塑性加工工艺与设备
- 格式:ppt
- 大小:4.99 MB
- 文档页数:132
第八章塑性加工※8·1 锻造成形8·2 板料冲压成形8·3 挤压、轧制、拉拔成形8·4 特种塑性加工方法8·5 塑性加工零件的结构工艺性8·6 塑性加工技术新进展本章小结塑性加工的基本知识塑性变形的主要形式:滑移、孪晶。
滑移的实质是位错的运动。
金属经过塑性变形后将使其强度、硬度升高,塑性、韧性降低。
即产生形变强化。
此外,还将形成纤维组织。
塑性加工特点:1·塑性加工产品的力学性能好。
2·精密塑性加工的产品可以直接达到使用要求,不须进行机械加工就可以使用。
实现少、无切削加工。
3·塑性加工生产率高,易于实现机械化、自动化。
4·加工面广(几克~几百吨)。
常用的塑性加工方法:锻造、板料冲压、轧制、挤压、拉拔等。
8·1 锻造成形8·1·1 自由锻定义、手工自由锻、机器自由锻设备(锻锤和液压机)1·自由锻工序(基本工序、辅助工序、精整工序)基本工序:镦粗、拔长、弯曲、冲孔、切割、扭转、错移辅助工序:压钳口、压钢锭棱边、切肩各种典型锻件的锻造2·自由锻工艺规程的制订(举例)8·1·2 模锻定义、特点(生产率高、尺寸精度高、加工余量小、节约材料,减少切削、形状比自由锻的复杂、生产批量大但质量不能大)1·锤上模锻2·压力机上模锻8章塑性加工拔长29使坯料横截面减小而长度增加的锻造工序称为拔长。
拔长主要用于轴杆类锻件成形,其作用是改善锻件内部质量。
(1)拔长的种类。
有平砥铁拔长、芯轴拔长、芯轴扩孔等。
8章塑性加工30芯轴拔长8章塑性加工芯轴扩孔型砧拔长圆形断面坯料冲孔采用冲子将坯料冲出透孔或不透孔的锻造工序叫冲孔。
其方法有实心冲子双面冲孔、空心冲子冲孔、垫环冲孔等。
8章塑性加工各种典型锻件的锻造1、圆轴类锻件的自由锻2、盘套类锻件的自由锻3、叉杆类锻件的自由锻4、全纤维锻件的自由锻8章塑性加工典型锻件的自由锻工艺示例43锻件名称工艺类别锻造温度范围设备材料加热火次齿轮坯自由锻1200~800℃65kg空气锤45钢1锻件图坯料图序号工序名称工序简图使用工具操作要点1局部镦粗火钳镦粗漏盘控制镦粗后的高度为45mm序号工序名称工序简图使用工具操作要点2冲孔火钳镦粗漏盘冲子冲孔漏盘(1)注意冲子对中(2)采用双面冲孔3修整外圆火钳冲子边轻打边修整,消除外圆鼓形,并达到φ92±1 mm续表序号工序名称工序简图使用工具操作要点4修整平面火钳镦粗漏盘轻打使锻件厚度达到45±1 mm续表自由锻工艺规程的制订(1)绘制锻件图(敷料或余块、锻件余量、锻件公差)※锻件图上用双点画线画出零件主要轮廓形状,并在锻件尺寸线下面用括号标出零件尺寸。
材料的塑性成形工艺引言塑性成形是一种常见的材料加工工艺,通过施加力量使材料发生形变,以获得所需的形状和尺寸。
塑性成形工艺包括冷拔、冷加工、锻造、挤压、拉伸等多种方法。
本文将介绍几种常见的材料塑性成形工艺及其特点。
一、冷拔1.1 工艺流程冷拔是一种拉伸加工的方法,主要用于金属材料。
其工艺流程包括以下几个步骤:1.选材:选择合适的原材料进行冷拔加工。
2.加热:将材料加热至适当的温度,以提高其塑性。
3.均质化处理:通过变形和退火等处理方法,使材料组织更加均匀。
4.拉拔:将材料拉伸至所需的形状和尺寸。
5.精整:通过切割、修整等方法,使成品达到要求的尺寸。
1.2 特点冷拔工艺具有以下特点:•成品尺寸精度高,表面质量好。
•可加工各种材料,包括金属和非金属材料。
•可以提高材料的强度和硬度。
二、冷加工2.1 工艺流程冷加工是一种在常温下进行的成形加工方法,常用于金属材料。
其工艺流程包括以下几个步骤:1.选材:选择合适的原材料进行冷加工。
2.切削:通过刀具对材料进行切削加工。
3.成型:通过冷加工设备对材料进行压制、弯曲、卷曲等成型操作。
4.精整:通过修整、研磨等方法,使成品达到要求的尺寸和表面质量。
2.2 特点冷加工具有以下特点:•成品尺寸精度高,表面质量好。
•可以加工多种材料,包括金属和非金属材料。
•部件形状复杂度高,适用于精密加工要求较高的产品。
三、锻造3.1 工艺流程锻造是一种通过施加压力将材料压制成所需形状的工艺方法。
其工艺流程包括以下几个步骤:1.选材:选择合适的原材料进行锻造。
2.加热:将材料加热至适当的温度,以提高其塑性。
3.锻造:通过锻造设备施加压力,将材料压制成所需形状。
4.精整:通过修整、热处理等方法,使成品达到要求的尺寸和性能。
3.2 特点锻造具有以下特点:•可以加工各种金属材料,包括高温合金和非金属材料。
•成品强度高,韧性好。
•高生产效率,适用于大批量生产。
四、挤压4.1 工艺流程挤压是一种将材料挤压成所需截面形状的塑性成形工艺。
塑性成形的特点与基本生产方式塑性成形是一种广泛应用于工程领域的加工技术,它通过对热软化塑料材料进行塑性变形,以获得各种复杂的形状和尺寸。
本文将介绍塑性成形的特点以及常见的基本生产方式。
1. 塑性成形的特点塑性成形具有以下几个特点:1.1 灵活性塑性成形可以根据需要灵活地加工出各种复杂形状的产品,例如各种外壳、管道、容器等。
通过改变模具和调整加工参数,可以满足不同产品的加工需求。
1.2 生产效率高相比于其他加工方法,塑性成形具有较高的生产效率。
一次成型可以同时加工多个产品,且生产周期较短。
同时,还可以进行自动化生产,提高生产效率。
1.3 材料利用率高塑性成形能够使材料得到充分利用。
由于材料在加工过程中可以被塑性拉伸、薄化,可以最大限度地减少材料的损耗。
1.4 加工成本低由于塑性成形生产工艺简单,设备投资与维护成本相对较低。
同时,生产过程中材料利用率高,可以降低材料成本。
2. 基本生产方式2.1 挤出成形挤出成形是最常见的塑性成形方式之一。
它通过将塑料材料加热熔融后,通过挤压机将熔融塑料挤出成型。
挤出成形常用于生产管道、板材、型材等产品。
2.2 注塑成形注塑成形是另一种常见的塑性成形方式。
它通过将塑料材料加热熔融后,将熔融塑料注入到闭合的模具中,并施加一定的压力进行冷却固化。
注塑成形适用于生产各种复杂形状的产品,如塑料零件、玩具等。
2.3 吹塑成形吹塑成形是一种特殊的塑性成形方式,常用于生产空心容器,例如瓶子、桶等。
它通过将熔融塑料放置在模具中,通过压缩空气将塑料吹膨为模具形状。
2.4 压延成形压延成形是将塑料热融化后,通过双辊或多辊挤压机将塑料挤压成特定形状和厚度的薄膜或板材。
压延成形适用于生产各种包装薄膜、塑料薄板等产品。
2.5 热压成形热压成形是将加热熔融的塑料放置于模具中,施加一定的压力进行冷却固化。
常用于生产较厚的塑料零件和产品。
总结塑性成形作为一种常见的加工技术,具有灵活性、高生产效率、材料利用率高和加工成本低的特点。
塑料的机械加工、修饰和装配1 机械加工一、塑料的机械加工工艺特点塑料的机械加工,一般采用加工金属或木材的设备和方法。
由于塑料的性能与金属或木材相差很远,使用的要求和条件不同,所以塑料的机械加工有它自己的特点。
1、由于塑料的热性能与金属大不相同,加热容量小、导热性差,因此在机械加工过程中,由金屑刀具和塑料摩擦所产生的热量,主要传给刀具,而传给塑料的热量难于传入内部,其表面温度显著提高,极易局部过热变软,甚至使塑料变色、焦化。
此外,塑料的热膨胀系数比金属高得多(大1.5~20倍),即使温度变化不大,也会使尺寸产生很大的变化,这对制品尺寸精度的控制是不利的,对表面质量亦会有不利的影响,尤以热塑性塑料为甚。
为此,在机械加工时,需用冷却剂,如压缩空气、水或其他冷却液,其中以压缩空气为好,冷却液使塑料的摩擦因数减小,容易打滑。
2、一般塑料的弹性模量,仅为金属的1/10-1/60,在机械加工时,夹具和刀具施压过大,能引起塑料制品的扭变和偏差,比金属大得多,必将影响制件的公差,因此夹紧力要适当。
刀具的刃口要锋利。
此外,塑料还具有与时间有关的弹性恢复性能,经过机械加工之后,其尺寸会发生变化,如钻孔或攻丝的孔眼直径小于刀具的直径,车削后的工件尺寸,在存放中会发生收缩等。
二、切削原理及车削车削是用单刃刀具加工,其目的足加工圆柱、斜度、平面和螺纹等。
车削过程基本上与将楔形物推进物料中的情况相同。
当刀具推进塑料进行切削时,刀具必须克服前倾面上所受到的正压力与切削之间摩擦力。
这两种力的合力就是切削下的作用力(见图11-1)。
如这种力的大小和方向有利于塑料的牵伸断裂,则能减小切削所需要的功,使切削顺利进行。
因为大多数塑料抗压强度均比抗张强度大2-3倍,所以塑料对压缩断裂的阻力恒大于对牵伸断裂的阻力。
从力学分析可知,刀具前角愈大,有利于塑料发生牵伸断裂。
但刀具前角并不是可以任意增大。
前角过大时,某些塑料的断裂就会成为脆性的,致使加工后的表面比较粗糙,还会使刀具的强度降低,易于损坏。
等温锻造超塑性成型设备的自动化控制与工艺优化等温锻造是一种重要的金属成形加工方法,它可以在较低的应力条件下使金属材料获得良好的塑性变形能力。
而为了提高等温锻造的生产效率和产品质量,自动化控制与工艺优化在该设备中起到至关重要的作用。
自动化控制方面,等温锻造超塑性成型设备的控制系统需要能够实现对温度、应力、变形速率等参数的精确控制和监测。
首先,通过传感器实时感知和监测工作环境中的温度、压力、力量等关键参数,然后将这些数据传输给控制系统进行分析和处理。
控制系统根据预设的工艺参数和实时监测数据,调整加热设备的功率和温度分布,确保工件的温度能够保持在合适的等温锻造温度范围内。
此外,通过控制加热设备、润滑装置和冷却装置等相关设备的运转,控制系统能够实现对等温锻造过程中工件的变形速率、应力分布以及润滑状态的调节和控制。
针对工艺优化,等温锻造超塑性成型设备需要考虑材料选择、温度控制、载荷控制和应变速率控制等方面的优化。
首先,通过对金属材料的性能及其在等温锻造过程中的变化规律进行研究和探索,选择适合等温锻造的材料,并进一步确定其适用的工艺参数。
其次,通过控制系统实时监测和调整加热设备的功率及温度分布,确保工件的温度能够保持在合适的等温锻造温度范围内。
此外,对于载荷控制和应变速率控制来说,系统需要能够准确控制和调节等温锻造中施加在工件上的力和形状,在满足材料超塑性变形的基础上尽可能降低工件的应力和损伤。
除了自动化控制和工艺优化,等温锻造超塑性成型设备还需要考虑安全性和可靠性方面的要求。
在设计阶段,应该充分考虑设备的结构稳定性、热稳定性和寿命可靠性,确保其能够满足长时间高负荷工作的需求。
此外,对于设备的自动化控制系统和工艺优化算法,应进行充分的测试和验证,确保其在实际生产环境中能够稳定运行且满足生产要求。
同时,还要加强设备的维护与保养,并定期检查和维修设备,以确保设备的稳定性和性能。
总结而言,等温锻造超塑性成型设备的自动化控制与工艺优化对于提高生产效率和产品质量至关重要。
塑性加工工艺塑性加工工艺是一种将塑料材料加工成各种形状和尺寸的方法。
塑性加工工艺广泛应用于塑料制品的生产中,包括塑料零件、塑料容器和塑料包装等。
首先,塑性加工工艺包括热塑性和热固性两种类型。
热塑性加工工艺是指将塑料材料加热至一定温度后,通过外力使其变形成所需的形状。
这种加工工艺常用于塑料制品的注塑、挤出和吹塑等过程。
热固性加工工艺则是将塑料材料加热至一定温度后,通过化学反应使其固化成为硬质塑料。
这种加工工艺常用于制作热固性塑料制品,如玻璃纤维增强塑料和环氧树脂工件。
其次,塑性加工工艺还包括一系列的步骤和设备。
其中,塑料材料的预处理是塑性加工的重要步骤之一,它包括塑料颗粒的干燥和混合等过程。
此外,塑性加工还需要一系列的设备,如注塑机、挤出机、吹塑机和模具等。
这些设备可以根据不同的塑料制品要求进行调整和控制,以完成塑性加工过程。
再次,塑性加工工艺在实际应用中具有很高的灵活性和适应性。
通过调整加工温度、流量速度和压力等参数,可以控制塑料制品的形状和尺寸。
此外,还可以通过添加填充剂、增塑剂和颜料等辅助材料,改变塑料制品的性能和外观。
最后,塑性加工工艺在现代工业生产中发挥着重要作用。
它具有加工周期短、成本低和生产效率高等优势,广泛应用于汽车、家电、电子、包装和建筑等行业。
随着科学技术的不断发展,塑性加工工艺也在不断创新和改善,以满足人们对塑料制品的多样化需求。
塑性加工工艺在现代工业生产中扮演着重要的角色。
随着科技的进步和人们对塑料制品需求的增加,塑性加工工艺变得越来越复杂和多样化。
下面将继续介绍一些常见的塑性加工工艺。
一种常见的塑性加工工艺是注塑。
注塑是使用注塑机将加热熔化的塑料材料注入模具中,然后在一定的压力和温度下保持一段时间,使塑料快速冷却硬化成型。
注塑工艺适用于制造各种形状和尺寸的塑料零件,如电子产品外壳、汽车零部件和家用电器配件等。
注塑工艺具有生产效率高、成本低、产品质量稳定的优点,因此被广泛应用于各个行业。
金属塑性加工方法——滚压(一)简介滚压是一种常用的金属塑性加工方法,通过在金属工件上施加压力,将其通过滚动运动的方式使其形状发生变化。
本文将介绍滚压的基本原理、工艺流程和应用领域。
滚压原理滚压是一种通过挤压金属工件来改变其形状的加工方法。
它利用滚轮施加在金属工件上的压力,将其挤压成所需的形状。
滚压通常使用辊和工件之间的滚动运动来实现,这样可以减少工件与滚轮之间的摩擦,并且更容易控制加工过程中的变形。
滚压可以适用于各种金属材料,包括钢铁、铝合金等,广泛应用于制造业中。
滚压工艺流程滚压的工艺流程通常包括以下几个步骤:1. 准备工作:选择适当的滚轮、加工设备和工件材料,并确保它们的表面光洁度和几何尺寸的精度。
2. 装夹工件:将工件固定在滚压机床上,确保工件与滚轮之间的接触面积足够,并调整滚轮的位置和角度。
3. 加工过程:通过滚压机床施加压力,使滚轮与工件产生相对滚动运动,逐渐将工件挤压成所需形状。
4. 检测和调整:在加工过程中,及时检测工件的形状和尺寸,根据需要进行调整和修正。
5. 完成加工:当工件达到要求的形状和尺寸后,完成滚压加工,并进行后续的处理,如退火等。
滚压的应用领域滚压作为一种重要的金属塑性加工方法,在各个制造领域都得到了广泛应用。
以下是一些常见的滚压应用领域:1. 轧钢厂:在钢铁工业中,滚压被用于生产各种形状和尺寸的钢材,如槽钢、工字钢等。
2. 汽车制造:滚压被广泛应用于汽车制造过程中,用于生产车身零部件、发动机零件等。
3. 金属管道加工:滚压在金属管道加工中是一种常用的方法,用于改变管道的形状和尺寸。
4. 航空航天工业:滚压在航空航天工业中的应用也很广泛,用于制造飞机零部件、零件等。
结论滚压是一种常用且重要的金属塑性加工方法,通过施加压力和滚动运动,可以有效地改变金属工件的形状。
滚压的工艺流程相对简单,广泛应用于各个制造领域。
在实际应用中,需要根据具体需求选择适当的滚压设备和工艺参数,保证加工效果和产品质量。
精确塑性成形工艺技术概念精确塑性成形工艺技术是一种利用柔性金属或热塑性材料经过高温加热和压力加工的成形工艺。
它与传统的冲压工艺相比,具有更高的精度和更广泛的应用领域。
精确塑性成形工艺技术可以实现对材料的局部加热和变形,从而改变材料的形状和尺寸。
它主要包括以下几个步骤:材料的预处理、加热和变形、冷却和修整。
首先,需要对材料进行预处理,包括去除杂质和涂层等。
然后,将材料加热到适当的温度范围,通常是高于其再结晶温度的一半到两倍。
在加热过程中,需要根据材料的性质和形状进行适当的温度控制,并避免材料的过热和过冷。
当材料达到适当的温度时,可以通过加压的方式对其进行变形。
这种加压通常是使用液压机、气动机械或液压液压机等设备来完成的。
在变形过程中,需要根据材料的形状和尺寸来选择合适的变形工具,并根据需要进行多次变形和调整,以达到所需的形状和尺寸。
最后,在冷却和修整过程中,对变形后的材料进行冷却和修整,以使其保持所需的形状和尺寸。
精确塑性成形工艺技术的主要优点是可以实现高精度的成形,并且可以加工各种形状和尺寸的材料。
与传统的冲压工艺相比,精确塑性成形工艺技术可以实现更高的加工精度和更短的加工周期。
它还可以避免材料的破坏和变形,从而提高材料的利用率和成品率。
另外,由于精确塑性成形工艺技术可以实现对材料的局部加热和变形,因此可以降低能耗和设备投资,并减少生产成本。
精确塑性成形工艺技术广泛应用于汽车、航空航天、电子、医疗器械等工业领域。
在汽车工业中,它主要用于生产汽车零部件,如车身、发动机、悬挂系统等。
在航空航天工业中,它主要用于生产飞机和航天器的结构件和连接件。
在电子工业中,它主要用于生产电子元件和电子设备的外壳等。
在医疗器械领域,它主要用于生产人工关节、人工心脏瓣膜等。
综上所述,精确塑性成形工艺技术是一种利用柔性金属或热塑性材料经过高温加热和压力加工的成形工艺。
它具有高精度、灵活性、成本低等优点,被广泛应用于汽车、航空航天、电子、医疗器械等工业领域。
塑性成形重要知识点总结塑性成形是一种通过应变作用将金属材料变形为所需形状的加工方法,也是金属加工领域中的一种重要工艺。
以下是塑性成形的重要知识点总结。
1.塑性成形的原理塑性成形是通过施加外力使金属材料发生塑性变形,使其形状和尺寸发生改变。
塑性成形的原理包括应力与应变关系、材料的流动规律和力学模型等。
2.塑性成形的分类塑性成形可以根据加工过程的不同进行分类,主要包括拉伸、压缩、挤压、弯曲、冲压等。
不同的成形方法适用于不同的材料和形状要求。
3.塑性成形的设备塑性成形通常需要使用专门的设备进行加工,包括拉伸机、压力机、挤压机、弯曲机、冲床等。
这些设备提供必要的力量和变形条件,使金属材料发生塑性变形。
4.金属材料的选择不同的金属材料具有不同的塑性特性,因此在塑性成形中需要根据不同的应用需求选择合适的材料。
常用的金属材料包括钢、铝、铜、镁等。
5.塑性成形的加工方法塑性成形的加工方法非常多样,包括冲压、拉伸、挤压、压铸、锻造等。
不同的加工方法适用于不同的材料和形状要求,可以实现复杂的金属成形。
6.塑性成形的工艺参数塑性成形的工艺参数对成形质量和效率具有重要影响。
常见的工艺参数包括温度、应变速率、应力等。
合理的工艺参数可以提高成形质量和生产效率。
7.塑性成形的变形行为塑性成形过程中金属材料的变形行为是研究的重点之一、金属材料的变形行为包括弹性变形、塑性变形和弹变回复等,通常通过应力-应变曲线来描述。
8.塑性成形的缺陷与控制塑性成形过程中可能发生一些缺陷,如裂纹、皱纹、细化等。
为了控制这些缺陷,需要采取合适的工艺和工艺措施,如加热、模具设计优化等。
9.塑性成形的优点与局限塑性成形具有成本低、加工效率高、灵活性好等优点,可以制造出复杂的金属零件。
然而,塑性成形也存在一些局限性,如对材料性能有一定要求、成形限制等。
10.塑性成形的应用领域塑性成形广泛应用于各个领域,如汽车制造、航空航天、电子、家电等。
不仅可以生产大批量的零部件,还可以满足不同产品的形状和性能要求。