初一数学上册有理数单元测试卷.docx
- 格式:docx
- 大小:15.38 KB
- 文档页数:6
一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.2.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.3.观察下列等式:第1个等式: = = ×(1- );第2个等式: = = ×( - );第3个等式: = = ×( - );第4个等式: = = ×( - );…请回答下列问题:(1)按以上规律列出第5个等式: =________=________;(2)用含n的代数式表示第n个等式: =________=________(n为正整数);(3)求的值.【答案】(1);(2);(3)解:a1+a2+a3+a4+…+a2018= ×(1- )+ ×( - )+ ×( - )+ ×( -) +…+ = .【解析】【解答】解:(1)第5个等式:a5= ,故答案为 .( 2 )an= ,故答案为 .【分析】(1)根据前四个式子的规律,就可列出第5个等式,计算可求解。
人教版七年级数学上册《第二章有理数》单元检测卷带答案一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.133.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B04.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.1325.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.167.观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.18.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数且满足1<<3,则x+y的值.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是;(2)数轴上表示3和﹣6的两点之间的距离是.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是.(2)①若|x﹣(﹣1)|=3,则x=;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=时,|x+1|+|x﹣2|+|x﹣3|有最小值.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的取值在的范围时,|x|+|x﹣2|的最小值是;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.参考答案与试题解析一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定【解答】解:∵ab<0,a+b>0∴a,b异号,且正数的绝对值大于负数的绝对值∴a,b对应着点M与点P∵a+c>b+c∴a>b∴数b对应的点为点M故选:A.2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.13【解答】解:三边之和是3s,等于1+2+…+6三个顶点的值.而三个顶点的值最大是4+5+6当三个顶点分别是4,5,6时可以构成符合题目的三角形.所以s最大为(1+2+3+4+5+6+4+5+6)÷3=12.故选:C.3.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B0【解答】解:∵表格中A对应的十进制数为10,B对应的十进制数为11∴A×B=10×11由十进制表示为:10×11=6×16+14又表格中E对应的十进制为14∴用十六进制表示A×B=6E.故选:A.4.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.132【解答】解:(1010110)2=1×26+0×25+1×24+0×23+1×22+1×21+0×1=86.故选:C.5.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请帮张阿姨分析一下,选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元【解答】解:应该先买鞋子花280现金,因为鞋子不能使用购物券,返200购物券;再买衣服花220现金+200购物券,可返200购物券再加100现金买化妆品.所以共计280+220+100=600.故选:B.6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.16【解答】解:∵主动轴上有三个齿轮,齿数分别是48,36,24;∴主动轴上可以有3个变速∵后轴上有四个齿轮,齿数分别是36,24,16,12∴后轴上可以有4个变速∵变速比为2,1.5,1,3的有两组又∵前后齿轮数之比如果一致,则速度会相等∴共有3×4﹣4=8种变速故选:B.7.观察下列各式:31=332=933=2734=8135=24336=72937=218738=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.1【解答】解:设n为自然数,∵31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…∴34n+1的个位数字是3,与31的个位数字相同34n+2的个位数字是9,与32的个位数字相同34n+3的个位数字是7,与33的个位数字相同34n的个位数字是1,与34的个位数字相同∴32004=3501×4的个位数字与34的个位数字相同,应为1.故选:D.8.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9【解答】解:30÷4=7 (2)所以推测330的个位数字是9.故选:D.二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是wkdrc.【解答】解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.故答案为:wkdrc.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是13.【解答】解:(1101)2=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为170.【解答】解:10101010(二)=1×27+0×26+1×25+0×24+1×23+0×22+1×21+0×20=128+32+8+2=170.故答案为:170.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=﹣1.【解答】解:f(2009)﹣f()=2008﹣2009=﹣1.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是8.【解答】解:观察可得规律:2n的个位数字每4次一循环∵15÷4=3 (3)∴215的个位数字是8.故答案为:8.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值±15或±9.【解答】解:根据题意得:1<xy﹣12<3则13<xy<15因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7当x=±3时,y的值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,y的值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案为:±15或±9.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是4;数轴上表示3和﹣6的两点之间的距离是9.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为10或﹣14;.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.【解答】解:(1)根据题意可知,因为数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示所以数轴上表示4和8的两点之间的距离是|8﹣4|=4,数轴上表示3和﹣6的两点之间的距离是|3﹣(﹣6)|=9.故答案为:4;9;(2)根据题意,得:|x﹣(﹣2)|=12∴|x+2|=12∴x+2=﹣12或x+2=12解得:x=﹣14或x=10故答案为:10或﹣14;(3)∵|x+1|+|x﹣3|表示x到﹣1和3的距离之和∴当x在﹣1和3之间时距离和最小,最小值为|﹣1﹣3|=4故|x+1|+|x﹣3|有最小值,最小值为4.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是6.(2)①若|x﹣(﹣1)|=3,则x=2或﹣4;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值.【解答】解:(1)表示4和﹣2两点之间的距离是|4﹣(﹣2)|=6故答案为:6;(2)①∵|x﹣(﹣1)|=3∴x+1=3或x+1=﹣3解得:x=2或x=﹣4故答案为:2或﹣4;②∵使x所表示的点到表示3和﹣2的点的距离之和为5∴|x﹣3|+|x+2|=5∵3与﹣2的距离是5∴﹣2≤x≤3∵x是整数∴x的值为﹣2,﹣1,0,1,2,3∴所有符合条件的整数x的积为0;(3)解:∵|x+1|+|x﹣2|+|x﹣3|表示数轴上有理数x所对应的点到﹣1、2和3所对应的点的距离之和∴当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值4.故答案为:2.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为|x+2|+|x﹣1|(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是﹣2、4②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的取值在不小于0且不大于2的范围时,|x|+|x﹣2|的最小值是2;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.【解答】解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|.故答案为:|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4.故答案为:﹣2,4;②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x﹣2|取得最小值,这个最小值是2;故答案为:4;不小于0且不大于2;2;4,2;(3)由分析可知当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x﹣1|+|x|=(|x﹣3|+|x|)+(|x﹣2|+|x﹣1|)要使|x﹣3|+|x|的值最小,x的值取0到3之间(包括0、3)的任意一个数,要使|x﹣2|+|x﹣1|的值最小,x取1到2之间(包括1、2)的任意一个数,显然当x取1到2之间(包括1、2)的任意一个数能同时满足要求,不妨取x=1代入原式,得|x﹣3|+|x﹣2|+|x﹣1|+|x|=2+1+0+1=4;方法二:当x取在1到2之间(包括1、2)时,|x﹣3|+|x﹣2|+|x﹣1|+|x|=﹣(x﹣3)﹣(x﹣2)+(x﹣1)+x+=﹣x+3﹣x+2+x﹣1+x=4.。
一、初一数学有理数解答题压轴题精选(难)1.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为________;点B表示的数为________;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=________;乙小球到原点的距离=________;当t=3时,甲小球到原点的距离=________;乙小球到原点的距离=________;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.________【答案】(1)-2;4(2)3;2;5;2;能.理由:当0<t≤2时,t+2=4-2t解之:当t>2时,t+2=2t-4解之:t=6∴当或6时,甲乙两小球到原点的距离相等.【解析】【解答】解:(1)∵a、b满足|a+2|+|b﹣4|=0,∴a+2=0且b-4=0解之:a=-2且b=4,∵在数轴上A点表示数a,B点表示数b,∴点A表示的数是-2,点B表示的数是4.故答案为:-2,4.(2)当0<t≤2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(4-2t)个单位长度;当t>2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(2t-4)个单位长度;①当t=1时,甲小球到原点的距离为:1+2=3;乙小球到原点的距离为4-2×1=2;当t=3时,甲小球到原点的距离为:3+2=5;乙小球到原点的距离为2×3-4=2;故答案为:3,2;5,2【分析】(1)利用几个非负数之和为0,则每一个数都是0,建立关于a,b的方程组,解方程组求出a,b的值,就可得到点A,B所表示的数。
2023-2024学年人教版版七年级数学上册《第一章 有理数》单元检测卷及答案学校:___________班级:___________姓名:___________考号:___________ 一.选择题(共10小题,满分30分,每小题3分) 1.(3分)−45的相反数是( ) A .−45B .−54C .45D .542.(3分)大庆油田发现预测地质储量12.68亿吨的页岩油,这标志着我国页岩油勘探开发取得重大战略突破.数字1268000000用科学记数法表示为( ) A .1.268×109B .1.268×108C .1.268×107D .1.268×1063.(3分)2023的倒数是( ) A .2023B .﹣2023C .−12023D .120234.(3分)我市某天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高( ) A .﹣10℃B .﹣6℃C .6℃D .10℃5.(3分)如图,数轴的单位长度为1,若点A 表示的数是﹣2,则点B 表示的数是( )A .0B .1C .2D .36.(3分)将34.945取近似数精确到十分位,正确的是( ) A .34.9B .35.0C .35D .35.057.(3分)若(m ﹣2)2与|n +3|互为相反数,则n m 的值是( ) A .﹣8B .8C .﹣9D .98.(3分)若两数之积为负数,则这两个数一定是( ) A .同为正数B .同为负数C .一正一负D .无法确定9.(3分)如果a >0>b ,那么下列各式成立的是( ) A .ab >0B .a +b <0C .a ﹣b <0D .ab <010.(3分)如图,把半径为0.5的圆放到数轴上,圆上一点A 与表示1的点重合,圆沿着数轴滚动一周,此时点A 表示的数是( )A .0.5+π或0.5﹣πB .1+2π或1﹣2πC .1+π或1﹣πD .2+π或2﹣π二.填空题(共8小题,满分32分,每小题4分)11.(4分)如果节约20度电记作+20度,那么浪费10度电记作 度. 12.(4分)比较大小:−(−27) −38.13.(4分)在﹣34中,底数是 ,指数是 .计算:﹣34= . 14.(4分)把7﹣(+5)+(﹣6)﹣(﹣4)写成省略加号和括号的形式为 . 15.(4分)绝对值小于3的所有整数的和是 . 16.(4分)计算:﹣16÷4×14= . 17.(4分)数轴上表示﹣2的点与表示6的点之间的距离为 . 18.(4分)已知|a |=2,b =3,则b ﹣a = . 三.解答题(共8小题,满分58分)19.(6分)补全数轴,并在数轴上表示下列各数,并用“<”把它们连接起来. 1.5,0,4,−12,﹣3.20.(6分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.求m +cd +a+bm的值. 21.(8分)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10); (2)−24−(13−1)×13×[6−(−3)]. 22.(8分)下面是亮亮同学计算一道题的过程: 15÷5×(﹣3)﹣6×(32+23)=15÷(﹣15)﹣6×32+6×23⋯⋯① =﹣1﹣9+4……② =﹣6……③(1)亮亮计算过程从第 步出现错误的;(填序号)(2)请你写出正确的计算过程.23.(6分)定义一种新的运算x∗y=x+2yx,如3∗1=3+2×13=53,求(2*3)*2的值.24.(6分)数轴上点A、B、C的位置如图所示,A、B对应的数分别为﹣5和1,已知线段AB的中点D与线段BC的中点E之间的距离为5.(1)求点D对应的数;(2)求点C对应的数.25.(8分)某巡警骑摩托车在一条东西大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向东方向为正,当天行驶记录如下(单位:千米):+10,﹣8,+6,﹣13,+7,﹣12,+3,﹣1(1)A在岗亭何方?通过计算说明A距离岗亭多远?(2)在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站次.(3)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?26.(10分)概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把a÷a÷a÷⋯÷a︸n个a(a≠0)记作aⓝ,读作“a的圈n次方”.初步探究(1)直接写出计算结果:2③=,(−12)⑤=;(2)关于除方,下列说法错误的是A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1ⓝ=1;C.3④=4③D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥=;(−12)⑩=.(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于;(3)算一算:122÷(−13)④×(−12)⑤−(−13)⑥÷33.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)−45的相反数是()A.−45B.−54C.45D.54【分析】根据相反数的定义即可求解.【解答】解:−45的相反数是45.故选:C.2.(3分)大庆油田发现预测地质储量12.68亿吨的页岩油,这标志着我国页岩油勘探开发取得重大战略突破.数字1268000000用科学记数法表示为()A.1.268×109B.1.268×108C.1.268×107D.1.268×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:1268000000=1.268×109.故选:A.3.(3分)2023的倒数是()A.2023B.﹣2023C.−12023D.12023【分析】乘积是1的两数互为倒数,由此即可得到答案.【解答】解:2023的倒数是12023.故选:D.4.(3分)我市某天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.6℃D.10℃【分析】用最高气温减去最低气温,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10℃.故选:D.5.(3分)如图,数轴的单位长度为1,若点A表示的数是﹣2,则点B表示的数是()A.0B.1C.2D.3【分析】根据图形得出点A、点B距离4个单位长度,题干中明确数轴单位长度为1,利用点A表示的数即可推理出点B表示的数.【解答】解:∵数轴的单位长度为1,线段AB=4个单位长度,点A表示的数是﹣2.∴﹣2+4=2∴点B表示的数是2.故选:C.6.(3分)将34.945取近似数精确到十分位,正确的是()A.34.9B.35.0C.35D.35.05【分析】把百分位上的数字4进行四舍五入即可得出答案.【解答】解:34.945取近似数精确到十分位是34.9;故选:A.7.(3分)若(m﹣2)2与|n+3|互为相反数,则n m的值是()A.﹣8B.8C.﹣9D.9【分析】首先根据互为相反数的定义,可得(m﹣2)2+|n+3|=0,再根据乘方运算及绝对值的非负性,即可求得m、n的值,据此即可解答.【解答】解:∵(m﹣2)2与|n+3|互为相反数∴(m﹣2)2+|n+3|=0∴m﹣2=0,n+3=0解得m=2,n=﹣3∴n m=(﹣3)2=9故选:D.8.(3分)若两数之积为负数,则这两个数一定是()A.同为正数B.同为负数C.一正一负D.无法确定【分析】根据有理数的乘法法则,举反例,排除错误选项,从而得出正确结果.【解答】解:例如(﹣2)×1=﹣2,2×(﹣2)=﹣4,所以C正确故选:C.9.(3分)如果a >0>b ,那么下列各式成立的是( ) A .ab >0B .a +b <0C .a ﹣b <0D .ab <0【分析】A 、根据有理数的乘法运算法则进行判断; B 、根据有理数的加法运算法则进行判断; C 、根据有理数的减法运算法则进行判断; D 、根据有理数的除法运算法则进行判断. 【解答】解:A 、∵a >0>b ∴ab <0,选项错误,不符合题意; B 、∵a >0>b ∴当|a |>|b |时,a +b >0当|a |<|b |时,a +b <0,选项错误,不符合题意; C 、∵a >0>b∴a ﹣b =a +|b |>0,选项错误,不符合题意; D 、∵a >0>b∴ab <0,选项正确,符合题意;故选:D .10.(3分)如图,把半径为0.5的圆放到数轴上,圆上一点A 与表示1的点重合,圆沿着数轴滚动一周,此时点A 表示的数是( )A .0.5+π或0.5﹣πB .1+2π或1﹣2πC .1+π或1﹣πD .2+π或2﹣π【分析】根据半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周,滚动的距离就是圆的周长,再由圆的周长公式得出周长为π,分两种情况,即可得答案. 【解答】解:由半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周到达A 点 故滚动一周后A 点与1之间的距离是π 故当A 点在1的左边时表示的数是1﹣π 当A 点在1的右边时表示的数是1+π. 故选:C .二.填空题(共8小题,满分32分,每小题4分)11.(4分)如果节约20度电记作+20度,那么浪费10度电记作﹣10度.【分析】根据节约20度电记作+20度,可以表示出浪费10度,本题得以解决.【解答】解:∵节约20度电记作+20元∴浪费10度电记作﹣10元.故答案为:﹣10.12.(4分)比较大小:−(−27)>−38.【分析】先求出﹣(−27)=27,再根据正数大于一切负数比较即可.【解答】解:∵﹣(−27)=27∴﹣(−27)>−38故答案为:>.13.(4分)在﹣34中,底数是3,指数是4.计算:﹣34=﹣81.【分析】根据幂的定义:形如a n中a是底数,n是指数,及乘方计算法则计算解答.【解答】解:﹣34中,底数是3,指数是4,﹣34=﹣81故答案为:3,4,﹣81.14.(4分)把7﹣(+5)+(﹣6)﹣(﹣4)写成省略加号和括号的形式为7﹣5﹣6+4.【分析】直接去括号即可.【解答】解:原式=7﹣5﹣6+4.故答案为:7﹣5﹣6+4.15.(4分)绝对值小于3的所有整数的和是0.【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【解答】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,±2.所以0+1﹣1+2﹣2=0.故答案为:0.16.(4分)计算:﹣16÷4×14=﹣1.【分析】首先统一成乘法,再约分计算即可.【解答】解:原式=﹣16×14×14=−1故答案为:﹣1.17.(4分)数轴上表示﹣2的点与表示6的点之间的距离为8.【分析】用数轴上右边的数6减去左边的(﹣2),再根据减去一个数等于加上这个数的相反数进行计算即可求解.【解答】解:6﹣(﹣2)=6+2=8.故答案为:8.18.(4分)已知|a|=2,b=3,则b﹣a=1或5.【分析】根据绝对值的意义得出a的值,然后根据有理数减法运算即可.【解答】解:∵|a|=2,b=3∴a=±2,b=3∴当a=2,b=3时,b﹣a=3﹣2=1;当a=﹣2,b=3时,b﹣a=3﹣(﹣2)=5;故答案为:1或5.三.解答题(共8小题,满分58分)19.(6分)补全数轴,并在数轴上表示下列各数,并用“<”把它们连接起来.1.5,0,4,−12和﹣3.【分析】补全数轴,并在数轴上表示出各数,并用“<”把它们连接起来即可.【解答】解:如图所示由图可知,﹣3<−12<0<1.5<4.20.(6分)若a、b互为相反数,c、d互为倒数,m的绝对值为2.求m+cd+a+bm的值.【分析】根据a、b互为相反数,可得:a+b=0;c、d互为倒数,可得:cd=1;m的绝对值为2,可得:m=±2,据此求出m+cd+a+bm的值是多少即可.【解答】解:∵a、b互为相反数∴a+b=0;∵c 、d 互为倒数 ∴cd =1; ∵m 的绝对值为2 ∴m =±2 ∴m =2时 m +cd +a+bm=2+1+0 =3 ∴m =﹣2时 m +cd +a+bm=﹣2+1+0 =﹣121.(8分)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10); (2)−24−(13−1)×13×[6−(−3)].【分析】(1)利用有理数的加减运算的法则进行解答即可; (2)先算乘方,括号里的运算,再算乘法,最后算加减即可. 【解答】解:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10) =﹣7﹣5﹣4+10 =﹣6;(2)−24−(13−1)×13×[6−(−3)] =﹣16﹣(−23)×13×9 =﹣16+2 =﹣14.22.(8分)下面是亮亮同学计算一道题的过程: 15÷5×(﹣3)﹣6×(32+23)=15÷(﹣15)﹣6×32+6×23⋯⋯①=﹣1﹣9+4……②=﹣6……③(1)亮亮计算过程从第 ① 步出现错误的;(填序号)(2)请你写出正确的计算过程.【分析】(1)根据题目中的解答过程,可以发现最先错在哪一步以及错误的原因;(2)先算乘除,后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;注意乘法分配律的运用,写出正确的解答过程即可.【解答】解:(1)亮亮计算过程从第①步出现错误的;(填序号)故答案为:①;(2)15÷5×(﹣3)﹣6×(32+23) =3×(﹣3)﹣6×32−6×23=﹣9﹣9﹣4=﹣22.23.(6分)定义一种新的运算x ∗y =x+2y x ,如3∗1=3+2×13=53,求(2*3)*2的值. 【分析】根据新定义运算列式子计算即可.【解答】解:根据题中的新定义得:(2*3)*2=(2+2×32)∗2=4∗2=4+44=2. 24.(6分)数轴上点A 、B 、C 的位置如图所示,A 、B 对应的数分别为﹣5和1,已知线段AB 的中点D 与线段BC 的中点E 之间的距离为5.(1)求点D 对应的数;(2)求点C 对应的数.【分析】(1)先求出AB 的长,再根据中点的性质可得;(2)根据两点间的距离公式可得.【解答】解:(1)1﹣(﹣5)=66÷2﹣1=3﹣1=2因D 点在0点的左侧所以用负数表示,是﹣2.答:D 点对应的数是﹣2.(2)5﹣2=3因C点在0点的右侧,所以用正数表示是+5.答:C点对应的数是+5.25.(8分)某巡警骑摩托车在一条东西大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向东方向为正,当天行驶记录如下(单位:千米):+10,﹣8,+6,﹣13,+7,﹣12,+3,﹣1(1)A在岗亭何方?通过计算说明A距离岗亭多远?(2)在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站4次.(3)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?【分析】(1)明确“正”和“负”表示的意义,再进行判断;(2)巡警巡逻时经过岗亭东面6千米处加油站,要注意超过了加油站要返回的距离;(3)计算巡警经过的路程,再乘每行1千米的耗油.【解答】解:(1)根据题意:(+10)+(﹣8)+(+6)+(﹣13)+(+7)+(﹣12)+(+3)+(﹣1)=﹣8∵规定向东方向为正∴A在岗亭西方答:A在岗亭西方,A距离岗亭8千米;(2)第一次向东走10千米,从0﹣10,经过一次第二次又向西走8千米,10﹣2,经过一次第三次又向东走6千米,2﹣8,经过一次第四次又向西走13千米,8﹣(﹣5),经过一次第五次又向东走7千米,﹣5﹣2,不经过第六次又向西走12千米,2﹣(﹣10),不经过第七次又向东走3千米,﹣10﹣(﹣7),不经过第八次又向西走1千米,7—8,不经过所以巡警巡逻时经过岗亭东面6千米处加油站,应该是4次.故答案为:4;(3)|+10|+|﹣8|+|+6|+|﹣13|+|+7|+|﹣12|+|+3|+|﹣1|=60(km)60×0.05=3(升)答:该摩托车这天巡逻共耗油3升.26.(10分)概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把a÷a÷a÷⋯÷a︸n个a(a≠0)记作aⓝ,读作“a的圈n次方”.初步探究(1)直接写出计算结果:2③=12,(−12)⑤=﹣8;(2)关于除方,下列说法错误的是CA.任何非零数的圈2次方都等于1;B.对于任何正整数n,1ⓝ=1;C.3④=4③D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=132;5⑥=154;(−12)⑩=28.(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于1a n−2;(3)算一算:122÷(−13)④×(−12)⑤−(−13)⑥÷33.【分析】初步探究(1)根据新定义计算;(2)根据新定义可判断C错误;深入思考(1)把有理数的除方运算转化为乘方运算进行计算;(2)利用新定义求解;(3)先把除方运算转化为乘方运算进行计算,然后进行乘除运算.【解答】解:初步探究(1)2③=12,(−12)⑤=﹣8;(2)C 选项错误;深入思考(1)(﹣3)④=132;5⑥=154;(−12)⑩=28. (2)a ⓝ=1a n−2;(3)原式=122÷32×(﹣23)﹣34÷33=﹣131.故答案为12,﹣8,C 与132与154和28。
人教版七年级上册数学单元测试试卷第一章《有理数》第Ⅰ卷考试时间:120分钟总分:100分得分:一、选择题(共10题,每小题2分,共20分)1.(2分)用科学记数法表示2500000000是()A.2.5×109B.0.25×10C.2.5×1010D.0.25×10102.(2分)-2022的倒数是()A.-2022B.2022C.12022-D.120223.(2分)下列各组数中,互为相反数的是()A.43和34-B.13和0.333-C.a 和a -D.14和44.(2分)温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃5.(2分)下列说法错误的是()A.开启计算器使之工作的按键是ONB.输入 5.8-的按键顺序是C.输入0.58的按键顺序是58⋅D.按键6987-=能计算出6987--的结果6.(2分)小时候我们常常唱的一首歌“小燕子穿花衣,年年春天来这里”,研究表明小燕子从北方飞往南方过冬,迁徙路线长达25000千米左右,将数据25000用科学记数法表示为()A.32510⨯B.42.510⨯C.52.510⨯D.50.2510⨯7.(2分)若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是()A.b a b a -<<<-B.b b a a <-<<-C.a b b a<-<<-D.a b b a<<-<-8.(2分)a、b 两数在数轴上的位置如图所示,下列结论正确的是()A.a>b B.|a|=﹣a C.a<﹣b D.|a|>|b|9.(2分)小明家的汽车在阳光下暴晒后车内温度达到了60℃,打开车门后经过8min 降低到室外同温32℃,再启动空调关车门,若每分钟降低4℃,降到设定的20℃共用时间是()A.13minB.12minC.11minD.10min10.(2分)已知4,5x y ==,且x y >,则2x y -的值为()A.13-B.13+C.3-或13+D.3+或13-二、填空题(共10题;每题2分,共20分)11.(2分)45-的倒数是.12.(2分)比较大小:15-16-(填“>”“<”或“=”)13.(2分)如果向东走35米记作+35米,那么向西走50米记作米。
七年级数学上册第一章有理数单元测试卷(人教版2024年秋)一、选择题(每题3分,共30分)1.[2023·扬州]-3的绝对值是()A.-3B.3C.±3D.132.下列各数-2,2,-5,0,π,0.0123中,非负数的个数有() A.1个 B.2个 C.3个 D.4个3.[真实情境题航空航天]2024年5月3日,嫦娥六号探测器开启世界首次月球背面采样返回之旅,月球表面的白天平均温度是零上126℃,记作+126℃,夜间平均温度是零下150℃,应记作() A.+150℃ B.-150℃C.+276℃D.-276℃4.[新考法概念辨析法]下列说法中正确的是()A.负有理数是负分数B.-1是最大的负数C.正有理数和负有理数组成全体有理数D.零是整数5.如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n,q互为相反数,则m,n,p,q四个数中,负数有()A.1个B.2个C.3个D.4个6.下列化简正确的是()A.-[-(-10)]=-10B.-(-3)=-3C.-(+5)=5D.-[-(+8)]=-87.[情境题生活应用]化学老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数,不足的部分记为负数,它们中质量最接近标准的是()A BC D8.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是()A.n>3B.m<-1C.m>-nD.|m|>|n|9.[2024·泰安泰山区期中]数轴上表示整数的点称为整数点,某数轴的单位长度是1cm,若在这个数轴上随意画一条长15cm的线段AB,则AB盖住的整数点的个数共有()A.13或14个B.14或15个C.15或16个D.16或17个10.[新视角动点探究题]如图,一个动点从原点O开始向左运动,每秒运动1个单位长度,并且规定:每向左运动3秒就向右运动2秒,则该动点运动到第2025秒时所对应的数是()A.-405B.-406C.-1010D.-1011二、填空题(每题3分,共18分)11.用“>”或“<”填空:-7-9.12.一种袋装面粉标准净重为50kg,质监工作人员为了解这种面粉标准净重和每袋净重的关系,把51kg记为+1kg,那么一袋面粉净重49kg记为kg.13.已知b,c满足|b-1|+-0,则b+c的值是. 14.在数轴上,有理数a与-1所对应的点之间的距离是5,则a =.15.下列说法:①若|a|=a,则a>0;②若a,b互为相反数,且ab≠0,则=-1;③若|a|=|b|,则a=b;④若a<b<0,则|b-a|=b-a.其中正确的有.(填序号)16.如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点表示的数据;则被淹没的整数点有个,负整数点有个,被淹没的最小的负整数点所表示的数是.三、解答题(共72分)17.(8分)[母题2024·重庆万州区月考·教材P16习题T1]把下列各数填入相应的大括号内:-0.1,+(-4),6%,20,0,-0.030030 003…,227,2.0·1·.负有理数集合:{,…};非负整数集合:{,…};负整数集合:{,…};正数集合:{,…}.18.(6分)比较下列各组数的大小:(1)|-0.02|与-|-0.2|;(2)-π与-|-3.14|.19.(10分)如图,数轴上点A,B,C,D,E表示的数分别为-4,-2.5,-1,0.5,2.(1)将点A,B,C,D,E表示的数用“<”连接起来;(2)若将原点改在点C,则点A,B,C,D,E表示的数分别为多少,并将这些数用“<”连接起来.20.(10分)[2024·杭州滨江区期末]某班抽查了10名同学的跑步成绩,以30秒为达标线,超出的部分记为正数,不足的部分记为负数,记录的结果如下(单位:秒):+8,-3,+12,-7,-10,-4,-8,+1,0,+10.(1)这10名同学的达标率是多少?(2)这10名同学的平均成绩是多少?21.(12分)[新视角知识情境化]数学家华罗庚说过“数缺形时少直观,形少数时难入微”.数轴帮助我们把数和点对应起来,体现了数形结合的思想,借助它可以解决我们数学中的许多问题,请同学们和“创新小组”的同学一起利用数轴进行以下探究活动:(1)如图①,在数轴上点A表示的数是,点B表示的数是,A,B两点间的距离是.(2)在数轴上,若将点B移动到距离点A两个单位长度的点C处,则移动方式为.(3)如图②,小明将刻度尺放在了图①中的数轴下面,使刻度尺上的刻度0对齐数轴上的点A,发现此时点B对应刻度尺上的刻度4.8cm,点E对应刻度1.2cm,则数轴上点E表示的有理数是多少?22.(12分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B,C,D处的其他甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为A→B(+1,+4),从B到A记为B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,请回答下列问题:(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出点P的位置.23.(14分)已知在纸面上有一数轴,如图,根据给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)在数轴上描出与点A的距离为2的点(用不同于A,B的其他字母表示);(3)折叠纸面.若在数轴上表示-1的点与表示5的点重合,回答以下问题:①数轴上表示10的点与表示的点重合.②若数轴上M,N两点之间的距离为2024(点M在点N的左侧),且M,N两点经折叠后重合,求M,N两点表示的数分别是多少?答案一、1.B 2.D 3.B4.D【点拨】负有理数包括负分数,负整数,故A错误;-1是最大的负整数,不存在最大的负数,故B错误;正有理数、0和负有理数组成全体有理数,故C错误.5.C6.A7.D【点拨】因为|+0.8|=0.8,|-1.2|=1.2,|1|=1,|-0.5|=0.5,0.5<0.8<1<1.2,所以D选项中的砝码是最接近标准的.8.C9.C【点拨】当线段AB的端点在整数点时,盖住16个整数点;当线段AB的端点不在整数点,即在两个整数点之间时,盖住15个整数点.10.A【点拨】一个动点从原点O开始向左运动,每秒运动1个单位长度,并且每向左运动3秒就向右运动2秒,所以该点的运动周期为5秒,且每5秒向左运动一个单位长度,因为2025÷5=405.所以该点运动到2025秒时对应的数为-405.二、11.>12.-113.112【点拨】因为|b-1|+-0,所以b-1=0,c-12=0.所以b=1,c=12.所以b+c=112.14.4或-615.②④【点拨】①|a|=a,即绝对值等于本身,则a≥0,故①错误;②若a,b互为相反数,且ab≠0,则b=-a≠0,所以=-=-1,故②正确;③两个数的绝对值相等,则这两个数相等或互为相反数,故③错误;④若a<b<0,则b-a>0,因为正数的绝对值等于它本身,所以|b-a|=b-a,故④正确;综上所述,②④正确.16.69;52;-72【点拨】由数轴可知-7212和-4115之间的整数点有-72,-71,…,-42,共31个;-2134和1623之间的整数点有-21,-20,…,16,共38个;故被淹没的整数点有31+38=69(个),负整数点有31+21=52(个),被淹没的最小的负整数点所表示的数是-72.三、17.【解】负有理数集合:{-0.1,+(-4),…};非负整数集合:{20,0,…};负整数集合:{+(-4),…};正数集合:6%,20,227,2.0·1·,….18.【解】(1)因为|-0.02|=0.02,-|-0.2|=-0.2,所以|-0.02|>-|-0.2|.(2)因为-|-3.14|=-3.14,π>3.14,所以-π<-|-3.14|.19.【解】(1)由数轴可知-4<-2.5<-1<0.5<2.(2)将原点改在点C,则点A,B,C,D,E所表示的数分别为-3,-1.5,0,1.5,3,将这些数用“<”连接起来为-3<-1.5<0<1.5<3.20.【解】(1)因为30秒为达标线,超出的部分记为正数,不足的部分记为负数,10名同学中成绩为非正数的个数为6,所以这10名同学的达标率=610×100%=60%.(2)这10名同学的平均成绩=[(30+8)+(30-3)+(30+12)+(30-7)+(30-10)+(30-4)+(30-8)+(30+1)+30+(30+10)]÷10=299÷10=29.9(秒).所以这10名同学的平均成绩是29.9秒.21.(1)-3;5;8(2)将点B向左移动6个单位长度或向左移动10个单位长度(3)由(1)得A,B两点间的距离是8,4.8÷8=0.6(cm),则数轴上1个单位长度对应刻度尺上0.6cm,1.2÷0.6=2,所以点E距离点A两个单位长度.故数轴上点E表示的有理数是-1.22.【解】(1)+3;+4;+2;0;+1;-2(2)1+4+2+1+2=10.所以该甲虫走过的最短路程为10.(3)点P如图所示.23.【解】(1)A点表示的数为1,B点表示的数为-3.(2)在数轴上与点A的距离为2的点分别表示3和-1,即数轴上的点C和点D,如图.(3)①-6②因为M,N两点之间的距离为2024,且M,N两点经折叠后重合,所以M,N两点距离折点的距离为12×2024=1012.所以点M表示的数为2-1012=-1010,点N表示的数为2+1 012=1014.。
第1章 有理数(单元重点综合测试)考试范围:全章的内容; 考试时间:120分钟; 总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.−3的相反数是( )A .−3B .3C .−13D .132.如果把收入2024元记作+2024,那么支出2024元记作( )A .2024B .12024C .|2024|D .−20243.下列运算结果为负数的是( )A .|−3|B .|−(−3)|C .−(−3)D .−|−3|4.下列说法中,正确的是( )A .0既不是整数也不是分数B .绝对值等于本身的数是0和1C .不是所有有理数都可以在数轴上表示D .整数和分数统称为有理数5.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个6.如图,数轴上被墨水遮盖的数的绝对值可能是( )A .−72B .−52C .72D .527.已知a =−|−3|,b =+(−0.5),c =−1,则a 、b 、c 的大小关系是( )A .b >c >aB .a >c >bC .a >b >cD .c >b >a8.凝固点是晶体物质凝固时的温度,标准大气压下,下列物质中凝固点最低的是( )物质钨水银煤油水凝固点3412℃−38.87℃−30℃0℃A .钨B .水银C .煤油D .水9.实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A.a>−1B.b>1C.−a<b D.−b>a10.数轴上点A表示的数是−2,将点A沿数轴移动3单位长度得到点B,则点B表示的数是()A.−5B.1C.−1或5D.−5或1二、填空题(本大题共6小题,每小题3分,共18分)11.用“>”“<”“=”号填空:−76−6 7.12.化简:|−35|=;−|−1.5|=;|−(−2)|=.13.我国古代数学名著《九章算术》中已经用正负数来表示相反意义的量.如果节约50cm3的水记为+50cm3,那么浪费10cm3的水记为.14.如图,在数轴上有A、B两点,点A表示的数是−2024,点O为原点,若OA=OB,则点B表示的数是.15.若|x−1|+|y−5|=0,那么x=,y=.16.如图,在数轴上,点A表示的数是10,点B表示的数为50,点P是数轴上的动点.点P沿数轴的负方向运动,在运动过程中,当点P到点A的距离与点P到点B的距离比是2:3时,点P表示的数是.三、(本大题共4小题,每小题6分,共24分)17.某饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL,511mL,489mL,473mL,527mL,问抽查产品的容量是否合格?18.下面是一个不完整的数轴,(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:−3;3.5;−(−212);−|−1|.19.有理数a,b在数轴上的对应点的位置如图所示.(1)判断:−a_______1(填“>”,“<”或“=”);(2)用“<”将a,a+1,b,−b连接起来(直按写出结果)20.把下面各数填在相应的大括号里(将各数用逗号分开):−18,3.14,0,2024,−3,5 80%,π,−|−5|,−(−7).2负整数集合{……}整数集合{……}正分数集合{……}非负整数集合{……}有理数{……}四、(本大题共3小题,每小题8分,共24分)21.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,他从A处出发去看望B、C、D处的其他甲虫,规定:向上向右走均为正,向下向左走均为负,如果从A到B记为A→B{1,4},从B到A记为:B→A{−1,−4},其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C{______,______},C→B{______,______}:(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若图中另有两个格点M、N,且M→A{1−a,b−5},M→N{5−a,b−2},则A→N应记为什么?直接写出你的答案.22.数轴上表示有理数a,b,c,d的点的位置如图所示:(1)请将有理数a,b,c,d按从小到大的顺序用“<”连接起来:______;(2)如果|a|=4,表示数b的点到原点的距离为6,|c|=2,c与d距离原点的距离相等,则a= ______,b=______,c=______,d=______.23.有些含绝对值的方程,可以通过讨论去掉绝对值,转化成一元一次方程求解.例如:解方程x+2|x|=3,解:当x≥0时,方程可化为:x+2x=3,解得x=1,符合题意;当x<0时,方程可化为:x−2x=3,解得x=−3,符合题意.所以,原方程的解为x=1或x=−3.请根据上述解法,完成以下问题:解方程:x+2|x−1|=3;五、(本大题共2小题,每小题12分,共24分)24.点A、B、C、D、E在数轴上位置如图所示(1)点A、B、C、D、E所表示的有理数分别是______,用“<”把它们连接起来是______.(2)点F所对应的有理数是−5,请在数轴上标出点F的位置2(3)A、B之间的距离是多少?A、E之间的距离是多少?若数轴上有两点M、N,且它们对应的有理数分别是a和b,则M、N之间的距离是多少?(用含a,b的代数式表示)25.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a−b|.利用数形结合的思想回答下列问题:(1)数轴上表示2和10两点之间的距离是,数轴上表示2和−10的两点之间的距离是;(2)数轴上表示x和−2的两点之间的距离表示为;(3)若x表示一个有理数,|x−1|+|x+3|有最小值吗?若有,请求出最小值,若没有写出理由.(4)若x表示一个有理数,求|x+4|+|x−5|+|x+6|的最小值.参考答案:1.B【分析】本题考查了相反数的概念,掌握只有符号不同的两个数叫做互为相反数是解答此题的关键.根据符号不同,绝对值相同的两个数互为相反数即可求得答案.【详解】解:−3的相反数是3.故选:B2.D【分析】本题考查正数和负数,理解具有相反意义的量是解题的关键.正数和负数是一组具有相反意义的量,据此即可求得答案.【详解】解:收入2024元记作+2024,那么支出2024元记作−2024,故选:D3.D【分析】本题考查了有理数的绝对值、相反数等,解题的关键是正确理解有理数的绝对值以及相反数的意义.|−3|=3,结果为正数,故A错误;|−(−3)|=3,结果为正数,故B错误;−(−3)=3,结果为正数,故C错误;−|−3|=−3,结果为负数,故D正确.【详解】解:A、|−3|=3,结果为正数,故A错误;B.|−(−3)|=3,结果为正数,故B错误;C.−(−3)=3,结果为正数,故C错误;D.−|−3|=−3,结果为负数,故D正确.故选:D.4.D【分析】本题考查数轴,有理数,绝对值,关键是掌握有理数、整数的概念,由有理数和整数的概念,即可判断.【详解】解:A、0是整数,故A不符合题意;B、绝对值等于本身的数是0或正数(非负数),故B不符合题意,C、所有理数都可以在数轴上表示,故C不符合题意;D、整数和分数统称为有理数,正确,故D符合题意.故选:D.5.B【分析】本题考查了非负数的定义,解题的管计划司掌握非负数的定义.根据“零和整数统称为非负数”,即可求解.【详解】解:非负数有:3.1415,0,2.010010001…,共3个,故选:B.6.C【分析】本题主要考查了有理数与数轴,求一个数的绝对值.根据数轴确定该数的绝对值在3到4之间即可判断.【详解】解:由题意得,遮住的数在−4到−3之间,∴遮住的数的绝对值在3到4之间,∴四个选项中只有C选项符合题意,故选:C.7.A【分析】此题考查了绝对值,多重符号化简,有理数的大小比较,先化简个数,再根据有历史大小比较的方法比较即可.【详解】解:∵a=−|−3|=−3,b=+(−0.5)=−0.5,c=−1,∴−0.5>−1>3,∴b>c>a,故选:A.8.B【分析】本题考查了正负数,绝对值越大的负数反而越小,据此即可作答.【详解】解:∵|−38.87℃|=38.87℃,|−30℃|=30℃,38.87℃>30℃,∴−38.87℃<−30℃,∴下列物质中凝固点最低的是水银,故选:B.9.D【分析】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.根据数轴上的点的特征即可判断.【详解】解:A:∵点a在−1的左边,∴a<−1,故该选项不符合题意;B:∵点b在1的左边,∴b<1,故该选项不符合题意;C:∵a<−1,∴−a>1,又∵b<1,∴−a>b,故该选项不符合题意;D :∵ b <1,∴ −b >−1,又∵ a <−1,∴ −b >a ,故该选项符合题意;故选:D .10.D【分析】本题考查数轴上点移动后数字表示,解题关键是移动规律左减右加.根据数轴上点的移动规律,左减右加计算即可.【详解】解:根据数轴上点的移动规律,左减右加,可得点A 向左移动时:−2−3=−5,可得点A 向右移动时:−2+3=1,综上可得点B 表示的数是−5或1,故选D .11.<【分析】本题考查了有理数的大小比较,解决本题的关键是掌握两个负数大小的比较,绝对值大的其值反而小.根据两个负数,绝对值大的其值反而小即可比较.【详解】解:∵ |−76|=76,|−67|=67,而76>67,∴ −76<−67.故答案为:<.12. 35 −1.5 2【分析】本题考查了绝对值:若a >0,则|a|=a ;若a =0,则|a|=0;若a <0,则|a|=−a .【详解】解:|−35|=35,−|−1.5|=−1.5,|−(−2)|=2,故答案为:35,−1.5,2.13.−10cm 3【分析】本题考查正数和负数,正数和负数是一组具有相反意义的量,据此即可求得答案,熟练掌握具有相反意义的量是解决此题的关键【详解】解:如果节约50cm 3的水记为+50cm 3,那么浪费10cm 3的水记为−10cm 3,故答案为:−10cm 3.14.2024【分析】本题考查了数轴上两点间的距离,相反数的意义.根据数轴上两点间的距离,即可求解.【详解】解:∵点A 表示的数是−2024,OA =OB ,∴点A 点B 表示的数互为相反数,∴点B 表示的数为:−(−2024)=2024,故答案为:2024.15. 1 5【分析】本题考查了绝对值的非负性和解一元一次方程,熟练掌握任何数的绝对值都是非负数是解题的关键,据此作答即可.【详解】∵|x−1|+|y−5|=0,|x−1|≥0,|y−5|≥0,∴x−1=0,y−5=0,解得x =1,y =5,故答案为:1,5.16.26或−70【分析】本题考查了数轴上的动点问题、数轴上两点间的距离.可分为“当点P 运动到点A 右侧时”和“当点P 运动到点A 左侧时”两种情况讨论,根据“点P 到点A 的距离与点P 到点B 的距离比是2:3”,列式计算即可,根据数轴得到两点间的距离是解题的关键.【详解】解:∵在点P 运动过程中,点P 到点A 的距离与点P 到点B 的距离比是2:3,∴PA:PB =2:3,当点P 运动到点A 右侧时,PA =23+2AB =25×(50−10)=16,∴此时点P 表示的数是10+16=26;当点P 运动到点A 左侧时,PA =23−2AB =2×(50−10)=80,∴此时点P 表示的数是10−80=−70,综上所述,点P 表示的数是26或−70.故答案为:26或−7017.合格,过程见详解【分析】本题考查用正负数表示变化的量,在用正负数表示变化的量时,先规定其中的一个为正(或负),则其相反意义的量就用负(或正)表示.理解500±30(mL )的意义,根据题意进行判断即可.【详解】解:“500±30(mL )”是500 mL 为标准容量,470~530(mL )是合格范围,故503mL,511mL,489mL,473mL,527mL,抽查产品的容量是合格的.18.(1)见解析(2)−3<−|−1|<−(−212)<3.5【分析】本题主要考查了用数轴表示有理数,根据数轴比较有理数的大小,化简绝对值和多重符号:(1)先规定向右为正方向,以及单位长度,再化简绝对值和多重符号,最后表示出各数即可;(2)根据数轴上左边的数小于右边的数用小于号将各数连接起来即可.【详解】(1)解:−(−212)=212,−|−1|=−1(2)解;由数轴可得,−3<−|−1|<−(−212)<3.5.19.(1)<(2)−b<a<a+1<b.【分析】(1)利用数轴和相反数的意义解答即可;(2)利用数轴和相反数的意义解答即可.【详解】(1)解:∵−1<a<0,∴0<−a<1.故答案为:<;(2)解:∵−1<a<0,b>1,∴0<a+1<1,−b<−1,如图,∴−b<a<a+1<b.20.见解析【分析】本题考查了正数,负数,整数,分数,有理数,以及无理数的概念,解题的关键是熟练掌握相关定义,要注意的是本题中的π2是无限不循环小数,为无理数.【详解】解:∵ −|−5|=−5,−(−7)=7,3.14=3750,80%=45,∴ 这些数可按如下分类,负整数集合{−18,−|−5|……}整数集合{−18,0,2024,−|−5|,−(−7)……}正分数集合{3.14,80%……}非负整数集合{0,2024,−(−7)……}有理数{−18,3.14,0,2024,−35,80%,−|−5|,−(−7)……}21.(1)3,4;−2,0(2)10(3)(4,3)【分析】本题考查了正负数在网格线中的运动路线问题,数形结合,明确运动规则,是解题的关键.(1)根据向上向右走均为正,向下向左走均为负,分别写出各点的坐标即可;(2)分别根据各点的坐标计算总长即可;(3)将M→A ,M→N 对应的横纵坐标相减即可得出答案.【详解】(1)解:图中A→C {3,4},C→B {−2,0}故答案为:3,4;−2,0.(2)解:由已知可得:A→B 表示为{1,4},B→C 记为{2,0},C→D 记为{1,−2},则该甲虫走过的路程为:1+4+2+1+2=10.(3)解:由M→A {1−a,b−5},M→N {5−a,b−2},可知:5−a−(1−a )=4,b−2−(b−5)=3,∴点A 向右走4个格点,向上走3个格点到点N ,∴A→N 应记为(4,3).22.(1)a <c <d <b(2)−4,6,−2,2【分析】此题主要考查了数轴以及绝对值的性质,正确利用数形结合得出答案是解题关键.(1)利用数轴上a,b,c,d的位置进而得出大小关系;(2)利用绝对值的意义以及结合数轴得出答案【详解】(1)由题意得:a<c<d<b,故答案为:a<c<d<b;(2)∵|a|=4,a<0,∴a=−4,∵数b的点到原点的距离为6,b>0,∴b=6,∵|c|=2,c<0,∴c=−2,∵c与d距离原点的距离相等,d>0,∴d=2.故答案为:−4,6,−2,2.23.x=−1或x=53【分析】本题考查了含绝对值符号的一元一次方程,分类讨论:x<1,x≥1,根据绝对值的意义,可化简绝对值,根据解方程,可得答案是解题关键,以防遗漏.【详解】当x<1时,方程可化为:x+2(1−x)=3,解得x=−1,符合题意;,符合题意;当x≥1时,方程可化为:x+2(x−1)=3,解得x=53.所以,原方程的解为:x=−1或x=5324.(1)−3,2,3.5,0,−1;−3<−1<0<2<3.5(2)见详解(3)5;2;|a−b|【分析】本题主要考查了数轴表示有理数、利用数轴比较大小和数轴上两点之间的距离.(1)根据数轴写出对应点的有理数,然后利用数轴比较有理数的大小即可.(2)根据有理数的大小在数轴上标出即可.(3)根据数轴上两点的距离公式求解即可.【详解】(1)解:如图,点A、B、C、D、E所对应的有理数分别是:−3,2,3.5,0,−1利用数轴从左到右依次增大,可得A<E<D<B<C.即−3<−1<0<2<3.5故答案为:−3,2,3.5,0,−1;−3<−1<0<2<3.5在−2和−3的正中间,标示如下:(2)−52(3)A、B之间的距离是:|2−(−3)|=5;A、E之间的距离是:|(−3)−(−1)|=|−2|=2,M、N之间的距离是|a−b|25.(1)8;12(2)|x+2|(3)|x−1|+|x+3|有最小值,最小值为4(4)11【分析】本题主要考查的是数轴、绝对值,理解绝对值的几何意义是解题的关键.(1)依据在数轴上A、B两点之间的距离AB=|a−b|求解即可;(2)依据在数轴上A、B两点之间的距离AB=|a−b|求解即可;(3)根据题意可得|x−1|+|x+3|表示数轴上x和1的两点之间与x和−3的两点之间距离和,即可;(4)根据题意可得|x+4|+|x−5|+|x+6|表示数轴上x和−4的两点之间,x和5的两点之间与x和−6的两点之间距离和,即可.【详解】(1)解:|10−2|=8;|2−(−10)|=12;故答案为:8;12.(2)数轴上表示x和−2的两点之间的距离表示为|x−(−2)|=|x+2|;故答案为:|x+2|.(3)解:|x−1|+|x+3|有最小值,根据题意得:|x−1|+|x+3|表示数轴上x和1的两点之间与x和−3的两点之间距离和,∵1−(−3)=4,∴|x−1|+|x+3|有最小值,最小值为4;(4)解:根据题意得:|x+4|+|x−5|+|x+6|表示数轴上x和−4的两点之间,x和5的两点之间与x和−6的两点之间距离和,∴当x=−4时,有最小值,最小值为5−(−4)+(−4)−(−6)=11.。
一、初一数学有理数解答题压轴题精选(难)1.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.2.如图,AB=12cm,点C在线段AB上,AC=3BC,动点P从点A出发,以4cm/s的速度向右运动,到达点B之后立即返回,以4cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.(1)AC=________cm,BC=________cm;(2)当t=________秒时,点P与点Q第一次重合;当t=________秒时,点P与点Q第二次重合;(3)当t为何值时,AP=PQ?【答案】(1)9;3(2)3;(3)解:在点P和点Q运动过程中,当AP=PQ时,存在以下三种情况:①点P与点Q第一次重合之前,可得:2×4t=9+t,解得t= ;②点P与点Q第一次重合后,P、Q由点B向点A运动过程中,可得:2×[12-(4t-12)]=12-(t-3),解得t= ;③当点P运动到点A,继续由点A向点B运动,点P与点Q第二次重合之前,可得:2×(4t-24)=12-(t-3),解得t=7.故当t为秒、秒或7秒时,AP=PQ.【解析】【解答】(1)∵AB=12cm,AC=3BC∴AC= AB=9,BC=12-9=3.故答案为:9;3.(2)设运动时间为t,则AP=4t,CQ=t,由题意,点P与点Q第一次重合于点B,则有4t-t=9,解得t=3;当点P与点Q第二次重合时有:4t+t=12+3+24,解得t= .故当t=3秒时,点P与点Q第一次重合;当t= 秒时,点P与点Q第二次重合.故答案为:3;.【分析】(1)由题目中AB=12cm,点C在线段AB上,AB=3BC,可直接求得;(2)根据运动过程,两点重合时他们走过距离之间的关系列方程即可求得;(3)满足AP=PQ,则2AP=AQ,在整个运动过程中正确的位置存在三处,依次分析列出方程即可求得.3.如图,数轴上一动点从原点出发,在数轴上进行往返运动,运动情况如下表(注:表格中的表示2到4之间的数).运动次数运动方向运动路程数轴上对应的数第1次____①_____3-3第2次左____②_____第3次____③_________④_____(1)完成表格;①________;②________;③________;④________.(2)已知第4次运动的路程为 .①此时数轴上对应的数是________;②若第4次运动后点恰好回到原点,则这4次运动的总路程是多少?________【答案】(1)左;;右; .(2)或;解:当时,或-0.5,不符合题意;当时,,,所以这4次运动的总路程是32.【解析】【解答】解:(1)动点从原点运动到点-3,所以是向左运动;再从点-3向左运动,故终点数字是;∵,∴,∴第三次点是向右运动,运动路程是,故答案为:左,,右, .( 2 )①向右运动时,;向左运动时,,故答案为或;【分析】(1)根据始点与终点的数字符号确定第一次运动方向;第一次终点数字与第二次运动路程的差即第二次终点数字;根据第三次终点数字与第二次终点数字的差的符号确定运动方向和运动路程.(2)①分向左或向右两种可能,根据确定第四次移动后最终在数轴上的对应数字;②根据第四次运动后的对应数字确定的值,再计算总路程.4.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位,动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半;点P从点A出发的同时,点Q从点C出发,以1单位/秒的速度沿着“折线数轴”的负方向运动,当点P到达B点时,点P、Q均停止运动.设运动的时间为t秒.问:(1)用含t的代数式表示动点P在运动过程中距O点的距离;(2)P、Q两点相遇时,求出相遇时间及相遇点M所对应的数是多少?(3)是否存在P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等时?若存在,请直接写出t的取值;若不存在,请说明理由.【答案】(1)解:设动点P在运动过程中距O点的距离为S,当P从A运动到O时,所需时间为:(秒),当0≤t≤5时,S=10﹣2t,当P从O运动到B时,所需时间为:(秒)∴P从A运动到B时,所需时间为:15秒当5<t≤15时,S=t﹣5,即动点P在运动过程中距O点的距离S=;(2)解:设经过a秒,P、Q两点相遇,则点P运动的距离为10+(a-5),点Q运动的距离为a,10+(a-5)+a=28解得,a=,则点M所对应的数是:18﹣=,即点M所对应的数是;(3)解:存在,t=2或t=,理由:当0≤t≤5时,10﹣2t=(18﹣10﹣t)×1,解得,t=2当5<t≤8时,(t﹣10÷2)×1=(18﹣10﹣t)×1,解得,t=,当8<t≤15时,(t﹣10÷2)×1=[t﹣(18﹣10)÷1]×1该方程无解,故存在,t=2或t= .【解析】【分析】(1)分点P在AO上和点P在OB上两种情况,先求出点P在每段时t 的取值范围,再根据题意分别列出代数式可得答案;(2)根据相遇时P,Q运动的时间相等,P,Q运动的距离和等于28可得方程,根据解方程,可得答案;(3)分0≤t≤5,5<t≤8,8<t≤15三种情况,根据PO=BQ,可得方程,分别解出方程,可得答案.5.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是________;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是________;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值. 【答案】(1)-4(2)0(3)解:① 当点O是线段AB的中点时,OB=OA4-3t=2+tt=0.5② 当点B是线段OA的中点时, OA = 2 OB2+t=2(3t-4)t=2③ 当点A是线段OB的中点时, OB = 2 OA3t--4=2(2+t)t=8综上所述,符合条件的t的值是0.5,2或8.【解析】【解答】(1)点B表示的数是-4;(2)2秒后点B表示的数是 0 ;【分析】(1)根据数轴上所表示的数的特点即可直接得出答案;(2)用点B开始所表示的数+点B运动的路程=经过t秒后点B表示的数,即可得出结论;(3)找出t秒后点A、B表示的数,分①点O为线段AB的中点,②当点B是线段OA的中点,③点A是线段OB的中点,根据线段中点的数学语言列出方程,求解即可求出此时的t值,综上即可得出结论。
人教版七年级上册数学第1章《有理数》单元测试卷题号一二三总分19 20 21 22 23 24分数1.下列各数中,与(-4)2的值相同的是()A. -4×2B. -42C. -24D.(-2)42.下列各式中,与式子-1-2+3不相等的是()A.(-1)+(-2)+(+3)B.(-1)-2+(+3)C.(-1)+(-2)-(-3)D.(-1)-(-2)-(-3)3.计算(-2016)-(-2016)的结果是()A. 0B. 4032C. -4032D. 20164.某冷冻厂一个冷库的室温是-2℃,现有一批食品需要在-26℃的室温下冷藏,如果该厂这个冷库每小时能降温4℃,那么降到所需温度需要()A. 6小时B. 7小时C. 8小时D. 9小时5、若x是3的相反数,|y|=4,则x-y的值是()A.-7B.1C.-1或7D.1或-76、今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×106 7、在423(4),|2|,1,(,3)(2)------这五个数中,正数的个数是()A.1个B.2个C.3个D.4个8. 下列说法正确的是()A.整数就是正整数和负整数 B.负整数的相反数就是非负整数C.有理数中不是负数就是正数 D.零是自然数,但不是正整数9. 实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是()A.a b>B.a b-<C.a b>-D.a b>10. 如图,这是某用户银行存折中2020年11月到2021年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到( )日期摘要币种存/取款金额余额操作员备注201105 电费RMB钞147.40 550.75 000602k91 折210108 电费RMB钞143.17 107.58 000602Y02 折210305 电费RMB钞144.23 263.35 000602D39 折210508 电费RMB钞136.83 126.52 000602D38 折二、填空题: (每题3分,24分)11.甲、乙、丙三地的海拔高度分别为15米、-80米和-220米,则最高的地方比最低的地方高米.12.-5的相反数是;1-π3的绝对值是.13.计算(-4)×(-12)=.14.如图所示,一只青蛙,从A点开始在一条直线上跳着玩,已知它每次可以向左跳,也可以向右跳,且第一次跳1厘米,第二次跳2厘米,第三次跳3厘米,…,第2018次跳2018厘米.如果第2018次跳完后,青蛙落在A点的左侧的某个位置处,请问这个位置到A点的距离最少是________厘米.15.已知数轴上点A表示数-3,点A在数轴上平移2个单位长度,则平移后点A 表示的数是___________.16.(-2)×(-2)×(-2)×(-2)的积的符号是___________.17.计算:2×(-12)=___________.18.标价是200元的一件商品,出售时打9折,则每件售价是____________元.三.解答题(共46分,19题6分,20 ---24题8分)19、计算下列各题:(1)﹣4﹣28﹣(﹣29)+(﹣24) (2)(﹣2)×(﹣5)÷(﹣5)+9.。
人教版七年级数学上册《第一章有理数》单元检测卷及答案知识点题型分布:考点1:正数与负数考点2:有理数及其大小比较一、选择题1.在-2,3与13,0, 1.7-五个数中,正数有( ) A .1个 B .2个 C .3个 D .4个2.增长2.7%记作 2.7+%,“减少3.4%”记作( )A . 3.4-%B . 2.7+%C . 3.4±%D . 3.4+%3.在有理数0.5012.5--,,,中,最小的数是( )A .0.5-B .0C .1-D .2.54.下列有理数大小关系判断正确的是( )A .33-<+B .910>-C 10.01->-D .010>-5.两个有理数a ,b 在数轴上的位置如图所示,则下列各式正确的是( )A .a >bB .a <bC .-a <-bD .|a|<|b| 6.(23-24七年级上·江苏南通·期中)如下表,检测五个排球,其中质量超过标准的克数记为2号3号 4号 5号正数,不足的克数记为负数1号−2.8−1.7+1.6−0.5+2.5某教练想从这五个排球中挑一个最接近标准的排球作为赛球,应选哪一个()A.2号B.3号C.4号D.5号7.下列各数中,互为相反数的是( )A.-2.25与214B.13与-0.33C.-12与0.2D.5与-(-5)8. 如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个有理数中,绝对值最小的一个是()A.p B.q C.m D.n二、填空题9.(23-24七年级上·江苏徐州·期中)有一种记分方法:以60分为准,68分记为8+分,某同学得54分,则应记为分.10.(23-24七年级上·安徽合肥·阶段练习)若m、n互为相反数,x、y互为倒数,则2021m+2021n-2022 xy=.11.(23-24七年级上·江苏南通·阶段练习)某项科学研究,以25分钟为一个时间单位,并记每天上午8时为0,8时以前记为负,8时以后记为正.例如:7:35记为1-,8:25记为1等等,以此类推,上午5:05应记为.12.(22-23七年级上·山东青岛·期中)检查5个足球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:足球编号12345与标准质量的差/克5+7+3-9-9+则最接近标准质量的是号足球;质量最大的足球比质量最小的足球多克.13.(23-24六年级下·黑龙江哈尔滨·期中)已知a、b互为相反数,c、d互为倒数,x的绝对值等于3,则255a b cdx+-的值为.14.(22-23七年级上·江苏南京·期中)绝对值不小于2且小于512的负整数的和是 . 15.(22-23七年级上·广东深圳·期中)若2a -与3b +互为相反数,则a b -的值为 .16.如图所示,A,B,C 为数轴上三点,且当A 为原点时,点B 表示的数是2,点C 表示的数是5.若以B 为原点,则点A 表示的数是 ,点C 表示的数是 ;若A ,C 表示的两个数互为相反数,则点B 表示的数是 .三、解答题17.(23-24七年级上·河南周口·阶段练习)高速公路养护小组乘车沿南北公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米):17+ 9- 7+ 15- 3- 11+ 6- 8- 5+ 16+.(1)养护小组最后到达的地方在出发点哪个方向?距离出发点多远?(2)该养护小组一共行驶了多少千米?18.(23-24七年级上·湖南长沙·阶段练习)已知:a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于本身的正数,试回答问题:(1)请直接写出a ,b ,c 的值;(2)若a ,b ,c 所对应的点分别为A ,B ,C ,点P 为一动点,其对应的数为x ,点P 在A 到C 之间运动时,请化简式子:1123x x x +--+-.19.(23-24七年级上·河南商丘·期末)10袋小麦以每袋150千克为标准,超过的千克数记为正数,不足的千克数记为负数,记录如下: 编号1 2 3 4 5 6 7 8 9 10 与标准质量差 6- 3- 0 2+ 3+ 4+ 2- 2- 4-6+ (1)在10袋小麦中,第几袋的记数质量最接近标准质量?(2)与标准质量相比较,10袋小麦总计超过或不足多少千克?(3)每袋小麦的平均质量是多少千克?参考答案1.【答案】B【分析】根据正数大于0,负数小于0判断即可.【详解】解:在-2,3,13,0,-1.7五个数中,正数有3,13,共2个. 故选:B .【点睛】本题考查了正数和负数,掌握正数和负数的定义是解答本题的关键.2.【答案】A【分析】根据正负数的意义即可求解.【详解】解:增长2.7%记作 2.7+%,“减少3.4%”记作 3.4%-故选:A .【点睛】本题考查了正负数的意义,理解题意是解题的关键.3.【答案】C【分析】根据有理数大小比较的法则:①正数都大于0; ①负数都小于0; ①正数大于一切负数; ①两个负数,绝对值大的其值反而小,即可得出答案.【详解】解:①10.50-<-<<2.5①有理数中0.5012.5--,,,,最小的数是1-.故选:C .【点睛】本题主要考查了有理数的比较大小,解本题的关键是熟练掌握有理数的比较大小的法则. 4.【答案】B【分析】根据有理数比较大小的法则逐项比较即可解答.【详解】解:A 、①3333-=+=,,①33-=+,故本选项错误; B 、①90,100>-<,①910>-,故本选项正确;C 、①10.010->-<且10.01->-,则10.01-<-,故本选项错误;D 、由10100-=>故本选项错误.故选:B .【点睛】本题主要考查了有理数的大小比较,掌握好正数都大于0,负数都小于0,正数大于一切负数;两个负数相比较,绝对值大的反而小是本题的关键.5.【答案】B6.【答案】C7.【答案】A8.【答案】C9.【答案】6-【分析】本题主要考查了正负数的意义,正确理解题意是解题的关键.本题根据54分比基准分低6分可得答案.【详解】解:①以60分为准,68分记为8+分①某同学得54分,则应记为6-分故答案为:6-.10.【答案】-2022【分析】根据两个数是互为相反数可得,两数之和等于0,由两个数是互为倒数可得,两数乘积是1.【详解】①若m 、n 互为相反数,x 、y 互为倒数①m +n =0,xy =1,2021m +2021n -2022xy =2021×(x +y )-2022xy =2021×0-20221=-2022. 故答案为:-2022.【点睛】本题主要考查相反数的性质和倒数的性质,解决本题的关键是要熟练掌握相反数和倒数的性质. 11.【答案】7-【分析】本题考查了正负数的实际应用,相反意义的量,解题的关键是理解题意,掌握相反意义的量.由题意得,以上午8时为0,向前每25分钟为一个“1-”,上午5:05与8时相隔175分钟,进而可求出答案.【详解】解:由题意得,以上午8时为0,向前每45分钟为一个“1-”①上午5:05与8时相隔175分钟,175?25=7①上午5:05应记为:7-故答案为:7-.12.【答案】3 18【分析】根据超过的记为正,不足的记为负,绝对值小的接近标准,可得最接近标准的球;根据质量最大的求减去质量最小的球,可得质量最大的足球比质量最小的足球多多少克. 【详解】解:55+= 77+= |3|3-= |9|9-= 99+=①3570<<<①最接近标准质量的是3号足球;()999918+--=+=(克)即质量最大的足球比质量最小的足球多18克.故答案为:3;18.【点睛】本题考查了正负数的意义,绝对值的意义,有理数的减法的应用,掌握正负数的意义是解题的关键.13.【答案】-9【分析】根据相反数,倒数,绝对值得出a +b =0,cd =1,x =±3,再代入求出即可.【详解】解:①a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是3①a +b =0,cd =1,x =±3①将其带入可得()25()13a b +-⨯±最后计算得到值为9-.故答案为9-.【点睛】本题考查了相反数,倒数,绝对值,求代数式的值的应用,能根据已知得出a +b =0,cd =1,x =±3是解此题的关键.14.【答案】−14【知识点】绝对值的意义、有理数大小比较、有理数加法运算【分析】本题考查绝对值和有理数大小比较,关键是掌握绝对值的性质;找出绝对值不小于2且小于512的所有负整数,相加即可得到结果.【详解】解:绝对值不小于2且小于512的整数包括:±2,±3,±4,±5,其中负整数有:−2 −3 ∴绝对值不小于2且小于512和为:−2+(−3)+(−4)+(−5)=−14.故答案为:−14.15.【答案】9-【分析】先根据相反数的性质列等式,得到|2||3|0a b -++=,再根据绝对值的非负性解得a b 、的值,代入求解即可.【详解】两个数互为相反数,则相加和为0,即|2||3|0a b -++=,根据绝对值的非负性,求得2a = 3b =- 则()239a b -=--=-.故答案为:9-【点睛】本题主要考查了绝对值、相反数与乘方的综合运算,掌握各概念性质是解题的关键.16.【答案】−2 3 −0.5【知识点】用数轴上的点表示有理数、相反数的定义、数轴上两点之间的距离【分析】本题考查数轴的综合应用,熟练掌握点在数轴上的表示、数轴的意义及三要素、相反数的意义和性质等是解题关键.根据各点之间的位置关系、原点位置及相反数的性质解答;【详解】解:由题意可知:AB =2 AC =5 BC =3①以B 为原点时,点A 表示的数是−2,点C 表示的数是3若A ,C 表示的两个数互为相反数,则AC 的中点(如图,设为D )为原点①AD =CD =2.5 BD =AD −AB =0.5且D 在B 的右边①点B 表示的数是−0.5;故答案为:−2 3 −0.5.17.【答案】(1)养护小组在出发点的北方,距离出发点15千米 (2)97千米【分析】此题主要考查有理数计算的应用.分析理解原题意是关键.(1)把这些数据相加即可得最后到达的位置及特点;(2)把这些数据的绝对值加起来可得汽车行驶的路程,再算出耗油量.【详解】(1)1797153116851615+-+--+--++=因为150>所以养护小组在出发点的北方,距离出发点15千米;(2)1797153116851697++-+++-+-+++-+-++++=所以该养护小组一共行驶了97千米.18.【答案】(1)1a =- 0b = 1c = (2)6【分析】本题考查了有理数、绝对值以及数轴(1)根据a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于本身的正数,即可得出a 、b ,c 的值;(2)先确定11x -≤≤,分析当11x -≤≤时113x x x +--、、的正负,去掉绝对值符号即可得出结论; 【详解】(1)①a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于本身的正数①1a =- 0b = 1c =;(2)①P 在A 和C 之间①11x -≤≤①10x +> 10x -≥ 30x -< ①()()112311236x x x x x x +--+-=+--+-=19.【答案】(1)第3袋(2)不足2千克(3)149.8千克【分析】本题考查正负数表示相反意义量,绝对值,有理数加减运算,平均数,掌握正负数表示相反意义量,绝对值,有理数加减运算,平均数是解题关键.(1)先求超过或不足各数的绝对值,找出绝对值最小的即可;(2)计算超过或不足各数的和,看是正数还是负数,正数是几超过几千克,负数是不足几千克即可; (3)求出超过与不足数的平均数与150标准相加即可.【详解】(1)解:因为00=,所以第3袋的记数质量最接近标准质量.(2)解:()()()()()()()()630234224620-+-++++++++-+-+-++=-<所以10袋小麦总计不足2千克.(3)解:150102149.810⨯-=(千克) 所以每袋小麦的平均质量是149.8千克.。
1第一章有理数单元练习时间:60分钟 满分:100分 姓名:_______一、选择题(本大题共10小题,每小题3分,满分30分)1.中国古代著作《九章算术》在世界数学史上首次正式引入负数,用正、负数来表示具有相反意义的量.若收入300元记作+300元,则支出180元应记作( ) A. +180元 B.+300元 C.-180元 D.-480元2.有理数2024的相反数是( )A.2024B.-2024元C.20241-元 D.20241元 3.下列选项记录了我国四个城市某年一月份的平均气温,其中平均气温最低的是( ) A. 北京-4.6℃ B.上海5.6℃ C.天津-3.2℃ D.重庆8.1℃ 4. 在数轴上,表示-2的点与表示7的点之间的距离是( ) A.2 B.5 C.7 D.95. 飞机上有一种零件的尺寸标准是±2005(单位:mm ),则下列零件尺寸不合格的是( ) A.196mm B.198mm C.204mm D.210mm6. 下列说法正确的是( )A. 所有的整数都是正数B.整数和分数统称有理数C.0是最小的有理数 D 零既可以是正整数,也可以是负整数.7. 为了检测篮球是否合格,将其质量超过标准的克数记为正数,不足的克数记为负数,在下面得到的四个检测结果中,质量最接近标准的一个是( )A.-0.6B.0.7C.-2.5D.-3.5 8. 如果a a -=,则( )A.a 是正数B.a 是负数C.a 是零D.a 是负数或零 9.如图,将一刻度尺放在数轴上(数轴的单位长度是1),刻度尺上“0”和“3”分别对应数轴上的3和0,那么刻度尺上“5.6”对应数轴上的数为( )A.-1.4B.-1.6C.-2.6D.1.610.如图,数轴上点A ,B 表示的数分别为a ,b ,且b a <,则b b a a --,,,的大小关系为( ) A.b a a b <<-<- B.b a b a <<-<- C.b a a b <-<<- D.a a b b <-<<- 二、填空题(本大题共6小题,每小题3分,满分18分) 11.比较大小5-____3-.12.化简:7--=____,)(7--=____. 13.在数轴上,点A 所表示的数为-1,那么在数轴上与点A 相距2个单位长度的点表示的数是________. 14.23-与它的相反数之间有____个整数. 15.绝对值大于1.5且小于3的整数是_______.16.如图,圆的周长为4个单位长度.在该圆周上4等分点处分别标上数字0、1、2、3,让圆周上表示数字0的点与数轴上表示的点重合,将该圆沿着数轴的负方向滚动,则数轴上表示数的点对应圆周上的数字是______.三、解答题(共6大题,共54分)17.(6分)把下列各有理数填在相应的大括号内:313.0221,4130741.0,35,,,,,,----- 整数集合{ }; 负分数集合{ }; 正有理数集合{ }; 18. (6分)比较下列各组数的大小。
一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上,点A表示﹣5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动,设运动时间为t秒:(1)当t为________秒时,P、Q两点相遇,求出相遇点所对应的数________;(2)当t为何值时,P、Q两点的距离为3个单位长度,并求出此时点P对应的数.【答案】(1)5;0(2)解:若P、Q两点相遇前距离为3,则有t+2t+3=10-(-5),解得:t=4,此时P点对应的数为:-5+t=-5+4=-1;若P、Q两点相遇后距离为3,则有t+2t-3=10-(-5),解得:t=6,此时P点对应的数为:-5+t=-5+6=1;综上可知,当t为4或6时,P,Q两点的距离为3个单位长度,此时点P对应的数分别为-1或1.【解析】【解答】(1)解:由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;若P,Q两点相遇,则有-5+t=10-2t,解得:t=5,-5+t=-5+5=0,即相遇点所对应的数为0,故答案为5;相遇点所对应的数为0;【分析】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)分相遇前相距3个单位长度与相遇后相距3个单位长度两种情况分别求解即可得.2.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:(1)试用“| |”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;(2)若|x-2|=4,求x的值;(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.【答案】(1)解:|4-(-2)|=6(2)解:x与2的距离是4,在数轴上可以找到x=-2或6(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.3.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.4.已知,如图A、B分别为数轴上的两点,点A对应的数为-20,点B对应的数为120.(1)请写出线段AB的中点C对应的数.(2)点P从点B出发,以3个单位/秒的速度向左运动,同时点Q从点A出发,以2个单位/秒的速度向右运动,当点P、Q重合时对应的数是多少?(3)在(2)的条件下,P、Q两点运动多长时间相距50个单位长度?【答案】(1)解:AB=120-(-20)=140,则BC=70C点对应的数是50.(2)解:设P、Q运动时间为t,则BP=3t,AQ=2t当点P、Q重合时,则BP+AQ=140即:3t+2t=140,解得:t=28所以AP=56点P、Q重合时对应的数为56-20=36(3)解:分两种情况,①当P、Q相遇之前,BP+AQ=140-50,即3t+2t=140-50,解得:t=18②当P、Q相遇之后,BP+AQ=140+50,即3t+2t=140+50,解得:t=38当P、Q两点运动18秒或38秒时,P、Q相距50个单位长度.【解析】【分析】(1)先求出AB的长度,即可求出线段BC,再确定C在数轴上表示的数即可;(2)设P、Q运动时间为t,则BP=3t,AQ=2t,根据题意可知BP+AQ=140,即3t+2t=140,进而求得t的值,即可表示P、Q重合点的对应数.(3)分两种情况,①当P、Q相遇之前,BP+AQ=140-50;②当P、Q相遇之后,BP+AQ=140+50,分别求出t的值,即可解决问题.5.有理数a,b,c在数轴上的对应点的位置如图所示,且表示数a的点,数b的点与原点的距离相等。
七年级数学单元测试题(一)有理数1、选择题(每题3分, 共30分)A 、有一种记分方法:以80分为准, 88分记为+8分, 则某同学得分为74分, 应记为( )A 、+74 分 B.分 C.+6分 D.分B 、下列各数中, 最小的正数是( )3、 B.0 C 、1 D 、24、下列说法中正确的是( )A.0可以用数轴上的点来表示B.数轴上所有的点都表示有理数C.数轴上找不到既不表示正数也不表示负数的点D.数轴上表示的点一定在原点的右边A 、4.2的相反数是( )A 、 B. C.2 D.B 、若, 则和的关系为( )和相等 B.和互为相反数A 、C.和相等或互为相反数 D.以上答案都不对B 、下列计算, 正确的是( )B.7、C. D 、8、与)()(y x ---相等的式子是( )8、 B. C. D.9、下列说法错误的是( )一个数同1相乘, 仍得这个数 B.一个数同相乘, 得原数的相反数9、C 、互为相反数的数的积为1 D 、一个数同0相乘, 得010、计算31327⨯÷-的结果是( ) 10、 B.27 C. D.311、计算223)2(5)3(--+-的值为( )二、A.2 B.5 C. D.11、填空题(每题4分, 共24分)12、比较大小: .13、1030这个数用科学记数法可表示为 .14、12的相反数与7-的绝对值的和是 .数轴上点A, B 的位置如图所示, 若点A 左侧有一点C 满足AB=AC, 则点C 表示的数为 .15、一个数的倒数是, 这个数是 .三、若是的相反数, =5, 则的值为 .解答题一(每题6分, 共18分)17、计算: 18、计算19、计算:四、解答题二(每题7分, 共21分)20、检查5袋水泥的质量, 把超过标准质量的克数记为正数, 不足标准质量的克数记为负数, 记录结果如下表所示:水泥编号1 2 3 4 5 与标准质量的差 100+ 50- +80 70- 30-(1)用绝对值判断最接近标准质量的是几号水泥;质量最大的水泥比质量最小的水泥重多少克?如图, 在数轴上有三个点A.B.C, 请回答下列问题:若将点B 沿数轴向左移动3个单位长度, 则此时A.B.C 三个点所表示的数中哪个数最小? 最小的数是多少?若将点A 沿数轴向右移动4个单位长度, 则此时A 、B 、C 三个点所表示的数中哪个数最小?最小的数是多少?22.已知, 互为相反数, , 互为倒数, 的绝对值为2, 求的值.23、解答题三(每题9分, 共27分)(1)小虫从某点A出发, 在一直线上来回爬行, 假定向右爬行的路程记为正数, 向左爬行的路程记为负数, 爬行的各段路程依次为(单位:):, , , , , , .(2)小虫最后是否回到出发点A?小虫离开原点最远是多少厘米?在爬行过程中, 如果每爬行1奖励一粒芝麻, 则小虫一共得到多少粒芝麻?先阅读并填空, 再解答问题:(1)我们知道, , ,(2), .(3)作含有的式子表示你所发现的规律: .计算: +….(1)现有一组有规律排列的数: 1, , 2, , 3, , 1, , 2, , 3, , …, 其中1, , 2, , 3, 这六个数按此规律重复出现.(2)第50个数是什么?把从第1个数开始的前2025个数相加, 结果是多少?从第1个数起, 把连续若干个数的平方加起来, 如果和为510, 则共有多少个数的平方相加?有理数参考答案一、DCADC DCCCD二、> 12. 13. 14. 15. 16.或三、解: 原式18、解: 原式)55()1220(+-++-= )212523(75-+==08+- 2775⨯= =8- 25=19、解: 原式四、(2)解: (1)因为5袋水泥中与标准质量的差的绝对值最小的是5号水泥, 所以最接近标准质量的是5号水泥;21、质量最大的是1号水泥, 比标准质量多100, 质量最小的是4号水泥, 比标准质量少, 所以质量最大的水泥比质量最小的水泥重(1)解: 点A 表示, 点B 表示, 点C 表示3(2)将点B 沿数轴向左移动3个单位长度后表示, 此时点B 表示的数最小, 是. 将点A 沿数轴向右移动4个单位长度后表示0, 此时点B 表示的数最小, 是解: 由, 互为相反数, 则;由、互为倒数, 则;由的绝对值为2, 则当时, 原式;当时, 原式.4)2()10()2(3-=-⨯+--⨯=五、解: (1)所以小虫最后回到出发点A.(2)第一次爬行距离原点是cm 5;第二次爬行距离原点是)(235cm =-;第三次爬行距离原点是)(12102cm =+;第四次爬行距离原点是)(4812cm =-; 第五次爬行距原点是)(2264cm =-=-;第六次爬行距离原点是)(10122cm =+-; 第七次爬行距离原点是)(01010cm =-;从上面可以看出小虫离开原点最远是12.cm 小虫爬行的总路程为:24、, 所以小虫一共得到54粒芝麻.(2)解: (1);(3)111+-n n (4)原式816161414121(21-+-+-=+…)2024120221-+)2024121(21-= 40481020=1012255= (2)解: (1)因为……2, 所以第50个数是(3)因为……3, , , 所以从第1个数开始的前2025个数相加, 结果是2. , ……6, 且, , 所以共有111个数的平方相加.。
人教版七年级上册第二章整式的加减单元测试一、选择题(每题3分,共21分)1. 下列说法正确的是( )A.213x π的系数为13B.212xy 的系数为12x C. ()23x -的系数为3D. ()23x π-的系数为3π-2. 下列各组式子中,是同类项的是( )A. 2233x y xy -与B. 222x x 与C. 32xy yx -与D. 55xy yz 与3. 下面计算正确的是( )A. 2233x x -=B. 235325a a a +=C. 33x x +=D. 10.2504ab ba -+=4. 如果12a b -=,那么()3b a --的值是( ) A. 35-B. 23C.32D.165. 将()()()24x y x y x y +++-+合并同类项得( )A. x y +B. x y -+C. x y --D. x y -6. 若8a =,3b =,且a b <,则a b -的值为( )A. 11-B. 5-C. 5-或5D. 11-或5-7. 观察图中正方形四个顶点所标的数字规律,可知数2013应标在( )A. 第503个正方形的左上角B. 第503个正方形的右下角C. 第504个正方形的左上角D. 第504个正方形的右下角二、填空题(每题3分,共21分)8. 已知单项式23m a b 与4123n a b --人教版数学七年级(上)第二章单元质量检测试卷、答案一、选择题(共10小题;共30分)1. 多项式 的项数和次数分别为 A. ,B. ,C. ,D. ,2. 下列计算正确的是A. B.C. D.3. 的结果是A. B. C. D.4. 若单项式的次数是,则的值是A. B. C. D.5. 今年学校运动会参加的人数是人,比去年增加,那么去年运动会参加的人数为人.A. B. C. D.6. 下列说法正确的是A. 与不是同类项B. 不是整式C. 单项式的系数是D. 是二次三项式7. 设某数为,那么代数式表示A. 某数的倍的平方减去除以B. 某数的倍减的一半C. 某数与的差的倍除以D. 某数平方的倍与的差的一半8. 用字母表示与的和除与的差为A. B. C. D.9. 观察下列数表:第一行 第二行 第三行 第四行根据数表所反映的规律,第 行第 列交叉点上的数应为 A.B.C.D.10. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定人教版初中数学七年级上册第2章《整式加减》 单元测试卷及答案 一、选择题(每题3分,共30分) 1.下列各式中,是单项式的是( )A .x 2-1 B .a 2b C.πa +b D.x -y 32.多项式-5-2x 23-y 中,二次项的系数是( )A .2B .-2C .-23 D.23 3.下列各组单项式中,是同类项的是( )A.a 2b3与a 2b B .3x 2y 与3xy 2 C .a 与1 D .2bc 与2abc 4.下面运算正确的是( )A .3a +6b =9abB .3a 2b -3ba 2=0 C .8a 4-6a 3=2a D.12y 2-13y 2=165.某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(a -10%)(a +15%)万元B .a (1-10%)(1+15%)万元C .(a -10%+15%)万元D .a (1-10%+15%)万元6.下列各式去括号正确的是( )A .x 2-(x -y +2z )=x 2-x +y +2zB .x -(-2x +3y -1)=x +2x -3y +1C .3x -[5x -(x -1)]=3x -5x -x +1D .(x -1)-(x 2-2)=x -1-x 2-2 7.已知a -b =1,则式子-3a +3b -11的值是( )A .-14B .1C .-8D .58.x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( )A .-1B .1C .-2D .29.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的结果为xy -2yz +3xz ,则正确结果是( )A .2xy -5yz +xzB .3xy -8yz -xzC .yz +5xzD .3xy -8yz +xz 10.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )(第10题)A .4m cmB .4n cmC .2(m +n )cmD .4(m -n )cm 二、填空题(每题3分,共24分)11.-π3a 3b 2的系数是________,次数是________.12.一个三位数,百位数字是3,十位数字和个位数字组成的两位数是b ,用式子表示这个三位数是____________.13.请你任意写出一个三次单项式:____________,一个二次三项式:__________________.14.若2x 3y 2n 与-5x m y 4是同类项,则m -n =________.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于________.16.如图,阴影部分的面积是__________.(第16题) (第17题)(第18题)17.有理数a,b在数轴上对应点的位置如图所示,则|a+b|-2|a-b|的结果为__________.18.如图是用围棋棋子摆成的一列具有一定规律的“山”字,则第n个“山”字中的棋子个数是________.三、解答题(19题16分,20,24题每题12分,21题6分,其余每题10分,共66分) 19.计算:(1)x 2y -3xy 2+2yx 2-y 2x ;(2)14a 2b -0.4ab 2-12a 2b +25ab 2;(3)2(x 2-2x +5)-3(2x 2-5);(4)5(a 2b -3ab 2)-2(a 2b -7ab 2).20.先化简,再求值:(1)(4a +3a 2-3+3a 3)-(-a +4a 3),其中a =-2;(2)(2x 2y -2xy 2)-[](-3x 2y 2+3x 2y )+(3x 2y 2-3xy 2),其中x =-1,y =2.21.若多项式3x 3-2x 2+3x -1与多项式x 2-2mx 3+2x +3的和为二次三项式,求m 的值.22.按如图所示的程序计算.(第22题)(1)填写表内空格:(2)你发现的规律是__________________________;(3)用简要过程说明你发现的规律的正确性.23.先阅读下面的文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太烦琐,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算、提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×________=________.(1)补全例题的解题过程;(2)计算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).24.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段以达到节水的目的.该市自来水收费价格见如图所示的价目表.(1)若某户居民2月份用水4 m3,则应交水费________元;(2)若某户居民3月份用水a m3(其中6<a<10),则应交水费多少元(用含a的整式表示并化简)?(3)若某户居民4,5月份共用水15 m3(5月份用水量超过了4月份),设4月份用水x m3,求该户居民4,5月份共交水费多少元(用含x的整式表示并化简).(第24题)答案一、1.B 2.C 3.A 4.B 5.B 6.B7.A8.A9.B10.B点拨:设小长方形卡片的长为x cm,宽为y cm,则x+2y=m,故两块阴影部分的周长和为2(n-x)+2(n-2y)+2m=4n-2(x+2y)+2m=4n.二、11.-π3;512. 300+b13.x2y;x2-x+1(答案不唯一)14.115.416.112xy17.-3a+b18.5n+2三、19.解:(1)原式=3x2y-4xy2;(2)原式=-14a2b;(3)原式=2x2-4x+10-6x2+15=-4x2-4x+25;(4)原式=5a2b-15ab2-2a2b+14ab2=3a2b-ab2.20.解:(1)原式=4a+3a2-3+3a3+a-4a3=-a3+3a2+5a-3.当a=-2时,原式=-(-2)3+3×(-2)2+5×(-2)-3=-(-8)+3×4+5×(-2)-3=8+12-10-3=7.(2)原式=2x2y-2xy2+3x2y2-3x2y-3x2y2+3xy2=-x2y+xy2.当x=-1,y=2时,人教版初中数学七年级上册第2章整式的加减单元测试卷一、单选题(共10题;共30分)1.下列运算中,结果正确的是().A. 4+=B.C.D.解:A.4与不是同类项,所以不能合并,错误;B.6xy与x不是同类项,所以不能合并,错误;C.,同类项与字母顺序无关,正确;D.12x3与5x4字母指数不同,不是同类项,所以不能合并,错误.故答案为:C.2.多项式﹣x2+2x+3中的二次项系数是()A. ﹣1B. 1C. 2D. 3解:多项式﹣x2+2x+3中的二次项系数是:﹣1.故答案为:A3.下列语句中错误的是()A. 数字0也是单项式B. 单项式–a的系数与次数都是1C. xy是二次单项式D. –的系数是–解:A,0也是单项式,故A不符合题意;B、单项式–a的系数与次数都是-1,故B符合题意;C、是二次单项式,故C不符合题意;D、的系数是,故D不符合题意;故答案为:B4.多项式- 2a3b + 3a2 - 4的项数和次数分别为()A. 3,3B. 4,3C. 3,4D. 3,6 解:题目中多项式是四次三项式,故次数是4,项数是3.故答案为:C.5.在代数式x2+5,-1,x2-3x+2,π,,中,整式有()A. 3个B. 4个C. 5个D. 6个解:依题可得:整式有:x2+5,-1,x2-3x+2,,共4个.故答案为:B.6.下列是用火柴棒拼成的一组图形,第①个图形中有3 根火柴棒,第②个图形中有9 根火柴棒,第③个图形中有18 根火柴棒,…,按此规律排列下去,第⑥个图形中火柴棒的根数是().A. 63B. 60C. 56D. 45解:∵第①有1个三角形,共有3×1根火柴;第②个有1+2个无重边的三角形,共有3×(1+2)根火柴;第③个有1+2+3个无重边的三角形,共有3×(1+2+3)根火柴;…∴第n个有1+2+3+…+n个无重边的三角形,共有3×(1+2+3+…+n)n(n+1)根火柴;∴第⑥个图形中火柴棒根数是×6×(6+1)=63.故答案为:A.7.下列各组整式中是同类项的是()A. a3与b3B. 2a2b与﹣a2bC. ﹣ab2c与﹣5b2cD. x2与2x 解:A、a3与b3所含的字母不同,不是同类项;B、2a2b与-a2b是同类项;C、-ab2c与-5b2c所含字母不同,不是同类项;D、x2与2x相同字母的指数不相同,不是同类项.故答案为:B.8.观察如图图形,并阅读相关文字:那么10条直线相交,最多交点的个数是()A. 10B. 20C. 36D. 45解:2条直线相交,只有1个交点,3条直线相交,最多有3个交点,4条直线相交,最多有6个交点,…,n条直线相交,最多有个交点,n=10时,=45.故答案为:D9.已知和是同类项,则m+n=()A. 6B. 5C. 4D. 3解:由题意得m=3,n-1=2,∴n=3,∴m+n=3+3=6.故答案为:A.10.按图示的方法,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,依此类推,若搭个三角形需2019根火柴棒,则()A. 1008B. 1009C. 1010D. 1011解:∵一个三角形需要3根火柴,2个三角形需要3+2=5根火柴,3个三角形需要3+2×2=7根火柴,m个三角形需要3+2(m-1)=(2m+1)根火柴.由2m+1=2019解得m=1009,所以有2019根火柴棒,可以搭出这样的三角形1009个.故答案为:B.二、填空题(共6题;共18分)11.的系数是________,次数是________次解:单项式−a2bc3的系数是−,次数是6.故答案是:−,6.12.如果是一个五次三项式,那么m=________.解:由题意得m+2=5,故m=3。
一、初一数学有理数解答题压轴题精选(难)1.同学们都知道表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:(1)求 ________.(2)找出所有符合条件的整数,使得.满足条件的所有整数值有________(3)由以上探索,猜想对于任何有理数x,是否有最大值或最小值?如果有最大值或最小值是多少?有最________(填“最大”或“最小”)值是________.【答案】(1)7(2)-3,-2,-1,0,1,2;(3)最小;3【解析】【解答】(1)原式=|5+2|=7.故答案为: 7;(2)令x+3=0或x-2=0时,则x=-3或x=2.当x<-3时,- (x+3) - (x-2) =5 ,-x-3-x+2=5,解得x=-3(范围内不成立)当-3≤x≤2时,(x+3) - (x-2) = 5,x+3-x+1=4,0x=0,x为任意数,则整数x=-3,-2,-1, 0,1,当x>2时,(x+3) + (x-2) = 5,x=2(范围内不成立) .综上所述,符合条件的整数x有: -3, -2, -1, 0,1,2.故答案为:-3,-2,-1,0,1,2;(3) 由(2) 的探索猜想,对于任何有理数x,有最小值为3,令x-3=0或x-6=0时,则x=3,x=6当x<3时,-(x-3)-(x-6)=-2x+3﹥3当3≤x≤6时,x-3-(x-6)=3,当x>6时,x-3+x-6=2x-9>3∴对于任何有理数x,有最小值为3【分析】(1)直接去括号,再按照去绝对值的方法去掉绝对值就可以了;(2)要求x的整数值可以进行分段计算,令x+3=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.2.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.3.已知 , , 三点在数轴上对应的位置如图如示,其中点对应的数为2,, .(1)点对应的数是________,点对应的数是________;(2)动点,分别同时从,两点出发,分别以每秒8个单位和3个单位的速度沿数轴正方向运动.点为的中点,点在上,且,设运动时间为 .①请直接用含的代数式表示点,对应的数;②当时,求的值.【答案】(1)-12;5(2)解:① 对应的数是,对应的数是;② ,,,,由,得,由,得,故当秒或秒时, .【解析】【解答】解:(1)点对应的数为,,,点对应的数是:;点对应的数是:;故点对应的数为,点对应的数是 .【分析】(1)根据点对应的数,由的长确定出点表示的数,再根据的长确定出点表示的数;(2)①根据题意表示出点、的数即可;②列出含t的、的代数式,得出方程,求出方程的解即可.4.仔细观察下列等式:第1个:22﹣1=1×3第2个:32﹣1=2×4第3个:42﹣1=3×5第4个:52﹣1=4×6第5个:62﹣1=5×7…这些等式反映出自然数间的某种运算规律.按要求解答下列问题:(1)请你写出第6个等式:________;(2)设n(n≥1)表示自然数,则第n个等式可表示为________;(3)运用上述结论,计算: .【答案】(1)72﹣1=6×8(2)(n+1)2-1=n(n+2)(3)解:===【解析】【解答】解:(1)∵第1个:22-1=1×3第2个:32-1=2×4第3个:42-1=3×5第4个:52-1=4×6第5个:62-1=5×7,∴第6个等式:72-1=6×8;故答案为:72-1=6×82)设n(n≥1)表示自然数,则第n个等式可表示为:(n+1)2-1=n(n+2);故答案为:(n+1)2-1=n(n+2);【分析】(1)根据题中所给出的例子找出规律,即可得到第六个等式.(2)根据题中所给出的例子找出规律,进行解答即可.(3)根据所得结论,进行化简,即可得到答案.5.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如的几何意义是数轴上表示有理数的点与表示有理数3的点之间的距离.试探索:①:若,则=________.②:的最小值为________.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为(>0)秒.①:当 =1时,A,P两点之间的距离为________;②:当 =________时,A,P之间的距离为2.(4)动点P,Q分别从O,B两点,同时出发,点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)-12(2)6或10;20(3)6;3或5(4)2或4【解析】【解答】解:(1)∵AB=20,点A表示的数是8,B是数轴上位于点A左侧一点,∴点B表示的数是8-20=-12.故答案为:-12.(2)∵|x-8|=2∴x-8=±2解之:x=10或x=6;|x-(-12)|+|x-8|的最小值为8-(-12)=20.故答案为:6或10;20.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴OP=2t∴AP=8-2t当t=1时,AP=8-2×1=6;当AP=2时,则|8-2t|=2,解之:t=5或t=3.故答案为:6;3或5.(4)∵点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,∴点Q的速度为每秒8个单位长度,设运动时间为t(t>0)秒时,P,Q之间的距离为4.∴8t-4t-12=4或12+4t-8t=4解之:t=4或t=2故答案为:2或4.【分析】(1)根据点A表示的数和点B的位置关系,就可得到点B所表示的数。
一、初一数学有理数解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.2.如图,在数轴上点表示的数,点表示的数,点表示的数,是最大的负整数,且满足 .(1)求,,的值;(2)若将数轴折叠,使得点与点重合,求与点重合的点对应的数;(3)点,,在数轴上同时开始运动,其中以单位每秒的速度向左运动,以单位每秒的速度向左运动,点以单位每秒的速度运动,当,相遇时,停止运动,求此时两点之间的距离.【答案】(1)解:∵是最大的负整数,∴b=-1,∵,∴a=-3,c=6(2)解:设当点与点重合时,对折点为D,则D点的坐标为(-2,0),∴此时与点重合的点对应的数是-10(3)解:由(1)和(2)可知,运动前BC=7,由题意可得,运动后,相遇时,可计算出经历的时间为7s,此时C点坐标为(-8,0),当A点向左运动时,此时C点坐标为(-24,0),可得此时两点之间的距离为16;当A点向右运动时,此时C点坐标为(18,0),可得此时两点之间的距离为26【解析】【分析】(1)根据是最大的负整数得出b=-1,根据绝对值的非负性,由两个非负数的和为0,则这两个数都为0,求出a,c的值;(2)设当点与点重合时,对折点为D,根据折叠的性质得出点D所表示的数是-2,故CD=8,在点D的左边距离点D8个单位的数就是-10,从而得出答案;(3)由(1)和(2)可知,运动前BC=7,由题意可得,运动后,相遇时,可计算出经历的时间为7s,然后根据点A向左或向右运动两种情况考虑即可得出答案.3.列方程解应用题如图,在数轴上的点A表示,点B表示5,若有两只电子蜗牛甲、乙分别从A、B两点同时出发,保持匀速运动,甲的平均速度为2单位长度秒,乙的平均速度为1单位长度秒请问:(1)两只蜗牛相向而行,经过________秒相遇,此时对应点上的数是________.(2)两只蜗牛都向正方向而行,经过多少秒后蜗牛甲能追上蜗牛乙?【答案】(1)3;2(2)解:设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,依题意有,解得.答:两只蜗牛都向正方向而行,经过9秒后蜗牛甲能追上蜗牛乙【解析】【解答】解:(1)设两只蜗牛相向而行,经过x秒相遇,依题意有,解得..答:两只蜗牛相向而行,经过3秒相遇,此时对应点上的数是2.【分析】(1)可设两只蜗牛相向而行,经过x秒相遇,根据等量关系:两只蜗牛的速度和时间,列出方程求解即可;(2)可设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,根据等量关系:两只蜗牛的速度差时间,列出方程求解即可.4.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是________;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是________;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值. 【答案】(1)-4(2)0(3)解:① 当点O是线段AB的中点时,OB=OA4-3t=2+tt=0.5② 当点B是线段OA的中点时, OA = 2 OB2+t=2(3t-4)t=2③ 当点A是线段OB的中点时, OB = 2 OA3t--4=2(2+t)t=8综上所述,符合条件的t的值是0.5,2或8.【解析】【解答】(1)点B表示的数是-4;(2)2秒后点B表示的数是 0 ;【分析】(1)根据数轴上所表示的数的特点即可直接得出答案;(2)用点B开始所表示的数+点B运动的路程=经过t秒后点B表示的数,即可得出结论;(3)找出t秒后点A、B表示的数,分①点O为线段AB的中点,②当点B是线段OA的中点,③点A是线段OB的中点,根据线段中点的数学语言列出方程,求解即可求出此时的t值,综上即可得出结论。
一、初一数学有理数解答题压轴题精选(难)1.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.2.如图,为原点,数轴上两点所对应的数分别为,且满足关于的整式与之和是是单项式,动点以每秒个单位长度的速度从点向终点运动.(1)求的值.(2)当时,求点的运动时间的值.(3)当点开始运动时,点也同时以每秒个单位长度的速度从点向终点运动,若,求的长.【答案】(1)解:因为m、n满足关于x、y的整式-x41+m y n+60与2xy3n之和是单项式所以所以m=-40,n=30.(2)解:因为A、B所对应的数分别为-40和30,所以AB=70,AO=40,BO=30,当点P在O的左侧时:则PA+PO=AO=40,因为PB-(PA+PO)=10, PB=AB-AP=70-4t所以70-4t-40=10所以t=5.当点P在O的右侧时:因为PB<PA所以PB-(PA+PO)<0,不合题意,舍去(3)解:①如图1,当点P在点Q左侧时,因为AP=4t,BQ=2t,AB=70所以PQ=AB-(AP+BQ)=70-6t又因为PQ= AB=35所以70-6t=35所以t= ,AP= = ,②如图2,当点P在点Q右侧时,因为AP=4t,BQ=2t,AB=70,所以PQ=(AP+BQ)-AB=6t-70,又因为PQ= AB=35所以6t-70=35所以t=所以AP= =70.【解析】【分析】(1)根据单项式的次数相同,列方程即可得到答案;(2)分情况讨论:当点P在O的左侧时:当点P在O的右侧时.即可得到答案.(3)结合题意分别计算:①如图1,当点P在点Q左侧时,如图2,当点P在点Q右侧时.3.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.4.若有理数在数轴上的点位置如图所示:(1)判断代数式的符号;(2)化简:【答案】(1)解:因为所以(2)解:因为所以原式.【解析】【分析】(1)根据有理数的加减法,可得答案;(2)根据绝对值的性质,可化简去掉绝对值,根据合并同类项,可得答案.5.甲、乙、丙三个教师承担本学期期末考试的第17题的网上阅卷任务,若由这三人中的某一人独立完成阅卷任务,则甲需要15小时,乙需要10小时,丙需要8小时。
七年级数学上册《第一章有理数》单元测试卷及答案注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如 需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写 在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:第一章有理数。
5.难度系数:中等。
第I 卷(选择题)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列五个数中,绝对值最小的数为( ) A .5-B . −(−2)C .0D . −0.32.下列说法正确的是( )A .“向东10米”与“向西5米”不是相反意义的量B .如果气球上升25米记作25+米,那么15-米的意义就是下降15-米C .如果气温下降6℃,记为6-℃,那么8+℃的意义就是下降8℃D .若将高1米设为标准0,高1.20米记作0.20+米,那么0.05-米所表示的高是0.95米 3.设x 为有理数,若x x =,则( ) A .x 为正数B .x 为负数C .x 为非正数D .x 为非负数4.下面说法:①a 的相反数是a -;②符号相反的数互为相反数;③()3.8--的相反数是 3.8-;④一个数和它的相反数可能相等;⑤正数与负数互为相反数.正确的有( ) A .0个B .1个C .2个D .3个5.以下数轴画法正确的是( ) A .B .C .D .6.有理数−|−2|、−22023−(−1)、0、−(−2)2中负数个数( ) A .2个B .3个C .4个D .5个7.有下列说法,正确的个数是( )个①0是最小的整数;②一个有理数不是正数就是负数 ;③若a 是正数,则a -是负数; ④自然数一定是正数;⑤一个整数不是正整数就是负整数;⑥非负数就是指正数. A .0B .1C .2D .38.已知a b ,在数轴上的位置如图所示,则下列结论:①0a b <<,②||||a b <,③0ab->,④b a a b -<+,正确的是( )A .②③B .①②C .①③D .①④9.m 和n 互为相反数,a 是最大的负整数,则m+n2023−3a 的值为( ) A .3B .7-C .0D .202310.下列说法中,正确的个数( ) ①若11a a=,则0a ≥; ②若a b >,则有()()a b a b +-是正数;③,,A B C 三点在数轴上对应的数分别是2-、6、x ,若相邻两点的距离相等,则2x =; ④若代数式29312011x x x +-+-+的值与x 无关,则该代数式的值为2021; ⑤0,0a b c abc ++=<,则b c a c a ba b c+++++的值为1±. A .1个B .2个C .3个D .4个第Ⅱ卷二、填空题(本大题共6小题,每小题3分,满分18分)11.化简337⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦= .12.若b -的相反数是 2.4-,则b = .13.下面的数轴被墨迹盖住一部分,被盖住的整数有 个.14.有理数a ,b ,c ,d 使||1abcd abcd =-,则a b c d a b c d+++的最大值是 . 15.新定义如下:()3f x x =-, ()2g y y =+ 例如:() 2235f -=--=, ()3325g =+= 根据上述知识, 若()()6f x g x +=, 则x 的值为 . 16.已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________; (2)当a = 时,12a -+有最小值,最小值是 .三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤) 17.(4分)已知a ,b 是有理数,且满足|1||2|0a b -+-=,求a 与b 的值.18.(4分)把下列各数的序号填入相应的大括号内:①13- ②0.2 ③227 ④20%- ⑤3-- ⑥()0.75-+ ⑦0 ⑧34- ⑨π2 ⑩()35-- 正有理数集合:{_______________…}; 非负数集合:{_______________…}; 非正整数集合:{_______________…}; 分数集合:{_______________…}.19.(6分)七年级某班级为了促进同学养成良好的学习习惯,每天都对同学进行学规管理记分.如下是小李同学第5周学规得分(规定:加分为“+”,扣分为“−”). 日期周一 周二 周三 周四 周五学规得分 +5+3−4+7−2(1)第5周小李学规得分总计是多少?(2)根据班规,一学期里班级还会将同学每周的学规得分进行累加.已知小李同学第4周末学规累加分数为65分,若他在第6周末学规累加分数达到72分,则他第6周的学规得分总计是多少分?20.(6分)如图所示,观察数轴,请回答:(1)点C 与点D 的距离为 ,点B 与点D 的距离为 ;(2)点B 与点E 的距离为 ,点A 与点C 的距离为 ;发现:在数轴上,如果点M 与点N 分别表示数m ,n ,则他们之间的距离可表示为MN = (用m ,n 表示).21.(8分)(1)画数轴并在数轴上表示下列各数:0,3,1.5,-4,1 32-;(2)按从小到大的顺序用“<”号把(1)中的这些数连接起来;(3)直接填空:数轴上表示3和表示1的两点之间的距离是 ,数轴上A 点表示的数为1.5,B 点表示的数为32-,则点A ,B 两点之间的距离是 .22.(10分)已知有A ,B ,C 三个数的“家族”:A :{-1,3.1,-4,6,2.1}B :14.2,2.1,1,10,8⎧⎫---⎨⎬⎩⎭ C :{2.1,-4.2,8,6}.(1)请把每个“家族”中所含的数填入图中的相应部分.(2)把A ,B ,C 三个数的“家族”中的负数写在横线上:_________. (3)有没有同时属于A ,B ,C 三个数的“家族”的数?若有,请指出.23.(10分)阅读下面的文字,完成后面的问题: 我们知道:11×2=1−12;12×3=12−13;13×4=13−14. 那么: (1)14×5=______;12019×2020=______;(2)用含有n 的式子表示你发现的规律______; (3)求式子11×2+12×3+13×4+⋯+12019×2020的值.24.(12分)阅读材料:x 的几何意义是数轴上数x 的对应点与原点之间的距离,即0x x =-,也可以说x 表示数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示数轴上数1x 与数2x 对应点之间的距离,根据材料的说法,试求: (1)34x +=;(2)若x 为有理数,代数式32x -+有没有最大值?如果有,求出这个最大值及此时x 的值是多少?如果没有,请说明理由;(3)若x 为有理数,则13x x -+-有最______值(填“大”或“小”),其值为________.25.(12分)定义:若A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离2倍,我们就称点C 是【A ,B 】的美好点.例如:如图1,点A 表示的数为1-,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的美好点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是【A ,B 】的美好点,但点D 是【B ,A 】的美好点.如图2,M ,N 为数轴上两点,点M 所表示的数为7-,点N 所表示的数为2(1)点E ,F ,G 表示的数分别是-3,6.5,11,其中是【M ,N 】美好点的是 ; 写出【N ,M 】美好点H 所表示的数是 .(2)现有一只电子蚂蚁P 从点N 开始出发,以2个单位每秒的速度向左运动.当t 为何值时,P ,M 和N 中恰有一个点为其余两点的美好点?参考答案第I 卷(选择题)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列五个数中,绝对值最小的数为( ) A .5-B . −(−2)C .0D . −0.3【答案】C【分析】先求出每个数的绝对值,再根据有理数的大小比较法则比较即可.本题考查了有理数的大小比较和绝对值,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.【详解】解:55-= ()22--= 00= 0.30.3-= ∵00.325<<< ∴绝对值最小的是0. 故选:C .2.下列说法正确的是( )A .“向东10米”与“向西5米”不是相反意义的量B .如果气球上升25米记作25+米,那么15-米的意义就是下降15-米C .如果气温下降6℃,记为6-℃,那么8+℃的意义就是下降8℃D .若将高1米设为标准0,高1.20米记作0.20+米,那么0.05-米所表示的高是0.95米 【答案】D【分析】此题考查了正数和负数的实际意义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,依次判断各可. 【详解】解:“向东10米”与“向西5米”是相反意义的量;故A 不符合题意; 如果气球上升25米记作25+米,那么15-米的意义就是下降15米;故B 不符合题意; 如果气温下降6℃,记为6-℃,那么8+℃的意义就是上升8℃;故C 不符合题意;若将高1米设为标准0,高1.20米记作0.20+米,那么0.05-米所表示的高是0.95米,正确,故D 符合题意; 故选D3.设x 为有理数,若x x =,则( ) A .x 为正数 B .x 为负数C .x 为非正数D .x 为非负数【答案】D【分析】本题考查绝对值的性质,根据(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩直接判断即可得到答案;【详解】解:∵x x = ∴x 是非负数 故选:D .4.下面说法:①a 的相反数是a -;②符号相反的数互为相反数;③()3.8--的相反数是 3.8-;④一个数和它的相反数可能相等;⑤正数与负数互为相反数.正确的有( ) A .0个 B .1个C .2个D .3个【答案】D【分析】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,只有符号不同的两个数是互为相反数.根据相反数的定义一一进行分析即可得出答案.【详解】解:①a 的相反数是a -,说法正确;②只有符号不同的两个数互为相反数,说法错误;③()3.8--的相反数是 3.8-,说法正确;④一个数和它的相反数可能相等,如0的相反数等于0,说法正确;⑤正数与负数不一定互为相反数,如2和1-,说法错误;故正确的有3个. 故选:D .5.以下数轴画法正确的是( ) A .B .C .D .【答案】C【分析】本题考查数轴,了解数轴三要素是关键.根据数轴三要素:原点,正方向,单位长度,逐一排除即可.【详解】解:A .没有正方向,错误,不符合题意; B .单位长度不相等,错误,不符合题意;C .有正方向,原点,单位长度相等,正确,符合题意;D .选项没有原点,错误,不符合题意. 故选:C .6.有理数−|−2|、−22023−(−1)、0、−(−2)2中负数个数( ) A .2个 B .3个C .4个D .5个【答案】B【分析】本题考查了负数的概念,含乘方的有理数化简与化简绝对值,负数就是小于0的数,带负号的数不一定负数.熟练掌握以上知识点是解题的关键.根据相关性质化简各项,再利用负数的概念进行判断即可. 【详解】解: −|−2|=−2,是负数; −22023是负数;()1--=1,不是负数;0不是负数;−(−2)2=−4,是负数; 综上:有3个负数 故选:B .7.有下列说法,正确的个数是( )个①0是最小的整数;②一个有理数不是正数就是负数 ;③若a 是正数,则a -是负数; ④自然数一定是正数;⑤一个整数不是正整数就是负整数;⑥非负数就是指正数. A .0 B .1 C .2 D .3【答案】B【分析】本题考查了整数“整数包括正整数、0和负整数”、有理数的分类“有理数可分为正有理数、0和负有理数”、正数与负数,熟练掌握有理数的分类是解题关键.根据整数、有理数的分类、正数与负数逐个判断即可得.【详解】解:①0不是最小的整数,如负整数10-<,则原说法错误; ②有理数0既不是正数也不是负数,则原说法错误; ③若a 是正数,则a -是负数,则原说法正确; ④自然数0不是正数,则原说法错误;⑤整数0既不是正整数也不是负整数,则原说法错误; ⑥非负数就是指不是负数,即正数和0,则原说法错误; 综上,正确的个数是1个, 故选:B .8.已知a b ,在数轴上的位置如图所示,则下列结论:①0a b <<,②||||a b <,③0ab->,④b a a b -<+,正确的是( )A .②③B .①②C .①③D .①④【答案】C【分析】本题考查根据点在数轴上的位置比较代数式大小,熟练掌握利用数轴比较数的大小是解决问题的关键.【详解】解:a,b 在数轴上的位置如图所示:0a b ∴<<故①0a b <<正确 a b > ②错误;由①②可得0ab->,③正确; 0,0a b b a +<->∴b a a b ->+ ④错误;综上所述,正确的有①③ 故选:C .9.m 和n 互为相反数,a 是最大的负整数,则m+n2023−3a 的值为( ) A .3 B .7- C .0 D .2023【答案】A【分析】本题考查相反数的性质,负整数.根据相反数、负整数的性质求出相关数据,再通过计算即可求解. 【详解】∵m 和n 互为相反数,a 是最大的负整数 ∴0m n += 1a =-∴m+n2023−3a =02023−3×(−1)=3. 故选:A .10.下列说法中,正确的个数( ) ①若11a a=,则0a ≥; ②若a b >,则有()()a b a b +-是正数;③,,A B C 三点在数轴上对应的数分别是2-、6、x ,若相邻两点的距离相等,则2x =; ④若代数式29312011x x x +-+-+的值与x 无关,则该代数式的值为2021; ⑤0,0a b c abc ++=<,则b c a c a ba b c +++++的值为1±.A .1个B .2个C .3个D .4个【答案】A【分析】本题考查有绝对值的化简,数轴上两点间的距离,解答本题的关键是对于错误的结论,要说明理由或者举出反例. 【详解】若11a a=,则a >0, 故①错误, 不合题意; 若a b >则0a b >>或0a b a >>>-或0a b a ->>>或0b a >> 当0a b >>时, 则有()()0a b a b +->是是正数当0a b a >>>-时, 则有()()0a b a b +->是正数 当0a b a ->>>时, 则有()()0a b a b +->是正数 当0b a >>时, 则有()()0a b a b +->是是正数由上可得, ()()0a b a b +->是正数, 故②正确,符合题意;A B C 、、三点在数轴上对应的数分别是-2、6、x ,若相邻两点的距离相等,则x =2或10-或14,故③错误,不合题意;若代数式29312011x x x +-+-+的值与x 无关,则29312011293120112019x x x x x x +-+-+=+-+-+= 故④错误,不合题意;0,0a b c abc ++=<∴a b c 、、中一定是一负两正 b c a +=- ,a c b a b c +=-+=- 不妨设0,0,0a b c >>< b c a c a ba b c+++∴++ b c a c a b a b c +++=++- a b c a b c---=++- 111=--+1=-,故⑤错误,不合题意;故选: A .第Ⅱ卷二、填空题(本大题共6小题,每小题3分,满分18分)11.化简337⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦ .【答案】337-/247-【分析】本题主要考查了多重符号化简,熟练掌握相反数定义,根据“只有符号不同的两个数互为相反数”进行求解即可.【详解】解:333377⎡⎤⎛⎫---=- ⎪⎢⎥⎝⎭⎣⎦.故答案为:337-.12.若b -的相反数是 2.4-,则b = .【答案】 2.4-【分析】根据相反数的性质解答即可.本题考查了相反数的性质,熟练掌握互为相反数的两个数的和为0,列出方程求解是解题的关键.【详解】解:根据题意,得()2.40b -+-=解得 2.4b =-.故答案为: 2.4-.13.下面的数轴被墨迹盖住一部分,被盖住的整数有 个.【答案】9【分析】本题考查了数轴.熟练掌握数轴是解题的关键.根据在数轴上表示有理数进行作答即可.【详解】解:由数轴可知,被盖住的整数有−6,−5,−4,−3,−2,1,2,3,4共9个故答案为:9.14.有理数a ,b ,c ,d 使||1abcd abcd =-,则a b c d a b c d +++的最大值是 . 【答案】2【分析】根据绝对值的运用判断出有理数a ,b ,c ,d 中负数的个数,然后分别讨论求出最大值.本题主要考查了绝对值的运用,采用分类讨论的思想进行解题. 【详解】解:||1abcd abcd=- ∴有理数a ,b ,c ,d 中负数为奇数个.①若有理数a ,b ,c ,d 有一个负三个正 则||||||||2a b c d a b c d+++=; ②若有理数a ,b ,c ,d 有三个负一个正 则||||||||2a b c d a b c d+++=-; 所以||||||||a b c d a b c d +++的最大值是2. 故答案为:2.15.新定义如下:()3f x x =- ()2g y y =+; 例如:() 2235f -=--= ()3325g =+=;根据上述知识, 若()()6f x g x +=, 则x 的值为 . 【答案】72或52-【分析】本题考查了新定义,求代数式的值,化简绝对值,绝对值方程,正确理解新定义是解题的关键.根据()()6f x g x +=得出含绝对值的方程,解方程可得答案. 【详解】解:由题可得:326x x -++=当3x ≥时326x x -++=,解得72x =; 当23x -<<时326x x -++=,方程无解;当2x ≤-时326x x ---=,解得52x =-; 故答案为:72或52-. 16.已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________;(2)当a =________时,12a -+有最小值,最小值是______.【答案】(1)3(2)1,2【分析】本题考查绝对值;(1)有绝对值的非负性可以得出000+=,代入即可求出答案.(2)根据绝对值的非负性解题即可.【详解】(1)∵2010a b -≥-≥, 210a b -+-= ∴2010a b -=-=,∴21a b ==,∴3a b +=故答案为:3;(2)∵10a -≥∴当10a -=时,10a -=最小,此时12a -+有最小值∴当1a =时12a -+有最小值,最小值是2故答案为:1,2.三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(4分)已知a ,b 是有理数,且满足|1||2|0a b -+-=,求a 与b 的值.【答案】1a = 2b =【分析】本题考查了绝对值非负的性质.当它们相加和为0时,必须满足其中的每一项都等于0.根据非负数的性质列出方程求出未知数的值.【详解】解:|1||2|0a b -+-=10a ∴-= 20b -=1a ∴= 2b =故答案为:1a = 2b =.18.(4分)把下列各数的序号填入相应的大括号内: ①13- ②0.2 ③227 ④20%- ⑤3-- ⑥()0.75-+ ⑦0 ⑧34- ⑨π2 ⑩()35-- 正有理数集合:{_______________…};非负数集合:{_______________…};非正整数集合:{_______________…};分数集合:{_______________…}.【答案】②③⑧⑩ ②③⑦⑧⑨⑩ ⑤⑦ ①②③④⑥⑧【分析】本题考查了正有理数、非负数、非正整数、分数的定义,根据定义直接求解即可,解题的关键是熟悉正有理数、非负数、非正整数、分数的定义,熟练掌握此题的特点并能熟练运用. 【详解】由33--=- ()0.750.75-+=- 3344-= ()3535--= 正有理数集合:{②③⑧⑩…};非负数集合:{②③⑦⑧⑨⑩…};非正整数集合:{⑤⑦…};分数集合:{①②③④⑥⑧…}故答案为:②③⑧⑩ ②③⑦⑧⑨⑩ ⑤⑦ ①②③④⑥⑧19.(6分)七年级某班级为了促进同学养成良好的学习习惯,每天都对同学进行学规管理记分.如下是小李同学第5周学规得分(规定:加分为“+”,扣分为“−”). 日期 周一 周二 周三 周四 周五学规得分 +5+3 −4 +7 −2 (1)第5周小李学规得分总计是多少?(2)根据班规,一学期里班级还会将同学每周的学规得分进行累加.已知小李同学第4周末学规累加分数为65分,若他在第6周末学规累加分数达到72分,则他第6周的学规得分总计是多少分?【答案】(1)9分(2)-2分【分析】(1)将表格中的得分求和即可;(2)第4周末学规累加分数和第5周学规得分相加,得到第5周末学规累加分数,用第6周末学规累加分数减去第5周末学规累加分数,即为第6周的学规得分.【详解】(1)解:∵+5+3−4+7−2=9∵第5周小李学规得分总计是9分;(2)解:∵第4周末学规累加分数为65分,第5周学规得分总计是9分∵第5周末学规累加分数为:65+9=74∵72-74=-2∵第6周的学规得分总计是-2分.20.(6分)如图所示,观察数轴,请回答:(1)点C 与点D 的距离为 ,点B 与点D 的距离为 ;(2)点B 与点E 的距离为 ,点A 与点C 的距离为 ;发现:在数轴上,如果点M 与点N 分别表示数m ,n ,则他们之间的距离可表示为MN = (用m ,n 表示)【答案】(1)3,2(2)4,7 m n -【分析】本题主要考查数轴,熟练掌握数轴上两点间的距离公式是解题的关键.(1)直接根据数轴上两点间的距离进行计算即可.(2)根据数轴上两点间的距离进行计算,再进行规律总结,即可得到答案.【详解】(1)解:点C 与点D 的距离为303-=点B 与点D 的距离为0(2)2--=故答案为:3,2;(2)解:点B 与点E 的距离为2(2)4--=,点A 与点C 的距离为3(4)7--=在数轴上,如果点M 与点N 分别表示数m ,n ,则他们之间的距离可表示为MN m n =-故答案为:4,7 m n -.21.(8分)(1)画数轴并在数轴上表示下列各数:0,3,1.5,-4,1 32-; (2)按从小到大的顺序用“<”号把(1)中的这些数连接起来;(3)直接填空:数轴上表示3和表示1的两点之间的距离是 ,数轴上A 点表示的数为1.5,B 点表示的数为32-,则点A ,B 两点之间的距离是 .【答案】(1)见解析;(2)3401 1.532-<-<<<<;(3)2,3 【分析】本题考查了有理数的大小比较,数轴,准确在数轴上找到各数对应的点是解题的关键. (1)先在数轴上准确找到各数对应的点,即可解答;(2)利用(1)的结论,即可解答;(3)根据数轴上两点间距离公式进行计算,即可解答.【详解】解:(1)如图:(2)由(1)可得:3401 1.532-<-<<<<; (3)数轴上表示3和表示1的两点之间的距离312=-=,数轴上A 点表示的数为1.5,B 点表示的数为32-,则点A ,B 两点之间的距离31.5 1.5 1.532⎛⎫=--=+= ⎪⎝⎭故答案为:2;3.22.(10分)已知有A ,B ,C 三个数的“家族”:A :{-1,3.1,-4,6,2.1}B :14.2,2.1,1,10,8⎧⎫---⎨⎬⎩⎭ C :{2.1,-4.2,8,6}. (1)请把每个“家族”中所含的数填入图中的相应部分.(2)把A ,B ,C 三个数的“家族”中的负数写在横线上:__________.(3)有没有同时属于A ,B ,C 三个数的“家族”的数?若有,请指出.【答案】(1)见解析;(2) -1,-4,-4.2,18-;(3)见解析. 【分析】(1)根据数集的包含关系进行分类(2)选出负数;(3)根据观察易得.【详解】解:(1)如图所示.(2)-1,-4,-4.21 8 -(3)有,是2.1.故答案为(2)-1,-4,-4;218-;(3)有,是2.1.23.(10分)阅读下面的文字,完成后面的问题:我们知道:11×2=1−12;12×3=12−13;13×4=13−14.那么:(1)14×5=______;12019×2020=______;(2)用含有n的式子表示你发现的规律______;(3)求式子11×2+12×3+13×4+⋯+12019×2020的值.【答案】(1)14−15(2)12019−12020(3)20192020.【分析】(1)根据阅读部分的提示规律直接进行计算即可;(2)根据阅读部分的提示规律用含n的代数式表示即可;(3)根据得到的规律把原式化为:11−12+12−13+13−14+⋯+12019−12020,再计算即可;(4)先利用非负数的性质求解x,y,再代入代入式结合规律进行计算即可。
.精品文档 .
初一数学上册有理数单元测试卷
初一数学上册有理数单元测试卷(新人教有答案)
班级座号姓名__________成绩_______ __
一、判断题
1.一个数,如果不是正数,必定就是负数。
()
2.正整数和负整数统称整数。
()
3.绝对值最小的有理数是 0()
4.- a 是负数。
()
5.若两个数的绝对值相等,则这两个数也相
等.()
6.若两个数相等,则这两个数的绝对值也相
等.()
7.一个数的相反数是本身,则这个数一定是0。
()
8.一个数必小于它的绝对值。
()
二、填空
1、如果盈利350 元记作+ 350 元,那么- 80 元表示
__________________。
2、如果 +7℃表示零上7℃,则零下5℃表示为;
.精品文档.
3、有理数中,最大的整数是________,小于 3 的非整数有____________________ 。
4、把下列各数填在相的集合内,- 23,0.5,-,28, 0,4,,- 5.2.
整数集合 {⋯⋯}正数集合{⋯⋯}
分数集合 {⋯⋯}
5、在下列数中,有理数有个;整数有个。
7,,-6, 0 , 3.1415 ,-,-0.62 ,-11.
6、数上离表示-2 的点的距离等于 3 个位度的点
表示数是。
7、大于- 2 而小于 3 的整数分是 ___________________ 、
8、用“ <” 下列各数:0,- 3.4 , , - 3, 0.5
_____________________________ 。
9、- 7的的相反数是________。
-0.5的
的相反数是 ________。
10、-(- 2)的相反数是________。
11、- a 的相反数是 ________.- a 的相反数是- 5,
a= 。
12、在数上 A 点表示-,B点表示,离原点近
的点是 ___点.
13、在数上距离原点 2.5的点所的数___ __,它互 _____.
.精品文档.
14、若 |- x|=,则x 的值是_______.如果|x-3|=0,那么x=________ .
三、比较大小、化简
1、比较大小(填写“>”或“<”号)
(1)- 2.1_____1(2)- 3.2_____- 4.3
(3)- _____ -
2、-|-|=_______
(4)- _____0
,-(-)=_______,-
|+ |=_______,
-( +)=_______,?+|-()|?=_______,+(-)=_______.
四、选择题
1. 下列说法错误的是()
A. 0 既不是正数也不是负数;
B. 一个有理数不是整数就是分数;
.0 和正整数是自然数;D.有理数又可分为正有理数和
负有理数。
2、在有理数中,绝对值等于它本身的数有(
A.1个
B.2个.3个 D.
3、下列各式中,正确的是()
)无穷多个
A. B..->- D.
4、如果 a 表示有理数,那么下列说法中正确的是()(A)+a和-(-a)互为相反数( B)+a和-a一定不
.精品文档 .
相等
()- a 一定是负数(D)-(+a)和+(-a)一定相等
5、如图所示的图形为四位同学画的数轴,其中正确的
是()
6、如图所示,点表示的数是()
A. 2.5
B. . D. 2.5
7、下列说法错误的是( )
A. 0是非负数;
B. 0是最小的正整数;
. 0的绝对值等于它的相反数; D. 0的绝对值等于本身。
8、关于相反数的叙述错误的是()
A.两数之和为0,则这两个数互为相反数
B.在数轴上的原点两边,如果两数所对应的点到原点
的距离相等,这两个数互为相反数
.符号相反的两个数,一定互为相反数
D.零的相反数为零
9、已知有理数a,b 所对应的点在数轴上的如图所示,则有()
A.- a< 0<bB.- b< a< 0.a<0<-bD.0<b<-a
10、| a|=-a,则a一定是()
.精品文档 .
A.数B.正数.零或数D.非数
五、解答
1、在数上表示下列各数,并把它用“<”号接
起.
-2,4.5 ,0,3,-3.5 ,| -1| ,-(- 1 )
2、7 筐苹果,以每筐25 千克准,超的千克作正
数,不足的千克作数,称重的如下:+2,- 1,- 2,
+1,+3,- 4,- 3 七筐苹果各重多少千克?7 筐苹
果的重量比准量多是少?多(或少)多少千克?
3、已知 a 是最小的正整数, b 的相反数是它本身,比最
大的整数大3,算( 2a+3)× b 的.
六、附加
1.察下面的一列数:,-,,-⋯⋯ 你找出其中
排列的律,并按此律填空.
(1)第 9 个数是 ________,第 14 个数是 ________.
(2)若 n 是大于 1 的整数,按上面的排列律,写出第 n 个数.
.精品文档 .
2.若已知 a> 0, b<0, |b| >|a| ,试讨论 a,- a, b,-b四个数的大小关系,并用“>”把它们连接起.。