4.1任意角的正弦函数、余弦函数的定义
- 格式:ppt
- 大小:1004.50 KB
- 文档页数:16
任意角的三角函数及基本公式三角函数是数学中的一个重要概念,它们描述了角度与三角比之间的关系。
任意角的三角函数包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。
下面将详细介绍这些函数的定义、基本公式以及它们之间的关系。
1. 正弦函数(sine function):在单位圆上,从x轴正向到射线与单位圆的交点之间的弧度即为角的弧度。
正弦函数将给定角度的正弦值映射到数轴上。
其定义如下:sin(θ) = y/r其中θ为角度,y为对边,r为斜边。
2. 余弦函数(cosine function):余弦函数表示角的余弦值在数轴上的投影长度。
其定义如下:cos(θ) = x/r其中θ为角度,x为邻边,r为斜边。
3. 正切函数(tangent function):正切函数表示角的正切值在数轴上的投影比。
其定义如下:tan(θ) = y/x其中θ为角度,y为对边,x为邻边。
4. 余切函数(cotangent function):余切函数表示角的余切值在数轴上的投影比。
其定义如下:cot(θ) = x/y其中θ为角度,y为对边,x为邻边。
5. 正割函数(secant function):正割函数表示角的正割值在数轴上的投影长度。
其定义如下:sec(θ) = r/x其中θ为角度,x为邻边,r为斜边。
6. 余割函数(cosecant function):余割函数表示角的余割值在数轴上的投影长度。
其定义如下:csc(θ) = r/y其中θ为角度,y为对边,r为斜边。
这些函数在不同的角度上有不同的值,可以通过查表或计算器得到具体数值。
同时,它们之间存在一些基本公式和关系,如下:1. 互余关系(co-function identities):sin(θ) = cos(90° - θ)cos(θ) = sin(90° - θ)tan(θ) = cot(90° - θ)cot(θ) = tan(90° - θ)sec(θ) = csc(90° - θ)csc(θ) = sec(90° - θ)2.三角函数的平方和差:sin²(θ) + cos²(θ) = 1tan²(θ) + 1 = sec²(θ)cot²(θ) + 1 = csc²(θ)3.三角函数的倒数:sec(θ) = 1/cos(θ)csc(θ) = 1/sin(θ)cot(θ) = 1/tan(θ)4.符号关系:根据角度的位置和象限,三角函数的值可能为正或负。
北师大版高二数学必修4目录第一章三角函数1.周期现象习题1—12.角的概念与推广习题1—23.弧度制习题1—34.正弦函数和余弦函数的定义与诱导公式4.1任意角的正弦函数、余弦函数的定义4.2单位圆与周期性4.3单位圆与诱导公式习题1—45.正弦函数的性质与图像5.1从单位圆看正弦函数的性质5.2正弦函数的图像5.3正弦函数的性质习题1—56.余弦函数的图像和性质6.1余弦函数的图像6.2余弦函数性质习题1—67.正切函数7.1正切函数定义7.2正切函数的图像与性质7.3正切函数的诱导公式习题1—78.函数y=A sin(ωx+ψ)的图像习题1—89.三角函数的简单应用习题1—9阅读材料数学与音乐课题学习利用现代信息技术探究y=A sin(ωx+ψ)(A>0,ω>0)的图像本章小结建议复习题一第二章平面向量1.从位移、速度、力到向量1.1位移、速度和力1.2向量的概念习题2—12.从位移的合成到向量的加法2.1向量的加法2.2向量的减法习题2—23.从速度的倍数到数乘向量3.1数乘向量3.2平面向量基本定理习题2—34.平面向量的坐标4.1平面向量的坐标表示4.2平面向量线性运算的坐标表示4.3向量平行的坐标表示习题2—45.从力做的功到向量的数量积习题2—56.平面向量数量积的坐标表示习题2—67.向量应用举例7.1点到直线的距离公式7.2向量的应用举例习题2—7阅读材料向量与中学数学本章小结建议复习题二第三章三角恒等变形1.同角三角函数的基本关系习题3—12.两角和与差的三角函数2.1两角差的余弦函数2.2两角和与差的正弦、余弦函数2.3两角和与差的正切函数习题3—23.二倍角的三角函数习题3—3阅读材料三角函数叠加问题课题学习摩天轮中的数学问题本章小结建议复习题三探究活动升旗中的数学问题附录1 部分数学专业词汇中英文对照表附录2 信息检索网址导引。
任意角三角函数正弦函数和余弦函数的定义与诱导公式正弦函数和余弦函数是任意角三角函数中两个最基本的函数。
它们的定义可以通过单位圆来得出,并且它们之间存在着重要的诱导公式。
首先,我们来看正弦函数的定义。
对于一个给定的角度θ,我们可以在单位圆上找到对应的点 P。
那么,我们定义正弦函数sin(θ) 为点P 的纵坐标值。
也就是说,sin(θ) = y / r,其中 y 是点 P 的纵坐标,r 是单位圆的半径。
接下来,我们来看余弦函数的定义。
与正弦函数类似,对于一个给定的角度θ,我们可以在单位圆上找到对应的点 P。
那么,我们定义余弦函数cos(θ) 为点 P 的横坐标值。
也就是说,cos(θ) = x / r,其中x 是点 P 的横坐标,r 是单位圆的半径。
正弦函数和余弦函数的定义可以用下图来表示:```θr * cos(θ) , r----------------,--------------------r * sin(θ)```在上图中,θ 是角度,r 是单位圆的半径,P 是对应的点。
点 P 的横坐标为r * cos(θ),纵坐标为r * sin(θ)。
接下来我们来讨论正弦函数和余弦函数的诱导公式。
诱导公式是指,如果我们知道一个角度的正弦值或余弦值,我们可以通过其他角度的正弦函数和余弦函数来计算。
首先,我们来看正弦函数的诱导公式。
对于任意角度θ,我们可以通过一个有用的等式来计算sin(θ)。
这个等式叫做“和差化积公式”或者“诱导公式”。
根据这个公式,我们有 sin(a + b) = sin(a) * cos(b) + cos(a) * sin(b)。
如果我们令a = θ 和b = 90°,那么我们可以得到sin(θ +90°) = sin(θ) * cos(90°) + cos(θ) * sin(90°)。
根据单位圆上的图像,我们知道cos(90°)=0,sin(90°)=1,所以这个等式简化为sin(θ + 90°) = cos(θ)。
任意角的正弦函数、余弦函数和正切函数的定义
正弦函数:
1、正弦函数又称三角函数之一,用来描述某个角(通常用弧度制来表示)对应的正弦值。
其定义为:sinθ=y/r,其中θ是一个角、y表示线
段OP(P是原点O与某角θ之间所成的角)的竖直高度,r为OP线段
的长度。
2、正弦函数在数学和科学研究中被广泛使用,可以描述很多自然现象,如波形、格林函数、化学反应的振荡及循环等。
3、由于定义中引入了角θ,因此正弦函数也被称为周期函数,其拥有
可预测的周期性,其周期性就受到了角θ的周期性所控制,其周期
T=2π/θ。
余弦函数:
1、余弦函数也是三角函数之一,与正弦函数正交,从定义上来看:
cosθ=x/r,其中θ是一个角、x表示线段OP(P是原点O与某角θ之间
所成的角)的水平宽度,r为OP线段的长度。
2、余弦函数也被人们广泛使用,用来描述很多自然现象,如电磁场的
振荡、微波加热、声反射、图像处理、建筑设计、数控加工中的刀具
轨迹等。
3、余弦函数具有预测的可重复性,其周期T=2π/θ。
正切函数:
1、正切函数也可以称为三角函数之一,定义为:tanθ=y/x,其中θ是一个角,y表示线段OP(P是原点O与某角θ之间所成的角)的竖直高度,x为OP线段的水平宽度。
2、正切函数也被广泛应用于数学和科学研究中,可以用来描述很多自然现象,如太阳辐射、抛物线分布、圆周运动及天文学等。
3、正切函数也具有可预测的周期性,其周期T=2π/θ。
恒口高级中学数学必修四学案 NO.课题:4.1任意角的正弦、余弦函数的定义主编人:_范明珠 审核人:___ 领导签字:___ ___ 班_____组 姓 名:_____ _ 师 评: 使用说明:1、紧扣学习目标,认真预习课本13—15页,独立完成自主学习部分。
2、整理出自己在自学过程中遇到的问题和困惑,努力尝试做合作探究部分内容,标记好疑点、难点,准备讨论和展示。
3、课堂认真思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题。
4、小组长在课堂讨论环节起引领作用,做到有效讨论,确保每人都达成目标。
学习目标:1.借助单位圆理解任意角的三角函数的定义。
2.掌握正弦函数、余弦函数的定义域和函数值在各象限的符号。
重 点:正弦函数、余弦函数的定义 难 点:正弦函数、余弦函数值在各象限的符号一、自主学习【预习与思考】1、 在直角坐标系中,以_____ _为圆心,以_____ _为半径的圆,称为单位圆。
2、 在直角坐标系中,给定单位圆,对于任意角α,使角α的顶点与_____重合,始边与_____重合,终边与单位圆交于点),(v u P ,那么点P 的_____ 叫做角α的正弦函数,记作_____ _点P 的_____ 叫做角α的余弦函数,记作_____ _通常,我们用x 表示自变量,即表示角的大小,用y 表示函数值,这样我们就定义了任意角三角函数____ ,和____ _ 。
它们的定义域为____ ,值域为____ 。
3、 正弦函数、余弦函数在各象限的符号思考:若点),(y x P 是角α终边上异于原点的任意一点,又该如何定义角α的正弦函数和余弦函数?【预习自测】:1、(1)417sin π=____ (2) 322cos π=____2、已知角α终边上一点的坐标为)8,6(-P ,则=αsin ____ ;=αcos ____ ;3、判断 375sin 、π427sin、)380cos(π-的符号。