冷金属过渡技术
- 格式:doc
- 大小:20.50 KB
- 文档页数:3
CMT焊接目前国内外低热输入焊接新工艺CMT(cold metal transfer)一冷金属过渡焊是低热输入焊接工艺中的佼佼者,CMT技术是福尼斯公司开发的一种低热输入焊接工艺。
该技术在熔滴短路时电源输出电流几乎为零,同时焊丝回抽帮助熔滴脱落,实现熔滴“冷”过渡,大大降低了焊接过程的热输入。
1.CMT焊接研究现状图1 CMT焊与P-MIG焊熔滴过渡形式分布CMT技术的发展过程经历了几个阶段:90年代初,奥地利福尼斯公司是为研究钢铝的异种焊接而开始;到90年代末,开发了无飞溅引弧技术(SFI,此技术为CMT的研究奠定了基础;在接下来的几年到1999年,使得CMT技术得以问世;到2010年,Fronius公司对CMT焊接系统进行开发,发展到了CMT Advanced和CMT Advanced +P焊接技术。
发展到现在,CMT焊与P-MIG焊熔滴过渡形式电流电压的分布如图1所示,CMT技术的热输入量达到的范围明显的小于P-MIG。
CMT技术创新的将熔滴过渡过程与送丝运动相结合,该创新处大大降低了焊接过程的热输入量,真正实现了无飞溅焊接。
此焊接工艺不仅提高焊后工件表面质量,还减小金属的损失,降低焊接过程中的烟尘、有害气体,对环境的污染进一步减小是一种绿色环保的焊接技术。
目前CMT焊接的研究主要涉及到薄板焊接、异种焊接、钎焊等,利用的均是其热输入低的特点。
CMT焊可以焊接薄板低至0.3mm的超薄板,CMT焊接工艺己研究应用的有3 mm及以下的铝合金焊接、镁铝异种焊接、铝钢异种焊接、钦铜异种焊接等。
CMT技术问世后专家学者不断的进行研究,目前关于CMT技术复合热源也出现了。
国外学者利用CMT-GMAW焊接镍基超耐热不锈钢,河北科技大学也正在研究利用CMT与高频复合焊接铝锂合金。
2. CMT焊接原理与特点CMT(冷金属过渡技术)的熔滴过渡形式是在短路过渡基础上开发的,普通的短路过渡过程如下:焊丝端部熔化形成熔滴,熔滴与熔池接触形成小桥,焊丝在小桥处爆断,短路时伴有大的电流和飞溅。
新型绿色环保焊接技术——CMT焊接技术摘要CMT冷金属过度焊接技术是在MIG/MAG焊的基础上开发的一种革新技术,第一次将送丝运动与熔滴过渡过程进行数字化协调,使熔滴过渡在几乎无电流的状态下进行。
CMT焊接波形控制呈现典型的直流脉冲特征,焊接时热输入较低,这样可有效减小热输入,提高对能量的利用率,并有效地消除飞溅,提高焊后工件表面质量,减小金属的损失,焊接过程中低烟尘,有害气体少,对环境的污染进一步减少,是一种绿色环保的焊接技术。
本文介绍了CMT焊接技术的工作原理,工艺流程,以及技术特点,并举例说明其发展应用状况。
关键词:CMT冷金属过渡焊接技术;熔滴过渡;无飞溅焊接;送丝运动;薄板焊接目录目录摘要 (I)目录 (II)1 绪论 (1)1.1引言 (1)2 CMT焊接技术的工作原理 (1)2.1MIG/MAG焊接技术简介 (1)2.2CMT焊技术简介 (2)3 CTM系统的组成 (3)4 CMT焊接的技术特点 (4)4.1CMT技术的主要特点 (4)4.1.1 送丝系统 (4)4.1.2 熔滴过渡时电压和电流 (5)4.1.3 焊丝的回抽运动帮助熔滴脱落 (5)4.2CMT焊较其他焊接技术的优势 (6)4.2.1 CMT焊接MIG/MAG焊的优势 (6)4.2.2 CMT钎焊工艺和激光钎焊工艺的比较 (7)5 CMT焊接技术的应用和前景 (8)5.1CMT和脉冲混合过渡技术 (8)5.2CMT在机械工程行业的应用前景 (8)6 全文总结 (9)参考文献 (10)1 绪论1.1引言随着全球资源与环境保护问题的日趋严峻,开发和研究新型绿色环保焊接方法已经非常迫切。
当今世界,汽车工业也正朝着节能、环保和安全的方向发展,而节能又是其中的核心问题。
节能的有效措施便是降低汽车自重,即汽车轻量化。
汽车用的铝合金和钢的混合结构轻量化可提高燃料的有效使用并有效控制空气污染,因此钢和铝合金的有效连接受到重视[1]。
CMT焊接目前国内外低热输入焊接新工艺CMT(cold metal transfer)一冷金属过渡焊是低热输入焊接工艺中的佼佼者,CMT技术是福尼斯公司开发的一种低热输入焊接工艺。
该技术在熔滴短路时电源输出电流几乎为零,同时焊丝回抽帮助熔滴脱落,实现熔滴“冷”过渡,大大降低了焊接过程的热输入。
1.CMT焊接研究现状图1 CMT焊与P-MIG焊熔滴过渡形式分布CMT技术的发展过程经历了几个阶段:90年代初,奥地利福尼斯公司是为研究钢铝的异种焊接而开始;到90年代末,开发了无飞溅引弧技术(SFI,此技术为CMT的研究奠定了基础;在接下来的几年到1999年,使得CMT技术得以问世;到2010年,Fronius公司对CMT焊接系统进行开发,发展到了CMT Advanced和CMT Advanced +P焊接技术。
发展到现在,CMT焊与P-MIG焊熔滴过渡形式电流电压的分布如图1所示,CMT技术的热输入量达到的范围明显的小于P-MIG。
CMT技术创新的将熔滴过渡过程与送丝运动相结合,该创新处大大降低了焊接过程的热输入量,真正实现了无飞溅焊接。
此焊接工艺不仅提高焊后工件表面质量,还减小金属的损失,降低焊接过程中的烟尘、有害气体,对环境的污染进一步减小是一种绿色环保的焊接技术。
目前CMT焊接的研究主要涉及到薄板焊接、异种焊接、钎焊等,利用的均是其热输入低的特点。
CMT焊可以焊接薄板低至0.3mm的超薄板,CMT焊接工艺己研究应用的有3 mm及以下的铝合金焊接、镁铝异种焊接、铝钢异种焊接、钦铜异种焊接等。
CMT技术问世后专家学者不断的进行研究,目前关于CMT技术复合热源也出现了。
国外学者利用CMT-GMAW焊接镍基超耐热不锈钢,河北科技大学也正在研究利用CMT与高频复合焊接铝锂合金。
2. CMT焊接原理与特点CMT(冷金属过渡技术)的熔滴过渡形式是在短路过渡基础上开发的,普通的短路过渡过程如下:焊丝端部熔化形成熔滴,熔滴与熔池接触形成小桥,焊丝在小桥处爆断,短路时伴有大的电流和飞溅。
CMT焊接目前国内外低热输入焊接新工艺CMT(cold metal transfer)一冷金属过渡焊是低热输入焊接工艺中的佼佼者,CMT技术是福尼斯公司开发的一种低热输入焊接工艺。
该技术在熔滴短路时电源输出电流几乎为零,同时焊丝回抽帮助熔滴脱落,实现熔滴“冷”过渡,大大降低了焊接过程的热输入。
1.CMT焊接研究现状图1 CMT焊与P-MIG焊熔滴过渡形式分布CMT技术的发展过程经历了几个阶段:90年代初,奥地利福尼斯公司是为研究钢铝的异种焊接而开始;到90年代末,开发了无飞溅引弧技术(SFI,此技术为CMT的研究奠定了基础;在接下来的几年到1999年,使得CMT技术得以问世;到2010年,Fronius公司对CMT焊接系统进行开发,发展到了CMT Advanced和CMT Advanced +P焊接技术。
发展到现在,CMT焊与P-MIG焊熔滴过渡形式电流电压的分布如图1所示,CMT技术的热输入量达到的范围明显的小于P-MIG。
CMT技术创新的将熔滴过渡过程与送丝运动相结合,该创新处大大降低了焊接过程的热输入量,真正实现了无飞溅焊接。
此焊接工艺不仅提高焊后工件表面质量,还减小金属的损失,降低焊接过程中的烟尘、有害气体,对环境的污染进一步减小是一种绿色环保的焊接技术。
目前CMT焊接的研究主要涉及到薄板焊接、异种焊接、钎焊等,利用的均是其热输入低的特点。
CMT焊可以焊接薄板低至0.3mm的超薄板,CMT焊接工艺己研究应用的有3 mm及以下的铝合金焊接、镁铝异种焊接、铝钢异种焊接、钦铜异种焊接等。
CMT技术问世后专家学者不断的进行研究,目前关于CMT技术复合热源也出现了。
国外学者利用CMT-GMAW焊接镍基超耐热不锈钢,河北科技大学也正在研究利用CMT与高频复合焊接铝锂合金。
2. CMT焊接原理与特点CMT(冷金属过渡技术)的熔滴过渡形式是在短路过渡基础上开发的,普通的短路过渡过程如下:焊丝端部熔化形成熔滴,熔滴与熔池接触形成小桥,焊丝在小桥处爆断,短路时伴有大的电流和飞溅。
CMT焊接工艺及其应用一、冷金属过渡(CMT)焊概述:1、意义:冷金属过渡技术 (CMT)是近年来焊接工艺的一次突破,其创造性地将焊丝运动与熔滴过渡过程相结合,实现了低能耗、高品质的焊接。
2、特点:(1)、良好的电弧稳定性:CMT焊接系统送丝过程受控并且和电弧过程相结合,可以机械检测弧长并快速调节,这使得CMT的电弧非常的稳定。
(2)、精确的能量输入控制:CMT技术实现了无电流状态下的熔滴过渡。
当短路电流产生,焊丝即停止前进并自动地回抽。
在这种方式中,电弧自身输入热量的过程很短,短路发生,电弧即熄灭,热输入量迅速地减少,可以获得最低能量的输入。
(3)、优异的搭桥能量输入:CMT技术具有优异的电弧稳定性和精确的低能量输入,具有优异的搭桥能力,对装配间隙和错边的要求低,根焊焊道也可以获得很好的的背面成型(4)、更快的焊接速度:CMT过渡的频率高达60—70 Hz,焊丝主动回抽促进熔滴的脱落,焊接速度可达450—600 mm/min,能够明显地提高焊接效率。
3、应用:(1)、材料应用领域:CMT技术拥有广泛的应用领域。
几乎可以应用与所有已知的材料。
(2)、行业应用:机车制造行业、航天领域、桥梁和钢结构。
二、CMT工艺原理及设备:2.1、CMT工艺原理:(1)、数字式焊接控制系统感知电弧生成的开始时间,自动降低焊接电流,直到电弧熄灭,并调节脉冲式的焊丝输送,这种脉冲式焊丝输送有效改善了焊丝熔滴的过渡。
(2)、在熔滴从焊丝上滴落之后,数字控制系统再次提高焊接电流,并进一步将焊丝向前送出。
之后重新生成焊接电弧,开始新一轮的焊接过程。
(3)、或者说系统监测到一个短路信号,就会反馈给送丝机,送丝机作出回应回抽焊丝,从而使得焊丝与熔滴分离,使熔滴在无电流状态下过渡(70HZ)。
2.2、CMT与传统短路焊接工艺比较:CMT焊与普通 GMAW 有三个最大的不同:(1)、将焊丝运动与焊接过程相结合:在焊丝前行过程中,一旦数字过程控制器检测到短路电流,便控制送丝机构回焊丝,以促成焊丝与熔滴的分离。
CMT焊接目前国内外低热输入焊接新工艺CMT(cold metal transfer)一冷金属过渡焊是低热输入焊接工艺中的佼佼者,CMT技术是福尼斯公司开发的一种低热输入焊接工艺。
该技术在熔滴短路时电源输出电流几乎为零,同时焊丝回抽帮助熔滴脱落,实现熔滴“冷”过渡,大大降低了焊接过程的热输入。
1.CMT焊接研究现状图1 CMT焊与P-MIG焊熔滴过渡形式分布CMT技术的发展过程经历了几个阶段:90年代初,奥地利福尼斯公司是为研究钢铝的异种焊接而开始;到90年代末,开发了无飞溅引弧技术(SFI,此技术为CMT的研究奠定了基础;在接下来的几年到1999年,使得CMT技术得以问世;到2010年,Fronius公司对CMT焊接系统进行开发,发展到了CMT Advanced和CMT Advanced +P焊接技术。
发展到现在,CMT焊与P-MIG焊熔滴过渡形式电流电压的分布如图1所示,CMT技术的热输入量达到的范围明显的小于P-MIG。
CMT技术创新的将熔滴过渡过程与送丝运动相结合,该创新处大大降低了焊接过程的热输入量,真正实现了无飞溅焊接。
此焊接工艺不仅提高焊后工件表面质量,还减小金属的损失,降低焊接过程中的烟尘、有害气体,对环境的污染进一步减小是一种绿色环保的焊接技术。
目前CMT焊接的研究主要涉及到薄板焊接、异种焊接、钎焊等,利用的均是其热输入低的特点。
CMT焊可以焊接薄板低至0.3mm的超薄板,CMT焊接工艺己研究应用的有3 mm及以下的铝合金焊接、镁铝异种焊接、铝钢异种焊接、钦铜异种焊接等。
CMT技术问世后专家学者不断的进行研究,目前关于CMT技术复合热源也出现了。
国外学者利用CMT-GMAW焊接镍基超耐热不锈钢,河北科技大学也正在研究利用CMT与高频复合焊接铝锂合金。
2. CMT焊接原理与特点CMT(冷金属过渡技术)的熔滴过渡形式是在短路过渡基础上开发的,普通的短路过渡过程如下:焊丝端部熔化形成熔滴,熔滴与熔池接触形成小桥,焊丝在小桥处爆断,短路时伴有大的电流和飞溅。
冷金属过渡技术简介
摘要:Fronius 公司CMT(Coid Metai Transfer)冷金属过渡技术是在MIG/MAG 焊基础上开发的种革新技术第一次将送丝运动与熔滴过渡过程进行数字化协调焊接热输入量大幅降低,可实现
0.3 mm以上薄板的无飞溅、高质量MIG/MAG熔焊和MIG钎焊。
关键词:CMT 冷金属过渡焊丝回抽
THE COLD METAL TRANSITION TECHOLOGY INTRODUCITON Abstract: Fronius company CMT (Coid Metai Transfer) the cold metal transition technology is in the MIG/MAG based on the development of welding.Can realize more than 0.3 mm thin no splash
of high quality MIG/MAG MIG welding and soldering
Keywords: CMT the cold metal welding wire back to a transition)
1、前言
CMT 冷金属过渡焊接技术是一种无焊渣飞溅的新型焊接工艺技术。
所谓冷金属过渡,是指数字控制方式下的短电弧和焊丝的换向送丝监控。
换向送丝系统由前、后两套协同工作的焊丝输送机构组成,使焊丝的输送过程为间断送丝。
后送丝机构按照恒定的送丝速度向前送丝,前送丝机构则按照控制系统的指令以70 Hz 的频率控制着脉冲式的焊丝输送。
数字式焊接控制系统能够根据电弧生成的开始时间自动降低焊接电流,直到电弧熄灭,并调节中脉冲式的焊丝输送,这种脉冲式焊丝输送有效改善了焊丝熔滴的过渡。
在熔滴从焊丝上滴落之后,数字控制系统再次提高焊接电流,进一步将焊丝向前送出。
之后,重新生成焊接电弧,开始新一轮的焊接过程。
这种“冷-热”之间的交替变化大大降低了焊接热量的产生,并减少了焊接热在被焊接件中的传导。
除此之外,还可实现多种功能:正确设置熔滴参数,实现更好的焊缝厚度过渡,并具有很高的焊接速度且不产生任何飞溅。
1、技术原理
CMT冷金属过渡技术的基本原理是:电弧燃烧过程中,焊丝向熔池方向运动,当焊丝与熔池接触时,电弧熄灭,焊接电流减小,短路接触时,焊丝回抽帮助熔滴脱落,保持很小的短路电流,焊丝再向熔池方向运动,冷金属过渡过程重复进行。
2、技术特点
1)、良好的电弧稳定性
CMT焊接系统送丝过程受控并且和电弧过程相结合,可以机械检测弧长并快速调节,这使得CMT的电弧非常的稳定。
2)、精确的能量输入控制
CMT技术实现了无电流状态下的熔滴过渡。
当短路电流产生,焊丝即停止前进并自动地回抽。
在这种方式中,电弧自身输入热量的过程很短,短路发生,电弧即熄灭,热输入量迅速地减少,可以获得最低能量的输入。
3)、优异的搭桥能量输入,
CMT技术具有优异的电弧稳定性和精确的低能量输入,具有优异的搭桥能力,对装配间隙和错边的要求低,根焊焊道也可以获得很好的的背面成型
4)、更快的焊接速度
CMT过渡的频率高达60—70 Hz,焊丝主动回抽促进熔滴的脱落,焊接速度可达450—600 mm/min,能够明显地提高焊接效率。
3、应用与发展
由于CMT 焊接方法具有更快的焊接速度更好的搭桥能力更小的变形更均匀一致的焊缝并且无飞溅等优点拓展了普通MIG/MAG 焊所不能涉及的领域其主要应用领域体现在:
(1)薄板或超薄板(0.3~3 mm)的焊接并且无需担心塌陷和烧穿;
(2) 电镀锌板或热镀锌板的无飞溅钎焊;
(3) 钢与铝的异种连接。
在过去铝和钢的连接只能通过激光或电子束焊接现在CMT 可实现这样的异种连接接头质量和外观都100%合格值得一提的是Fronius
CMT焊接系统同著名的全数字化MIG/MAG 焊机一样是采用数字DSP技术除具有CMT电弧焊接方式外也可实现短路电弧、喷射电弧和脉冲电弧的过渡方式。
1套系统、4种电弧方式的应用可同时满足多个场合的焊接需求。