如何证明四点共圆(初三竞赛专题讲座)
- 格式:ppt
- 大小:506.00 KB
- 文档页数:8
四点共圆证法
四点共圆证法,又称为共圆定理或欧拉定理,是数学几何中的一个重要定理,也是圆的性质之一。
它表明如果在平面上给定四个不共线的点,并且这四个点可以构成一个不是直线的四边形,那么存在一个唯一的圆,此圆可以通过这四个点。
以下是四点共圆证法的步骤:
步骤1:首先,我们需要确定是否给定的四个点构成了一个四边形,而不是一个直线。
这可以通过计算四个点的坐标,确保它们不共线来判断。
步骤2:如果四个点构成了一个四边形,接下来我们需要找到四边形的任意一条对角线,即连接两个不相邻的点的线段。
步骤3:然后,我们需要找到对角线的中点,即将对角线平分的点。
对角线中点可以通过计算对角线两个端点的横纵坐标的平均值得到。
步骤4:最后,我们需要找到两条不相邻边的中垂线。
中垂线是与边垂直且通过边的中点的直线。
通过计算不相邻两条边的中点和斜率,我们可以得到中垂线的方程。
如果中垂线相交于步骤3中的对角线中点,那么这四个点共圆。
因为对于一个圆来说,它的任意一条直径的中点都在圆上,而中垂线的交点就是对角线中点,这样就证明了这
四个点是共圆的。
需要注意的是,四点共圆定理仅对于平面几何中的四边形成立,如果给定的四个点共线,那么它们显然不能构成一个不是直线的四边形,因此也不满足四点共圆的条件。
四点共圆四点共圆的定义四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。
证明四点共圆有下述一些基本方法:【方法1】从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.或利用圆的定义,证各点均与某一定点等距。
【方法2 】如果各点都在某两点所在直线同侧,且各点对这两点的张角相等,则这些点共圆.(若能证明其两张角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。
)【方法3 】把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.【方法4】把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.即利用相交弦、切割线、割线定理的逆定理证四点共圆。
【方法5】证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.【方法6】根据托勒密定理的逆定理,在四边形ABCD中,若AC*BD=AB*CD+AD*BC,那么A,B,C,D四点共圆。
或根据西姆松定理的逆定理证四点共圆。
【方法7】证明五点或五点以上的点共圆,可以分别证各四点共圆,且四点中有三点相同。
【方法8】证连结各点所得凸多边形与某一圆内接凸多边形相似。
上述六种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这8种基本方法中选择一种证法,给予证明.一.某些知识的补充1.已知:ABCD共圆,AB中点为E、CD中点为F,EF中点为G,过E点分别作AD、BC的垂线,垂足为H、I求证:GH=GI首先可这样转化图形:作E点关于AD、BC边的轴对称点S、T,显然I、H分别是ES、ET中点。
4点共圆的证明在几何学中,圆是一种特殊的几何形状,它由所有到圆心距离相等的点组成。
而4点共圆指的是四个点在同一个圆上。
本文将探讨如何证明四个点共圆的情况。
证明四个点共圆的方法之一是使用圆的性质和几何定理。
首先,我们需要了解一些基本的定义和定理。
1. 圆心角定理:圆心角的度数等于其所对圆弧的度数。
2. 弧长定理:圆弧的长度等于圆心角的度数与整个圆的周长之比。
3. 垂径定理:如果一条直径垂直于一条弦,那么它将分割这条弦为两段相等的部分。
现在,让我们来证明四个点共圆的情况。
假设我们有四个点A、B、C、D,并且我们想要证明它们共圆。
步骤1:连接AB、AC、AD这三条线段。
步骤2:观察三角形ABC和ABD。
由于它们共有两个边相等(AB 和AC、AB和AD),根据等腰三角形的性质,我们可以得出结论:角BAC和角BAD是等角的。
因此,弧BC和弧BD所对的圆心角是相等的。
步骤3:同样地,我们观察三角形ACD和BCD。
根据同样的推理,我们可以得出结论:角ACD和角BCD是等角的。
因此,弧CD和弧BD所对的圆心角也是相等的。
步骤4:结合步骤2和步骤3的结果,我们可以得出结论:弧BC、弧BD、弧CD所对的圆心角是相等的。
步骤5:根据圆心角定理,由于这三个圆心角相等,所以这三个弧长也是相等的。
步骤6:现在,我们观察弧BC和弧CD。
由于它们的弧长相等,根据圆的性质,我们可以得出结论:弧BC和弧CD是同一个圆上的弧。
步骤7:最后,我们再观察点A。
由于点A与点B、点C、点D的距离都相等,根据圆的定义,我们可以得出结论:点A也在这个圆上。
我们通过使用圆的性质和几何定理,证明了四个点A、B、C、D共圆的情况。
这个证明过程清晰地展示了如何利用几何定理推导出结论。
通过观察三角形和圆心角的关系,我们可以得出四个点共圆的结论。
这个证明过程可以应用于解决各种几何问题,从而提高我们的几何思维能力。
总结起来,证明四个点共圆的方法是通过观察三角形和圆心角的关系,利用圆的性质和几何定理推导出结论。
四点共圆怎么判定
四点共圆的判定方法:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆等。
扩展资料
判定定理
方法1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的`同侧,若能证明其顶角相等,从而即可肯定这四点共圆。
(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)
方法2:把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。
(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)
相关计算
圆的半径:r。
直径:d。
圆周率:π(数值为3.1415926至3.1415927之间……无限不循环小数),通常采用3.14作为π的数值。
圆面积:S=πr2;S=π(d/2)2。
半圆的面积:S半圆=(πr2;)/2。
圆环面积:S大圆-S小圆=π(R2-r2)(R为大圆半径,r为小圆半径)。
圆的周长:C=2πr或c=πd。
半圆的周长:d+(πd)/2或者d+πr。
向你推荐的相关文章
相关文章列表
微信扫码分享。
四点共圆四点共圆的判定方法:(1)先证三点共圆,再证第四点也在此圆上(2)若干个点到某定点距离相等,则这些点共圆 (3)同底同侧张等角的三角形,各顶点共圆(4)若一个四边形的一组对角互补,则它的四个顶点共圆.(5)若四边形ABCD 的对角线相交于P ,且PD PB PC PA •=•,则它的四个顶点共圆。
(6)若四边形ABCD 的一组对边AB 、CD 相交于P ,且PD PC PB PA •=•,则它的四个顶点共圆.(7)(托勒密定理的逆定理)若四边形ABCD 中,BC AD CD AB BD AC ⋅+⋅=⋅ 则A 、B 、C 、D 四点共圆 (8)(西姆松定理的逆定理)从ABC ∆外一点D 引三边BC 、AB 、AC 所在直线的垂线,垂足为L 、M 、N ,若L 、M 、N 共线,则A 、B 、C 、D 四点共圆例1 如图,ABC ∆三边上的高交于H ,H 不于任一顶点重合,则以A 、B 、C 、D 、E 、F 、H 中某四个点可以确定的圆共有多少个?例2 给出锐角ABC ∆,以AB 为直径的圆与AB 边的高1CC 及其延长线交于M 、N ,以AC 为直径的圆与AC 边的高1BB 及其延长线交于P 、Q ,求证:M 、N 、P 、Q 四点共圆NCQPMC1B1BA例3 在等腰ABC ∆中,P 为底边BC 上任意一点,过点P 作两腰的平行线分别与AB 、AC 交于点Q 、R ,又点1P 是点P 关于QR 的对称点,求证:点1P 在ABC ∆的外接圆上例4 A 、B 、C 三点共线,O 点在直线外,1O 、2O 、3O 分别为OAB ∆、OBC ∆、OCA ∆的外心,求证:O 、1O 、2O 、3O 四点共圆例 5 在梯形ABCD 中,AB ‖DC ,DC AB >,K 、M 分别在AD 、BC 上,CBK DAM ∠=∠,求证:CKB DMA ∠=∠oB C A C M K DABCQP P1ARCB例6 如图,ABC ∆中,高BE 、CF 交于H ,且︒=∠135BHC ,G 为ABC ∆内的一点, 且GC GB =,A BGC ∠=∠3,连结HG ,求证:HG 平分BHF ∠例7 如图,ABC ∆内接于圆O ,AD 、BD 是圆O 的切线,作DE ∥BC 交AC 于E ,连结EO 并延长交BC 于F ,求证:FC BF =例8 正方形ABCD 的中心为O ,面积为21989cm ,P 为正方形内一点,︒=∠45OPB ,14:5:=PB PA ,求PBCBOPDAB 例9 如图,在平行四边形ABCD 中,BC AM ⊥于M ,CD AN ⊥于N ,若13=AB ,5=BM ,9=MC ,求MN 的长度例10 如图,已知直线AB 、AC 切圆O 于点B 、C , P 圆O 上一点,P 到AB 、AC 的距离分别为4厘米和6厘米,求P 到BC 的距离例11 在ABC ∆的边AB 、AC 上分别取点Q 、P ,使得A QCB PBC ∠=∠=∠21, 求证:CP BQ =CBQPAA例12在梯形ABCD 中,AD ‖BC ,1==BD BC ,AC AB =,1<CD ,︒=∠+∠180BDC BAC ,求CD 的长例13 在锐角ABC ∆中,AC AB ≠,H 是高AD 上一点,连结BH 并延长交AC 于点E ,连结CH 并延长交AB 于点F ,已知B 、C 、E 、F 四点共圆,求证:H 为ABC ∆的垂心例14 如图,P 圆O 外一点,PA 切圆O 于A ,PBC 是割线,PO AD ⊥于D ,求证:CDPCPB =CB D A BCBD例15 如图,已知,在凸五边形ABCDE 中,α3=∠BAE ,DE CD BC ==,且α2180-︒=∠=∠CDE BCD ,,求证:DAE CAD BAC ∠=∠=∠例16 如图,AD 为ABC ∆的一条高,l 是过D 的一条直线,E 、F 都是l 上的点,满足BE AE ⊥,CF AF ⊥,设M 、N 分别为BC 、EF 的中点,证明:MN AN ⊥例17 设有边长为1的正方形,试找出这个正方形的内接正三角形中面积最大的和面积最小的,并求出这两个面积例18 证明(托勒密定理)凸四边形ABCD 的四个顶点共圆的充要条件是BD AC BC AD CD AB •=•+•例19 一个凸六边形的顶点共圆,它的五条边长都为81,第六条边长为31,记第六条边为AB ,求A 引出的三条对角线的长度之和例20 证明(西姆松定理)从ABC ∆外一点D ,引三边BC 、AB 、AC 所在直线的垂线,垂足是L 、M 、N ,则点D 在ABC ∆的外接圆上的充要条件(点D 在ACB ∠内时)是L 、M 、N 共线,亦即MN LM LN +=。
四点共圆的7种判定方法证明要证明四个点共圆,可以使用以下七种判定方法。
方法1:使用相交弧的性质假设四个点A、B、C、D共圆。
我们可以通过观察四个点连线所形成的相交弧的性质来进行判定。
即如果从A到B的弧和从C到D的弧的起点和终点重合,或者从B到C的弧和从D到A的弧的起点和终点重合,或者从C到D的弧和从A到B的弧的起点和终点重合,则可以证明四个点共圆。
方法2:使用余弦定理假设四个点A、B、C、D共圆,并且以A为圆心,AB为半径做圆,那么可以使用余弦定理证明。
首先,假设O为C到D的中点,我们可以根据余弦定理得出:AC² = AO² + OC² - 2 * AO * OC * cos∠AOC,同样地,我们可以得出:BD² = BO² + OD² - 2 * BO * OD * cos∠BOD。
由于共圆的性质,我们可以得到∠AOC = ∠BOD,因此AC² = BD²,从而可以证明四个点共圆。
方法3:使用向量运算假设四个点A、B、C、D共圆,我们可以使用向量运算进行证明。
首先,我们可以构建向量AB和向量AC,然后计算它们的叉乘,得到一个向量N。
同样地,我们可以构建向量AD和向量AC,并计算它们的叉乘,得到另一个向量M。
如果向量N和向量M垂直(即内积等于0),那么可以证明四个点共圆。
方法4:使用角平分线的性质假设四个点A、B、C、D共圆,并且AC和BD相交于点P。
那么根据角平分线的性质,我们可以得知∠APC=∠BPD。
同样地,由于共圆的性质,我们可以得到∠APC=∠BPC,因此∠BPD=∠BPC。
这意味着点P在角BPD的角平分线上,所以我们可以得出AD与BC也相交于点P,从而可以证明四个点共圆。
方法5:使用Miquel点的性质假设四个点A、B、C、D共圆,并且以AC为直径作圆,那么D一定在这个圆上。
同样地,以BD为直径作圆,C也一定在这个圆上。
证明四点共圆的几种方法
有几种方法可以证明四点共圆,以下列举几种常见的方法:
1. 通过圆心角相等证明:如果四个点A、B、C、D共圆,可以通过证明四个圆心角相等来证明四点共圆。
具体方法是计算出∠ABC、∠BCD、∠CDA、∠DAB的度数,如果它们相等,则可以判断四个点共圆。
2. 通过等腰三角形证明:如果四个点A、B、C、D共圆,可以通过证明其中两个对角线相等的等腰三角形来证明四点共圆。
具体方法是计算出AB、BC、CD、DA的长度,如果其中任意两个对角线相等,则可以判断四个点共圆。
3. 通过垂直角相等证明:如果四个点A、B、C、D共圆,可以通过证明其中两条弦的垂直角相等来证明四点共圆。
具体方法是计算出∠ABD和∠ACD的度数,如果它们相等,则可以判断四个点共圆。
4. 通过正交性证明:如果四个点A、B、C、D共圆,可以通过证明其中两个弦的垂直平分线相交于圆心来证明四点共圆。
具体方法是计算出弦AB和弦CD的垂直平分线的斜率,如果它们的斜率相乘为-1,则可以判断四个点共圆。
这些方法只是证明四点共圆的几种常见方法,实际上还有很多其他方法可以用来证明四点共圆。
具体使用哪种方法,取决于具体问题的情况和个人的偏好。
第18讲 四点共圆……对数学之美的感觉,对数与形之和谐的感觉,对几何学之优雅的感觉。
这是一种所有数学家都深知的真正的美感。
而这就是一种敏感性。
——庞加莱知识方法扫描“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.证明四点共圆常常利用以下一些方法思考:(1) 要证明四点共圆,可证明以这点为顶点的四边形的对角互补,或证某两点视另两点所连线段的视角相等.特别是先设法发现其中以某两点为端点的线段恰为一直径,然后证明其他点对这条线段的视角均为直角;此外若四边形一个外角等于其内对角,则四边形的四顶点共圆.(2) 若两线段AB ,CD 相交于E 点,且AE·EB=CE·ED ,则A ,B ,C ,D 四点共圆;若相交直线PA ,PB 上各有一点C ,D ,且PA·PC=PB·PD ,则A ,B ,C ,D 四点共圆.共圆点问题不但是几何中的重要问题,而且也是直线形和圆之间度量关系或位置关系相互转化的媒介.经典例题解析例1.在锐角△ABC 中,以BC 为直径作圆与BC 边上的高AD 及其延长线交于M ,N 。
以AB 为直径作圆与AB 边上的高CF 及其延长线交于P ,Q 。
求证:M ,P ,N ,Q 四点共圆。
证明 连接BM ,MC ,在Rt △BMC 中,∠BMC =90°,MD ⊥BC ,故BM 2=BD ·BC 。
即 BM =BN =BC BD ⋅,同理 BP =BQ =BA BF ⋅.因为∠AFC =∠ADC =90°,故A ,F ,D ,C 四点共圆。
由割线定理,得 BD ·BC =BF ·BA 。
故BM =BN =BP =BQ 。
于是,M ,N ,P ,Q 四点同在以B 为圆心、BM 为半径的圆上,即M ,N ,P ,Q 四点共圆。
证明四点共圆的基本方法1、利用圆的定义根据圆的定义可以知道,平面上到一个定点等距离的几个点在同一个圆上,这个圆是以定点为圆心,以定点到这几个点中任一点的距离为半径。
2、利用三角形的关系 (1)同斜边的直角三角形的各顶点共圆; (2)同底同侧张等角的三角形的各顶点共圆。
已知C 、D 在线段AB 的同侧,且∠ACB=∠ADB 。
求证:A ,B ,C ,D 四点共圆。
证明:如图7-39,过A ,B ,C 三点作⊙O 。
(1)如果D 点在⊙O 内部,则延长BD 交⊙O 于D ',连A D '。
∵∠D '=∠C ,且∠ADB >∠D '。
∴∠ADB <∠C ,这与∠ADB=∠ACB 矛盾。
因此D 点不可能在⊙O 的内部。
(2)如图7-40,如果D 点在⊙O 的外部,连AD ,BD 。
则必有一条线段与⊙O 相交,设BD 与⊙O 交于D ',连A D '。
∵∠A D 'B=∠ACB ,且∠D <∠A D 'B 。
∴∠D <∠ACB ,这与∠ADB=∠ACB 矛盾。
因此,D 点不可能在⊙O 的外部。
综上所述,D 点必在⊙O 上。
3、利用四边形的关系 (1)如果四边形的一组对角互补,那么它的两个顶点共圆(图7-41);(2)如果四边形的一个外角等于它的内对角,那么它的四个顶点共圆(7-42) 4、利用线段的乘积式的关系(1)线段AB ,CD 相交于P ,且PA ·PB=PC ·PD ,则A ,B ,C ,D 四点共圆。
证明:如图7-43,连AD ,BC ,AC 。
在△APD 和△BPC 中,∵PA ·PB=PC ·PD ,∴PBPDPC PA =。
又∠APD=∠BPC ,∴△APD ∽△BPC 。
∴∠B=∠D ,又B ,D 在线段AC 同侧。
因此,A ,C ,B ,D 四点共圆。
(2)两线段AB ,CD 的延长线相交于P ,且PA ·PB=PC ·PD ,则A ,B ,C ,D 四点共圆(图7-44)。
四点共圆四点共圆的判定(一)判定方法1、若四个点到一个定点的距离相等,则这四个点共圆。
2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。
3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。
4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
5、同斜边的直角三角形的顶点共圆。
6、若AB、CD两线段相交于P点,且PA×PB=PC×PD,则A、B、C、D四点共圆(相交弦定理的逆定理)。
7、若AB、CD两线段延长后相交于P。
且PA×PB=PC×PD,则A、B、C、D四点共圆(割线定理)。
8、若四边形两组对边乘积的和等于对角线的乘积,则四边形的四个顶点共圆(托勒密定理的逆定理。
(二)证明1、若四个点到一个定点的距离相等,则这四个点共圆。
若可以判断出OA=OB=OC=OD,则A、B、C、D四点在以O为圆心OA为半径的圆上。
2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。
若∠A+∠C=180°或∠B+∠D=180°,则点A、B、C、D四点共圆。
3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。
若∠B=∠CDE,则A、B、C、D四点共圆证法同上。
4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
若∠A=∠D或∠ABD=∠ACD,则A、B、C、D四点共圆。
5、同斜边的直角三角形的顶点共圆。
如图2,若∠A=∠C=90°,则A、B、C、D四点共圆。
ADCC6、若AB、CD两线段相交于P点,且PA×PB=PC×PD,则A、B、C、D四点共圆(相交弦定理的逆定理)。
7、若AB、CD两线段延长后相交于P。
且PA×PB=PC×PD,则A、B、C、D四点共圆(割线定理)。
初中数学竞赛:四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.1“四点共圆”作为证题目的 例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M ,N .以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q .求证:M ,N ,P ,Q 四点共圆.分析:设PQ ,MN 交于K 点,连接AP ,AM .欲证M ,N ,P ,Q 四点共圆,须证MK ·KN =PK ·KQ ,即证(MC ′-KC ′)(MC ′+KC ′)=(PB ′-KB ′)·(PB ′+KB ′) 或MC ′2-KC ′2=PB ′2-KB ′2. ①不难证明 AP =AM ,从而有 AB ′2+PB ′2=AC ′2+MC ′2. 故 MC ′2-PB ′2=AB ′2-AC ′2=(AK 2-KB ′2)-(AK 2-KC ′2)=KC ′2-KB ′2. ②由②即得①,命题得证.例2.A 、B 、C 三点共线,O 点在直线外,O 1,O 2,O 3分别为△OAB ,△OBC ,△OCA 的外心.求证:O ,O 1,O 2, O 3四点共圆. 分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA .观察△OBC及其外接圆,立得∠OO 2O 1=21∠OO 2B =∠OCB .观察△OCA 及其外接圆,立得∠OO 3O 1=21∠OO 3A =∠OCA .由∠OO 2O 1=∠OO 3O 1⇒O ,O 1,O 2,O 3共圆.利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证. 2以“四点共圆”作为解题手段这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM=∠CBK .求证:∠DMA =∠CKB .分析:易知A ,B ,M ,K 四点共圆.连接KM ,有∠DAB =∠CMK .∵∠DAB +∠ADC=180°,∴∠CMK +∠KDC =180°. 故C ,D ,K ,M 四点共圆⇒∠CMD =∠DKC .A B C K M N P Q B ′C ′A B C O O O O 123??A B C DK M··但已证∠AMB =∠BKA , ∴∠DMA =∠CKB .(2)证线垂直例4.⊙O 过△ABC 顶点A ,C ,且与AB ,BC 交于K ,N (K 与N 不同).△ABC外接圆和△BKN 外接圆相交于B 和 M .求证:∠BMO =90°. 分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的. 连接OC ,OK ,MC ,MK ,延长BM 到G .易得∠GMC =∠BAC =∠BNK =∠BMK .而∠COK =2·∠BAC =∠GMC + ∠BMK =180°-∠CMK ,∴∠COK +∠CMK =180°⇒C ,O ,K ,M 四点共圆. 在这个圆中,由OC =OK ⇒ OC =OK ⇒∠OMC =∠OMK . 但∠GMC =∠BMK , 故∠BMO =90°. (3)判断图形形状例5.四边形ABCD 内接于圆,△BCD ,△ACD ,△ABD ,△ABC 的内心依次记为I A ,I B ,I C ,I D . 试证:I A I B I C I D 是矩形.分析:连接AI C ,AI D ,BI C ,BI D 和DI B .易得∠AI C B =90°+21∠ADB =90°+21∠ACB =∠AI D B ⇒A ,B ,I D ,I C 四点 共圆.同理,A ,D ,I B ,I C 四点共圆.此时∠AI C I D =180°-∠ABI D =180°-21∠ABC ,∠AI C I B =180°-∠ADI B =180°-21∠ADC ,∴∠AI C I D +∠AI C I B=360°-21(∠ABC +∠ADC )=360°-21×180°=270°.故∠I B I C I D =90°.同样可证I A I B I C I D 其它三个内角皆为90°.该四边形必为矩形. (4)计算例6.正方形ABCD 的中心为O ,面积为1989㎝2.P 为正方形内一点,且∠OPB =45°,PA :PB =5:14.则PB =__________ 分析:答案是PB =42㎝.怎样得到的呢?连接OA ,OB .易知O ,P ,A ,B 四点共圆,有∠APB =∠AOB =90°.A BO K N CMG故PA 2+PB 2=AB 2=1989.由于PA :PB =5:14,可求PB . (5)其他例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论断).分析:设△EFG 为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三条边上,所以不妨令F ,G 两点在正方形的一组对边上. 作正△EFG 的高EK ,易知E ,K ,G ,D 四点共圆⇒∠KDE =∠KGE =60°.同理,∠KAE =60°.故△KAD 也是一个正 三角形,K 必为一个定点. 又正三角形面积取决于它的边长,当KF 丄AB 时,边长为1,这时边长最小,而面积S =43也最小.当KF 通过B 点时,边长为2·32-,这时边长最大,面积S =23-3也最大.例8.NS 是⊙O 的直径,弦AB 丄NS 于M ,P 为ANB 上异于N 的任一点,PS交AB 于R ,PM 的延长线交⊙O 于Q .求证:RS >MQ . 分析:连接NP ,NQ ,NR ,NR 的延长线交⊙O 于Q ′.连接MQ ′,SQ ′.易证N ,M ,R ,P 四点共圆,从而,∠SNQ ′=∠MNR =∠MPR =∠SPQ =∠SNQ .根据圆的轴对称性质可知Q 与Q ′关于NS 成轴对称⇒MQ ′=MQ . 又易证M ,S ,Q ′,R 四点共圆,且RS 是这个圆的直径(∠RMS =90°),MQ ′是一条弦(∠MSQ ′<90°),故RS >MQ ′.但MQ =MQ ′,所以,RS >MQ .练习题1.⊙O 1交⊙O 2 于A ,B 两点,射线O 1A 交⊙O 2 于C 点,射线O 2A 交⊙O 1 于D 点.求证:点A 是△BCD 的内心.(提示:设法证明C ,D ,O 1,B 四点共圆,再证C ,D ,B ,O 2 四点共圆,从而知C ,D ,O 1,B ,O 2五点共圆.)2.△ABC 为不等边三角形.∠A 及其外角平分线分别交对边中垂线于A 1,A 2;同样得到B 1,B 2,C 1,C 2.求证:A 1A 2=B 1B 2=C 1C 2.(提示:设法证∠ABA 1与∠ACA 1互补造成A ,B ,A 1,C 四点共圆;再证A ,A 2,B ,C 四点共圆,从而知A 1,A 2都是△ABC 的外接圆上,并注意∠A 1AA 2=90°.) 3.设点M 在正三角形三条高线上的射影分别是M 1,M 2,M 3(互不重合).求证:△M 1M 2M 3也是正三角形.4.在Rt △ABC 中,AD 为斜边BC 上的高,P 是AB 上的点,过A 点作PC 的垂线交过B 所作AB 的垂线于Q 点.求证:PD 丄QD . (提示:证B ,Q ,E ,P 和B ,D ,E ,P 分别共圆)A BC D E F KG ······5.AD,BE,CF是锐角△ABC的三条高.从A引EF的垂线l1,从B引FD的垂线l2,从C引DE的垂线l3.求证:l1,l2,l3三线共点.(提示:过B作AB的垂线交l1于K,证:A,B,K,C四点共圆)。
四点共圆的判定方法证明嘿,咱今儿个就来好好唠唠这四点共圆的判定方法证明!你说这四点共圆,就像是四个小伙伴,要想知道它们是不是真的能凑成一个圆,那可得有几招厉害的法子呢!先来说说这第一种判定方法。
如果四个点到一个定点的距离相等,那它们不就乖乖地在一个圆上啦!这就好比是一群孩子围着一个糖果罐子,离罐子距离一样的不就在一个圈里嘛!你想想是不是这个理儿?还有一种呢,就是如果一个四边形的一组对角互补,那这四个点也能共圆哟!这就好像是两个人,一个喜欢吃甜,一个喜欢吃辣,互补得很,那他们就能愉快地一起玩耍啦,这四个点也是一样的道理呀!要是这对角不互补,那它们可就凑不到一块儿去咯!再有呢,就是如果两个三角形有一条公共边,且在公共边同侧的两个顶点所对的边相等,那这四个点也能共圆。
这就跟玩拼图似的,这几块正好能拼成一个完整的图案,那它们就是一伙儿的呀!你可别小瞧了这些判定方法,它们就像是一把把钥匙,能帮我们打开四点共圆这个神秘大门呢!在解决很多几何问题的时候,那可真是大显身手呀!比如说,当我们遇到一些图形里有几个点,想要判断它们是不是能共圆,这时候这些方法不就派上用场啦?就好像有一次,我在做一道题的时候,怎么看那几个点都觉得它们应该在一个圆上,但是又不确定。
然后我就试着用这些判定方法一个一个去试,嘿,还真让我给试出来了!那种感觉,就像是找到了宝藏一样兴奋!而且啊,这些判定方法不仅仅是在数学里有用,在生活中有时候也能找到类似的道理呢!比如说,一群人要合作完成一件事情,那是不是也得有一些条件让他们能团结在一起呀?这和四点共圆不是有点像嘛!总之呢,这四点共圆的判定方法证明可真是有趣又实用!我们可得好好掌握它们,让它们为我们解决问题助一臂之力呀!这就是我对四点共圆判定方法证明的理解啦,你觉得怎么样呢?是不是也觉得很有意思呀?。
高中数学竞赛辅导(证共圆问题)一、利用圆的定义(找到某一点,证明四点到这一点的距离相等,则此四点共圆)1.K 为△ABC 内任一点,在△ABC 内作三条直线,AL 、BM 、CN ,使∠BAL=∠CAK, ∠ABM=∠CBK, ∠BCN=∠ACK,且AL=AK ,BM=BK ,CN=CK ,求证:K 、L 、M 、N 四点共圆。
2.给定锐角三角形△ABC ,在BC 边上取点A 12,A (2A 位于1A 与C 之间),在AC 边上取点B 12,B (2B 位于1B 与A 之间),在AB 边上取点C 12,C (2C 位于1C 与B 之间),使得∠122112211221AA A AA A BB B BB B CC C CC C =∠=∠=∠=∠=∠,直线1AA 、1BB 和1CC 可构成一个三角形,直线2AA 、2BB 和2CC 可构成另一个三角形,直线1AA 、1BB 和1CC ,证明:这两个三角形的六个顶点共圆。
3.设1234A A A A 为圆的内接四边形,1234,,,H H H H 分别为234341412123,,,A A A A A A A A A A A A的垂心,求证:1234,,,H H H H 四点共圆。
二、利用角的关系(1)证明四点为顶点的四边形的内对角互补,则四点共圆;(2)证明四点为顶点的丝包线的一外角等于其内对角,则四点共圆;(3)线段同旁张等角,则四点共圆。
4.凸四边形ABCD 中,AC ⊥BD ,作垂足E 关于AB 、BC 、CD 、DA 的对称点P 、Q 、R 、S ,求证:P 、Q 、R 、S 四点共圆。
5.已知O 是⊙O 1、⊙O 2、⊙O 3的公共点,点A 、B 、C 分别是⊙O 2与⊙O 3、⊙O 1与⊙O 3、⊙O 1与⊙O 2的交点,若A 、B 、C 三点共线,求证:O 、O 1、O 2、O 3四点共圆。
6.已知在凸五边形ABCDE 中,03,,1802BAE BC CD DE BCD CDE αα∠===∠=∠=-,求证:A 、B 、C 、D 、E 五点共圆。
专题二十二四点共圆一、知识要点1. 四点到某一定点的距离都相等,从而确定它们共圆.2. 运用有关定理或结论:(1)共底边的两个直角三角形,则四个顶点共圆,且直角三角形的斜边为圆的直径.(2)共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆.(3)对于凸四边形ABCD,对角互补⇔四点共圆.(4)相交弦定理的逆定理:对于凸四边形ABCD其对角线AC、BD交于P,=AP⋅⋅⇔四点共圆.PDBPPC(5)割线定理:对于凸四边形ABCD其边的延长线AB、CD交于P,=⋅⇔四点共圆.PA⋅PDPCPB(6)托勒密定理的逆定理:对于凸四边形ABCD,=⋅+⋅⇔四点共圆.AB⋅CDACBDBCAD二、典型例题例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H四点共圆.例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.例3 如图,已知ABCD为平行四边形,过点A和B的圆与AD、BC分别交于E、F.求证:C、D、E、F四点共圆.例4 如图,H为△ABC的垂心,H1、H2、H3为H点关于各边的对称点.求证:A、B、C、H1、H2、H3六点共圆.例5 (托勒密定理的逆定理)在凸四边形ABCD中,如果AC·BD=AB·CD+BC·AD.求证:A,B,C,D四点共圆.三、巩固练习 (一)选择题1.设ABCD 为圆内接四边形,现给出四个关系式:(1)sinA=sinC ;(2)sinA+sinC=0;(3)cosB+cosD=0;(4)cosB=cosD . 其中总能成立的关系式的个数是( ) .A .一个B .两个C .三个D .四个 2.下面的四边形有外接圆的一定是( ) .A .平行四边形B .梯形C .等腰梯形D .两个角互补的四边形 3.四边形ABCD 内接于圆,∠A :∠B :∠C=7:6:3,则∠D 等于( ) . A .36º B .72º C .144º D .54º4.如图1,在四边形ABCD 中,AB=BC=AD=AC ,AH ⊥CD 于H ,CP ⊥BC 交AH 于P ,若,AP=1,则BD 等于( ) .A .B .2C .3 D5.对于命题:①内角相等的圆内接五边形是正五边形;②内角相等的圆内接四边形是正四边形.以下四个结论中正确的是( ) .A .①,②都对B .①对,②错C .①错,②对D .①,②都错(二)填空题6.如图2,△ABC 中,∠B=60º,AC=3cm ,则△ABC 的外接圆半径为 . 7.如图3,△ABC 中,∠ACB=65º,BD ⊥AC 于D ,CE ⊥AB 于E ,则∠AED= , ∠CED= .8.如图4,△ABC 中,AD 是∠BAC 的平分线,延长AD 交△ABC 的外接圆于E ,已知AB=,BD=,BE=,则AE= ,DE = .9.如图5,正方形ABCD 的中心为O ,面积为1989,P 为正方形内一点,且∠OPB=45º,PA ∶PB =5∶14,则PB= .10.如图6,四边形ABCD 内接于以AD 为直径的圆中,若AB 和BC 的长度各为1,,那么AD= .AB =a b c 2cm 72CD =(1)H PD C B A(3)D EA(2)CBAD (4)CBA(5)OP DCB A(6)CB A(三)解答题11.如图7,在△ABC 中,AD 为高线,DE ⊥AB 于E ,DF ⊥AC 于F .求证:B 、C 、F 、E 四点共圆.12.如图8,四边形ABCD 内接于圆,AD 、BC 的延长线交于F ,AB ,DC 的延长线交于E ,EG平分∠AED 交BC 于M ,交AD 于G ,FH 平分∠AFB 交AB 于H ,交CD 于N .求证:EG ⊥FH .13.如图9,AD 、BC 为过圆的直径AB 两端点的弦,且BD 与AC 相交于E .求证:.2AC AE BD BE AB ⋅+⋅=(9)ED C BAE (8)H FM N GD C B A (7)F E DB A14.如图10,O 为凸五边形ABCDE 内一点,且∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.求证:∠9与∠10相等或互补.15.如图11,△ABC 内接于圆,P 为上一点,PD ⊥AB 于D ,PE ⊥BC 于E ,PF⊥AC 于F .求证:D 、E 、F 三点共线.BC (11)PFED C BA10987654321(10)OEC B A。
四点共圆的证明的所有方法证明:“四点共圆”的概念是指四个点在同一个圆上。
下面将介绍六种不同的方法来证明四个点共圆的情况。
方法一:通过圆的定义证明1.过给定的四个点中任意三个点相互连接得到三条线段。
2.如果这三条线段的两个线段互相垂直,则可以得出结论:它们共同交于同一个圆心,因此四个点在一个圆上。
方法二:通过圆锥曲线性质证明1.给定四个点A、B、C、D,假设A、B为直径。
2.将直径完全平分,将A、B两点之间的弦平分。
3.如果C、D两点相等于刚才的这两个点之间的任意一点,则可以得出结论:四个点在同一个圆上。
方法三:通过三角形内角平分线性质证明1.给定四个点A、B、C、D,选择其中任意两个点A、B,并通过这两个点画出一个与直线CD平行的线段DE。
2.根据三角形的内角平分线性质,线段DE将角ADC与角BDC平分成两个相等的角。
3.如果这两个相等的角的顶点分别为A和B,则可以得出结论:四个点在同一个圆上。
方法四:通过周重圆定理证明1.给定四个点A、B、C、D。
2.假设AB与CD相交于点E,并假设AC与BD相交于点F。
3.如果EF垂直于CD,则可以得出结论:四个点在同一个圆上。
方法五:通过正交变换证明1.给定四个点A、B、C、D,假设A、B为直径。
2.进行适当的正交变换,将这个圆形变换为一个单位圆,使得A点位于单位圆的正上方并成为圆心,B点位于单位圆的负下方。
3.如果C、D两点与单位圆有相同的距离,则可以得出结论:四个点在同一个圆上。
方法六:通过托勒密定理证明1.给定四个点A、B、C、D,假设B、D两点在圆内,且BD为这个圆的直径。
2.根据托勒密定理,AB×CD+AD×BC=AC×BD。
3.如果AB×CD+AD×BC=AC×BD成立,则可以得出结论:四个点在同一个圆上。
综上所述,我们介绍了六种不同的方法来证明四个点共圆的情况。
通过不同的几何定理和性质,可以找到不同的路径来达到证明的目的。
知识点、重点、难点四点共圆是圆的基本内容,它广泛应用于解与圆有关的问题.与圆有关的问题变化多,解法灵活,综合性强,题型广泛,因而历来是数学竞赛的热点内容。
在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆的有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。
因此,掌握四点共圆的方法很重要。
判定四点共圆最基本的方法是圆的定义:如果A、B、C、D四个点到定点O的距离相等,即OA=OB=OC=OD,那么A、B、C、D四点共圆.由此,我们立即可以得出1.如果两个直角三角形具有公共斜边,那么这两个直角三角形的四个顶点共圆。
将上述判定推广到一般情况,得:2.如果四边形的对角互补,那么这个四边形的四个顶点共圆。
3.如果四边形的外角等于它的内对角,那么这个四边形的四个顶点共圆。
4.如果两个三角形有公共底边,且在公共底边同侧又有相等的顶角,那么这两个三角形的四个顶点共圆。
运用这些判定四点共圆的方法,立即可以推出:正方形、矩形、等腰梯形的四个顶点共圆。
其实,在与圆有关的定理中,一些定理的逆定理也是成立的,它们为我们提供了另一些证明四点共圆的方法.这就是:1.相交弦定理的逆定理:若两线段AB和CD相交于E,且AE·EB=CE·ED,则A、B、C、D四点共圆。
2.割线定理的逆定理:若相交于点P的两线段PB、PD上各有一点A、C,且PA·PB =PC·PD,则A、B、C、D四点共圆。
3.托勒密定理的逆定理:若四边形ABCD中,AB·CD+BC·DA= AC·BD,则ABCD是圆内接四边形。
另外,证多点共圆往往是以四点共圆为基础实现的一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际是同一个圆。
例题精讲例1:如图,P为△ABC内一点,D、E、F分别在BC、CA、AB上。
4点共圆的证明方法嘿,咱今儿个就来唠唠这四点共圆的证明方法。
你说这四点共圆,就像是四个小伙伴手牵手围成了一个圈,多有意思呀!咱先来说说第一种方法,对角互补法。
你想想啊,如果四边形的对角加起来正好是 180 度,那不就像两个好朋友,一个爱热闹,一个爱安静,他俩凑一起,刚刚好,这四点不就共圆了嘛!比如说有个四边形,一个角是 60 度,那另一个对角就得是 120 度,这样它们不就互补了嘛,那这四点大概率就是共圆的啦。
还有一种方法呢,叫外角等于内对角法。
这就好比是一个人在外面的表现和他在家里的性格一样,那多特别呀!如果一个四边形的外角等于它不相邻的内对角,那这四点也能共圆哦。
就好像外角是个调皮的孩子,内对角是个稳重的大人,他俩一对应,嘿,四点共圆的关系就出来了。
再来说说同弧所对的圆周角相等法。
这就好像一群人围着一个大蛋糕,同一块蛋糕上的人角度都一样呢!如果在同一个圆里,同一弧所对的圆周角都相等,那这几个点不就共圆了嘛。
最后还有一种方法,叫到定点等距离法。
你可以把这个定点想象成一个温暖的家,这几个点到这个家的距离都一样,那不就像都回到了温暖的怀抱嘛,它们当然就是共圆的啦。
你看,这四点共圆的证明方法是不是很神奇呀!就像是解开一道谜题的钥匙,每一种方法都能打开一扇通往四点共圆世界的大门。
咱学习这些方法,不就像是探险家去探索未知的领域嘛,充满了乐趣和挑战。
咱在做题的时候,遇到那些好像能四点共圆的图形,就可以用这些方法去试试呀,说不定就能找到答案呢!这就像在大海里捞针,你得有耐心,有方法,才能把那根针捞出来呀。
所以呀,大家可别小瞧了这四点共圆的证明方法,它们可是数学世界里的宝贝呢!学会了它们,咱就能在数学的海洋里畅游啦,那感觉,多棒呀!咱可得好好掌握这些方法,让它们成为我们学习数学的得力助手。
怎么样,是不是对四点共圆的证明方法有了更深的了解啦?加油哦,让我们一起在数学的道路上越走越远!。
初中四点共圆怎么证明2020-03-16 13:37:54文/宋则贤若四个点到一个定点的距离相等,则这四个点共圆。
若一个四边形的一组对角互补,则这个四边形的四个点共圆。
还可用相交弦定理的逆定理,割线定理等证明四点共圆。
四点共圆如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。
四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角。
以上性质可以根据圆周角等于它所对弧的度数的一半进行证明。
四点共圆证明方法1.若四个点到一个定点的距离相等,则这四个点共圆。
若可以判断出OA=OB=OC=OD,则A、B、C、D四点在以O为圆心OA为半径的圆上。
2.若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。
若∠A+∠C=180°或∠B+∠D=180°,则点A、B、C、D四点共圆。
3.若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。
若∠B=∠CDE,则A、B、C、D四点共圆。
4.若一个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
若∠A=∠D或∠ABD=∠ACD,则A、B、C、D四点共圆。
5.若AB、CD两线段相交于P点,且PA×PB=PC×PD,则A、B、C、D四点共圆(相交弦定理的逆定理)。
6.若AB、CD两线段延长后相交于P。
且PA×PB=PC×PD,则A、B、C、D四点共圆(割线定理)。
7.若四边形两组对边乘积的和等于对角线的乘积,则四边形的四个顶点共圆(托勒密定理的逆定理)。
已知四边形ABCD,若AB×CD+BD×AC=AD×BC,则A、B、C、D四点共圆。