第三章 光合作用(3-5)
- 格式:ppt
- 大小:4.06 MB
- 文档页数:51
光合作用详细光合作用是植物和一些微生物利用光能将二氧化碳和水转化为有机物质的过程。
这个过程是绿色植物生长和生存的基础,也是地球上所有生命的能量来源之一。
光合作用分为光反应和暗反应两个阶段。
光反应光反应发生在叶绿体的类囊体中,主要包括光能的吸收和利用、光解水释放氧气和产生ATP和NADPH等过程。
首先,叶绿素分子吸收光子能量,激发电子从低能级跃迁到高能级,形成激发态叶绿素。
接着,光系统II(PSII)和光系统I (PSI)中的电子传递链开始运作,光子能量用于克服反应物中的能垒,从而促使电子通过细胞膜中的复合物流动。
这一过程伴随着质子泵出类囊体内部,形成质子梯度,这一过程称为光合电子传递链。
在光反应的最后阶段,PSII中的水裂解酶催化水的分解,释放氧气并产生氢离子和电子。
氧气释放到环境中,而氢离子和电子参与形成ATP和NADPH的最后过程。
ATP和NADPH是植物进行暗反应所需的能量和还原等效物。
暗反应暗反应是光合作用的第二阶段,也称为卡尔文循环或光合糖酵解。
这个过程并不需要光照,但需要光反应阶段产生的ATP和NADPH作为能量和还原当量提供。
暗反应以碳酸盐固定和光合糖酵解为主要反应路径,最终将二氧化碳还原成有机物质。
在暗反应的起始阶段,RuBP羰化酶催化五碳糖RuBP和二氧化碳结合生成不稳定的六碳分子。
接着,这一分子会分解成两个三碳分子3-PGA,并通过磷酸化、还原等一系列反应生成磷酸糖和糖酵解途径所需的其他有机化合物。
最终,这些有机化合物将被合成为葡萄糖等碳水化合物,用于植物生长和能量储存。
光合作用作为生物体内一项极为精细、复杂的生化反应过程,需要多个酶、辅因子、膜蛋白等多种因素协同作用。
在这一过程中,植物充分利用太阳能将无机物质转化为有机物质,使得整个生态系统运作良好,并为地球上的生命提供持续的能量来源。
第三章--光合作⽤习题及答案第三章光合作⽤⼀、名词解释1. 光合作⽤2. 光合强速率3. 原初反应4. 光合电⼦传递链5. PQ穿梭6. 同化⼒7. 光呼吸8. 荧光现象9. 磷光现象10. 光饱和点11. 光饱和现象12. 光补偿点13. 光能利⽤率14. ⼆氧化碳饱和点15. ⼆氧化碳补偿点16. 光合作⽤单位17. 作⽤中⼼⾊素18. 聚光⾊素19. 希尔反应20. 光合磷酸化21. 光系统22. 红降现象23. 双增益效应24. C3植物25. C4植物26. 量⼦产额27. 量⼦需要量28. 光合作⽤‘午睡’现象三、填空题1. 光合⾊素按照功能不同分类为和。
2. 光合作⽤的最终电⼦供体是,最终电⼦受体是。
3. 光合作⽤C3途径CO2的受体是,C4途径的CO2的受体是。
4. 光合作⽤单位由和两⼤部分构成。
5. PSI的原初电⼦供体是,原处电⼦受体是。
6. PSII的原初电⼦受体是,最终电⼦供体是。
7. 光合放氧蛋⽩质复合体⼜称为,有种存在状态。
8. C3植物的卡尔⽂循环在叶⽚的细胞中进⾏,C4植物的C3途径是在叶⽚的细胞中进⾏。
9. 在卡尔⽂循环中,每形成1摩尔六碳糖需要摩尔ATP,摩尔NADPH+H+。
10. 影响光合作⽤的外部因素有、、、和。
11. 光合作⽤的三⼤步聚包括、和。
12. 光合作⽤的⾊素有、和。
13. 光合作⽤的光反应在叶绿体的中进⾏,⽽暗反应是在进⾏。
14. 叶绿素溶液在透射光下呈⾊,在反射光下呈⾊。
15. 光合作⽤属于氧化还原反应,其中中被氧化的物质是,被还原的物质时是。
16. 类胡萝⼘素吸收光谱最强吸收区在,它不仅可以吸收传递光能,还具有的作⽤。
17. 叶绿素吸收光谱有光区和光区两个最强吸收区。
18. 光合作⽤CO2同化过程包括、、三个⼤的步骤。
19.根据光合途径不同,可将植物分为、、三种类别。
20. 尔⽂循环按反应性质不同,可分为、、三个阶段。
21. 在光合作⽤中,合成淀粉的场所是,合成蔗糖的场所是。
3.5.1 光合作用—光合作用原理、意义和应用一、单选题1.下图是光合作用的反应式,a、b代表两种不同的物质。
下列说法错误的是()A.a是二氧化碳,是光合作用的原料B.叶绿体是植物进行光合作用的场所C.植物的所有细胞都可以进行光合作用D.光合作用将光能转变成b中储存的能量【答案】C【分析】绿色植物通过叶绿体利用光能把二氧化碳和水转化成储存能量的有机物,并且释放出氧气的过程,叫做光合作用。
其中,a表示二氧化碳,b表示有机物。
【详解】A.光合作用的原料是二氧化碳和水;场所是叶绿体;条件是光;产物是有机物和氧。
所以,可a 表示二氧化碳,二氧化碳和水都是光合作用的原料,A正确。
B.叶绿体是光合作用的场所,把光能转化为化学能贮存在有机物中,是绿色植物细胞特有的一种能量转换器,B正确。
C.叶绿体只存在植物的绿色部分,如根尖细胞无叶绿体,不能进行光合作用,C错误。
D.光合作用的实质是制造有机物,储存能量,将无机物转化成有机物,将光能转变成化学能,储存在b有机物中,D正确。
故选C。
2.如图是绿色植物光合作用示意图,下列叙述错误的是()A.光合作用必须在光下才能进行B.绿色植物叶片中的水主要由根尖的伸长区从土壤中吸收的C.①代表二氧化碳,②代表氧气D.绿色植物的光合作用对于维持生物圈中的碳-氧平衡有重要作用【答案】B【分析】绿色植物利用光能,通过叶绿体,把二氧化碳和水转化成贮存着能量的有机物(主要是淀粉),并释放氧气的过程。
【详解】A.光合作用的概念是:绿色植物利用光能,通过叶绿体,把二氧化碳和水转化成贮存着能量的有机物(主要是淀粉),并释放氧气的过程。
由此可知,光合作用是通过叶绿体来完成的,叶绿体是光合作用的场所;光合作用的必要条件是光,因此,光合作用必须有光才能完成其过程,A正确。
B.绿色植物需要的水分是通过根从土壤中吸收的,根吸水的主要区域是根尖的成熟区,B错误。
C.通过光合作用的概念可以看出绿色植物进行光合作用吸收二氧化碳,释放氧气,所以①代表二氧化碳,②代表氧气,C正确。
高二生物第三章第5节光合作用某某版必修1【本讲教育信息】一、教学内容光合作用1. 自养、异养两类生物。
2. 光合作用的概念、反应式、阶段、场所、产物。
3. 色素的种类、颜色和吸收光谱。
4. 光反应的过程及光系统的作用。
5. 碳反应的过程。
6. 分析外界因素对光合速率的影响。
7. 比较细胞呼吸和光合作用的异同。
二、教学重、难点:光合作用的概念、反应式、阶段、场所、产物光反应的过程及光系统的作用碳反应的过程三、全面突破知识点1:自养、异养生物思考:绿色植物是怎样获得各种营养物质的?一般把能以二氧化碳和水为原料,合成有机物质,供给其自身生长、发育和繁殖所需的物质和能量的生物都称为自养生物。
绿色植物是通过光合作用自身合成有机物的,所以绿色植物是自养生物。
思考:人和动物是怎样获得各种营养物质的?人和动物、营腐生或寄生生活的真菌、大多数种类的细菌都是依靠摄取外界环境中的有机物来获得各种营养物质的,这样的生物都称为异养生物。
知识点2:光合作用的概念及光合作用的发现1. 光合作用的概念绿色植物通过叶绿体,利用光能,把CO2和H2O合成储存能量的有机物,并且释放出氧气的过程,叫做光合作用。
2. 光合作用的发现(1)17世纪比利时海尔蒙特柳苗栽培实验公元前3世纪,古希腊学者亚里士多德曾经提出,植物生长在土壤中,土壤是构成植物体的原材料。
这一观点长期被奉为经典,直到17世纪初布鲁塞尔的医生Van Helmont做了一个简单而有意义的实验,才把这个观点推翻了。
Van Helmont将一株2.3kg重的小柳树种在重90.8 kg的干土中,用雨水浇灌5年,小柳树长成重76.7kg的植株,而土壤重量只比实验开始时减少57g。
他由此得出结论,即植物是从水中取得生长所需的物质的。
现在看来,他只说对了一半。
结论:植物的物质积累不是来自于土壤,而是完全来自于水。
(2)1771年,英,普里斯特利的实验结论:植物可以更新空气。
(3)1779年,荷,英根豪斯的实验结论1:只有在光下,植物才能更新空气。
植物生理学第三章植物的光合作用植物的光合作用是指植物利用光能将二氧化碳和水转化成有机物质(如葡萄糖)和氧气的过程。
其反应方程式为:6CO2+6H2O+光能→C6H12O6+6O2光合作用是植物最重要的生理过程之一,它不仅是植物能够生存和生长的基础,还能为其他生物提供氧气和有机物质。
光合作用通过光合色素和叶绿体等生理结构,具有高效和专一性的特点。
植物的光合作用可以分为两个阶段:光能捕获和光化学反应、以及碳固定和假单胞菌循环。
在光能捕获和光化学反应阶段,植物的光合色素(如叶绿素)能够捕获太阳光,并将其转化为化学能。
光合作用发生在叶绿体内,主要以叶绿体膜的光合作用单位,光系统(PSI和PSII)为中心。
光系统中的光合色素吸收太阳光,并将其能量传递给反应中心,激发电子。
通过光合色素的电子传递链,电子在PSII和PSI之间进行转移,最终转移到还原辅酶NADP+上,形成还原辅酶NADPH。
在碳固定和假单胞菌循环阶段,植物利用还原辅酶NADPH和ATP的能量,将二氧化碳转化为有机化合物。
这个过程称为Calvin循环,也叫柠檬酸循环。
Calvin循环包括三个主要步骤:碳固定、还原和再生。
首先,二氧化碳与从光合作用过程中产生的核酮糖五磷酸(RuBP)结合,形成不稳定的六碳中间体。
然后,该中间体通过一系列酶的作用,将其分解为两个三碳化合物,3-磷酸甘油醇醛(3-PGA)。
最后,3-PGA经过一系列的加氢还原反应和磷酸化反应,合成出葡萄糖和其他有机物质。
光合作用的速率受到光照、温度、二氧化碳浓度和水分等环境条件的影响。
光合速率随着光照强度的增大而增加,但达到一定的饱和点后,光合速率趋于稳定。
温度对光合作用的影响是复杂的。
在适宜温度下,光合速率随着温度的升高而增加,因为反应速率加快。
然而,当温度超过一定范围时,光合作用会受到抑制,因为高温会破坏光系统和酶的结构。
二氧化碳浓度越高,光合速率越快。
水分对光合作用的影响主要是通过调节植物的气孔进行的。