LDI exposureexposure or they are not suitable at all for DI. Even if the standard photo resist can be exposed with DI the change to LDI optimized resists should be taken into account. Today there is a very big variety of optimized DI resists available on the market.After implementing these resists the cycle time for artwork imaging in comparison to film imaging is significantly reduced.Compared to photo resists conventional solder mask exposure requires much higher exposure energy; up to 800mJ/cm2. When establishing direct imaging processes in manufacturing this fact needs to be taken into account. Depending on other requirements the DI capacity needs to be calculated to be sufficient for conventional solder mask exposure. Optimized direct imaging tools are available on the market which combines both the advantages of direct imaging and the high exposure energy. The other option is to qualify new solder mask materials which are optimized for DI. As mentioned above the need for direct imaging of solder masks is usually given on very thin flex products. However, only a limited number of flexible solder masks are available. These solder masks can be exposed with less than 100mJ/cm2. Since medical customers can not change solder mask during the life cycle of a certified product a qualification of a solder mask for direct imaging is a long-term and strategic decision. Therefore at DYCONEX we have qualified two types of flex solder mask for direct imaging. When applying the solder mask optimized for direct imaging an exposure cycle time of less than 90 seconds per panel is achieved. In comparison to LDI solder mask, conventional solder mask exposure takes 6 times longer.Registration ConceptsSubstrate materials are changing in size during the various manufacturing steps. For example plating, desmearing or any process steps where heat is applied. Therefore a start compensation value is given to the substrates to accommodate for the shrinkage or expansion. Changing the single step artworkexposure to LDI has an influence on the rest of the manufacturing process steps. Conventional film foil exposure with just one single compensation value for the entire manufacturing lot as opposed to single panel compensation value to each individual panel using LDI. Thus the complete registration chain from the beginning of the first drilling step through to the artwork and solder mask exposure and ending up with the final routing has to be reviewed.One of the conventional registration concepts is to build sequential products and align layer to layer referring directly to the inner layer structure. A newer registration system uses x-ray drilling to reference to one or more inner layers at simultaneously. Changing from conventional multilayer registration concept to LDI offers several advantages: less process steps, faster through put time and higher alignment precision.The lower number of process steps in the work flow for LDI registration system is seen in Graph 6. For the conventional registration the reference system needs to be protected with 4stickers prior to plating. The punching of the reference system needs to be done. After that the compensation needs to be measured and the films need to be plotted. During exposure the film needs to be aligned to the panel and for good imaging performance vacuum needs to be applied. If required additional sets of films need to be plotted where compensation deviations within the work order occur. The exposure process itself is typically performed simultaneously on front and back of the panel. The overall process time including the supporting processes is 5 - 10 minutes per panel.For the LDI registration process the reference system can bedrilled and does not need to be protected. No film needs to be plotted and the individual compensation does not need to be measured in advance. The exposure of front and back is done sequentially. The overall process time including application of resist is less than 2 minutes per panel.Graph 6: comparison between conventional registration and LDI registration systemCompensation conceptsBasically within the film exposure process only an average compensation for the entire lot of multiple panels is possible. Depending on the LDI equipment used a variety of different compensation schemes can be applied:average compensationindividual panel compensationstep & repeat compensation (sub panel scaling)Step & repeat scaling can help when highcompensation offsets are present within a workorder. Individual compensation is not feasibledue to the following processes where onlyaverage compensation, like final mechanicalrouting or screen printing has been applied.The most accurate and at the same time mostcomplex scaling concept is the step and repeatregistration and compensation.Comparisons between different compensationschemes show the performance improvements.Very thin flex material tends to non linear distortions which occur through the entire manufacturing process. These distortions can not be compensated completely. All remaining distortions which can not be corrected are reflected in loss ofannular ring and misregistration. Together with the increasing complexity as mentioned in the beginning of this paper the annular ring requirements are also increasing. Today standard alignment requir ements are 25 μm for both artwork and solder mask. Typically thin flex material distortions within a workorder can be higher than 300 ppm. This can result, depending on panel size in more than 50 μm loss in annular ring.When film foil exposure is applied no kind of deviation can be corrected. When using individual panel scaling the panel to panel variation can be compensated. This reduces the amount of annular ring failures by a factor of two. The impact of the non linear distortions can Graph 8: material distortion within one single panelGraph 7: material distortion within a work order of multiple production panelsbe reduced when step & repeat registration is applied. Measurements on 25 μm flex material show that the registration within one workorder is improved again by a factor of two. The conclusion of this is that only DI systems can guarantee the high yields to satisfy increasing demands on high density PCB’s.When individual or step & repeat compensation is applied the same compensation methods should be applied to the following process steps. As an example the artwork and solder mask on a 25 μm thin flex panel is imaged using step & repeat compensation. This results in 25 μm registration accuracy. Nevertheless the distortions within a panel are higher than this. Therefore the final mechanical routing also has to be done with step & repeat compensation. Otherwise positioning failure of the PCB structures relative to the routing contour will occur. In other words, the full potential of individual or step & repeatcompensation needs to be considered for the entire process chain.Individual and step & repeat compensations in artwork imaging are well established in the PCB industry already. Same holds true for laser processing. Last but not least the solder mask imaging is the process which also needs to be converted to direct imaging.average compensation = x panel individual compensation = 1 panelS&R compensation = 1/x panelaverage compensation individual compensationS&R compensation Graph 10: registration performance depend on used registration conceptTraceability InformationAs mentioned above most customers ask for traceability of their products through the entire manufacturing process. Traceability means a unique numbering of the manufacturing lot, panel, delivery panel and print at least. This can mean bar codes and date stamp of customer specific counters. Since for DI process no film needs to be plotted, these features can be implemented directly during exposure. The individual features are etched in copper. The same can be done when solder mask is exposed with direct imaging. On some products a legend print is included. Even here the individual serial number can be exposed. At DYCONEX all artwork exposures enable individual serial numbers for full traceability.Graph 11: Traceability information with LDI exposure and copper etchedConclusionTo achieve higher yields and faster trough-put times achange from conventional manufacturing technologies like film exposure to advanced manufacturing processes like laser direct imaging is necessary for high-end, high-reliability flexible PCB’s in the medical, avionics or semiconductor market. T o use LDI exposure in PCB manufacturing requires several equipment updates. Changing the photo chemistry lines and implementing new photo resists or reference systems are just some examples. Following this path results in a new spectrum of smaller and more miniaturized PCB’s with the advantage of better alignment registration, higher accuracy, faster through put time and a better traceability.Manufacturer IDLot NumberPanel NumberPrin t Position NumberDate CodeCustomer Article Number 2D Barcodecopper etchedBiographyMr. Daniel Schulze studied at the Technical University of Dresden and has a diploma degree in Electrical Engineering. During his diploma thesis and an internship at the Georgia Tech Packaging Research Center he got involved with the work on optical waveguides embedded in PCB’s. In 2005 he started to work as Product Engineer at DYCONEX. Since 2008 he is Engineering Manager at DYCONEX and responsible for the product development of medical imaging PCB’s, hearing aids and cochlear implants, industrial and HF products.Mr. Uwe Kramer studied at the University of Halle/Wittenberg and the Technical University Dresden. He holdsa diploma degree in physics. He is specialized in semiconductor and metal physics. The diploma thesis was done in collaboration with Advanced Micro Devises and Fraunhofer Institute for Mechanics of Materials. Thesis of diploma was three dimensional reconstruction and analysis of grain structure by using fine beam techniques. Mr. Kramer joined DYCONEX in 2008 as process engineer. Since 2013 he is manager of the process module artwork and senior process engineer.。
pcb x光成像原理PCB X光成像原理引言:随着电子产品的迅速发展,PCB(Printed Circuit Board,印刷电路板)在电子设备中的应用越来越广泛。
而为了确保PCB的质量和可靠性,对其进行检测和成像就显得尤为重要。
PCB X光成像技术作为一种非破坏性的检测手段,被广泛应用于PCB的质量控制和故障分析中。
本文将介绍PCB X光成像的原理及其应用。
一、PCB X光成像的原理PCB X光成像原理是基于X射线的物理特性而实现的。
X射线是一种高能量的电磁辐射,具有穿透性和吸收性。
当X射线通过物体时,会受到物体内部结构和材料的影响,从而产生不同程度的衰减和散射。
通过对这种衰减和散射进行分析和处理,就可以获得物体内部的结构信息。
在PCB X光成像中,X射线通过PCB时,会受到PCB上的金属导线、焊盘和元器件等的衰减和散射。
通过探测器接收并记录这些衰减和散射的信息,然后通过信号处理和图像重建算法,就可以得到PCB内部的结构和故障信息。
二、PCB X光成像的应用PCB X光成像技术在PCB行业中有着广泛的应用。
以下是几个常见的应用领域:1. PCB质量控制:在PCB生产过程中,使用X光成像技术可以对PCB的内部结构进行检测,包括金属导线的连接情况、焊盘的质量以及元器件的安装情况等。
通过对这些结构进行分析和评估,可以及时发现和解决潜在的质量问题,确保PCB的可靠性和稳定性。
2. PCB故障分析:当PCB出现故障时,使用X光成像技术可以非常方便地进行故障定位和分析。
例如,当PCB上的某个电路无法正常工作时,可以通过X光成像技术检测该电路的内部结构,找出可能存在的问题,如焊点断裂、元器件损坏等,从而指导维修和改进工作。
3. PCB设计验证:在PCB设计阶段,使用X光成像技术可以对设计方案进行验证和优化。
通过对PCB的内部结构进行成像和分析,可以评估电路布局的合理性、焊盘的质量以及元器件的安装情况,帮助设计师发现和解决潜在的问题,提高设计的可靠性和性能。
PCB制作中成像和电路制作的方式
徐杰栋;胡广群
【期刊名称】《印制电路信息》
【年(卷),期】2011(000)007
【摘要】在PCB制作中,包含了多个图形图像的转移步骤,图形转移制作可以直接通过CAD数据或者通过一些中间步骤,例如钻通孔或微孔图像,构建内层和外层的电路图形,构建抗蚀层并提供字符印刷。
电路的形成一般包含光rn刻,或丝
网印刷,为了完成整个电路成形的制程,板材需要经过蚀刻,电镀,抗蚀层剥离等步骤。
这篇文章主要关注光刻或其他起到相同作用方式,例如喷墨。
包括半加成工艺和加成工艺,但并不包括传统的减成工艺。
文章没有阐述主流的传统接触式印刷,而是对其替代方案做了阐述。
【总页数】4页(P41-44)
【作者】徐杰栋;胡广群
【作者单位】江南计算技术研究所,江苏无锡,214083;江南计算技术研究所,江苏无锡,214083
【正文语种】中文
【中图分类】TN41
【相关文献】
1.紫外线(UV)固化技术在数字成像材料中的应用(二)UV固化技术在印刷电路版数
字化制作中的应用 [J], 金养智
2.利用热转印方式制作三端稳压电路PCB板 [J], 潘毅;殷蔚
3.PCB制作中成像和电路制作的方式 [J], 王起;杨亚敏;王力文
4.利用Protel 99 SE软件的"PCB制作向导"功能制作印刷电路板的技巧 [J], 赵慧宏
5.一种短波射频末级推挽放大电路仿真、PCB制作及调试实验应用 [J], 尼玛曲宗因版权原因,仅展示原文概要,查看原文内容请购买。
PCB制作过程中激光直接成像的三种方式
激光直接成像让pcb制作工艺过程简化了至少60%,而传统的底片图片转移却需要十几个步骤。
那么PCB制作过程中激光直接成像都有哪些方式呢?全世界的pcb制作商所配备的LDI设备都属于UV光的LDI,按其工艺可以具体分为三种:
1)光致抗蚀剂的激光直接成像。
这一类型是指对涂覆有专用光致抗蚀剂的在制板进行激光直接成像。
在制板上要完成导电图形基于如下三个步骤:
第一步:利于LDI在激光直接在制板上的专用光致抗蚀剂进行感光。
激光感光是由cad图形数据或计算机已存储的图形数据进行控制激光扫描的,而专业光致抗蚀剂的光敏性要比传统的光致抗蚀剂光敏要强得多(约10倍)来进行激光扫描,才能取得高的PCB图形转移的生产率。
第二步:化学显影。
专用光致抗蚀剂仍采用传统的弱碱性碳酸钠溶液进行显影。
第三步:化学蚀刻。
由于专用的光致抗蚀剂是属于耐酸性(或则耐酸性强于耐碱性)的,因此要采用酸性氯化铜蚀刻溶液等来进行蚀刻。
2)pcb制作采用化学镀锡的激光直接成像。
在制板上化学镀锡的激光直接成像(LDI),某些文献又称为激光直接刻板。
这一类型是指在制板上利用化学方法镀上一层很薄的抗蚀层锡,然后利用激光蚀刻去不需抗蚀刻、保护的锡层及底下的部分厚度(3μm~5μm)的铜箔,然后进行化学蚀刻。
由于锡层在0.5μm~1.0μm厚度)是抗碱不耐酸的。
3)以覆铜箔的在制板上的激光直接成像,这一类型是指仅在覆铜箔在制板上的激光直接成像。
他不需要对在制板进行任何涂覆抗蚀保护层,而是直接利用激光蚀刻去不需要的铜
箔,但是为了损伤介质厚度,往往还留下3μm~5μm厚度的铜箔,然后进行严格控制的快速化学蚀刻而出去留下的铜箔厚度。
因此在制板上的铜导体图形的铜厚度将会变薄些。
这具体问题具体分析。
综上所述我们了解到了PCB生产制作过程中使用的激光直接成像的类型方式,工艺在于精益求精,不断实践和优化提升。
深圳金瑞欣特种电路是专业的电路板打样和中小批量生产厂家,主营2-30层高多层板,、高频板、厚铜板、Hdi板等。
更多详情可以咨询金瑞欣特种电路官网。