【精品课件】配合物的磁性-宋友
- 格式:ppt
- 大小:2.12 MB
- 文档页数:44
配合物的磁性研究进展近年来配合物的研究非常广泛,特别是功能簇基配合物在分子与离子交换、吸附、选择性催化、光电子与分子基磁性材料应用等方面表现出巨大的潜在应用价值。
随着分子基磁性材料近年来的兴起,已在很多方面取得了突破性的进展,而3d金属簇合物可以表现出不同寻常的结构和应用性能,像铁、钴、镍的合成具有很大的随机性。
在该领域中,基于配体设计的簇基配合物设计广泛的运用于合成具备催化活性的结构、新材料的设计以及生物-无机化学模型制备等等。
很多研究者以设计优良的前驱配体、构筑单元出发,通过进一步分子自组装得到结构新颖的具备独特的理化性质的单分子磁体材料,而这些设计合成往往是基于一些偶然例子所积累的经验。
单分子磁体类型的簇基金属配合物的分子组装机制将会是一大方向。
单分子磁体的组装就有必要去研究单分子磁体的一些性质,单分子自旋电子学,单分子磁体结构和化学性质的表征工具和表征方法,顺磁性多核金属化合物中的磁各向异性等等。
从而定向组装合成单分子磁体簇合物,研究其性质,将会涉及多个学科,但是对簇基配合物来说是相当有意义的。
1.自旋电子研究及应用自旋电子学将会涉及各种学科领域,装置物理学、合成化学、表面学。
这些包括有在机半导体、单分子、分子的量子计算、高分子材料、表面有机自由分子、自旋偏极化扫描隧道显微镜(SP-STM)中的电子自旋运行探究。
在有机物中,可以减少一些不必要的操作,只需要研究电子的进入与探测。
电子偏振P n概念的引入以及自旋弛豫时间和自旋弛豫长度ι S=μτ S、隧道连接对有机物电子的进入有非常大的帮助,克服了无机半导体材料中许多进入困难。
有机物自旋电子的研究先研究自旋运行的机理:ι S—τ S表明有机物占据长的弛豫时间。
自旋轨道的相互作用对无机半导体来说是非常重要的,而对有机物中介中则没有那么重要。
正是因为自旋轨道的相互作用,允许了自旋操作和光学自旋探测。
但是并不是所有的在无机物中适用探测技术都能对有机物适用。