解析几何题怎么解举例解析
- 格式:doc
- 大小:595.50 KB
- 文档页数:7
一、解析几何题型分析:
1. 直线问题:主要考察直线的性质及其特征,如平行、垂直、中心弦定理等。
2. 圆形问题:主要考察圆形的性质及其特征,如圆心角定理、外切内接定理等。
3. 正多面体问题:主要考察正多面体的性质及其特征,如三角形内心定理、四面体最大最小化原理等。
4. 三角形问题:主要考察三角形的性质及其特征,如勾股定理、海伦-泰勒斯定理等。
5. 几何评价法问题: 主要是透过几何图型来评价各部分之间的大小或者数量上的差异,例如由于不同图彩之间存在一些明显差异,所以能够根据这些差异来作出正确判断或者作出正确估测。
二、解法收拾:
1. 第一步应该是将所有信息数字化,即将所有信息由文字表述方式数字化;
2. 第二步应该是根据所数字化后的信息来选用适合的几何方法;
3. 第三步应该是根据前两部中所使用方法来进行相应的代数或者几何运算;
4. 最后一步应该是核对并汇总前三部中所得到的信息,然后作出最合适书写样子上呈上。
解析几何经典例题及解析题目:已知三点A(1,2)、B(3,4)、C(4,5),判断是否共线。
解析:为了判断这三个点是否共线,我们可以算出它们的斜率是否相等。
斜率公式为k=(y2-y1)/(x2-x1)。
我们先算出AB、AC两条线段的斜率,如果它们相等,则这三个点共线。
k_AB=(4-2)/(3-1)=1k_AC=(5-2)/(4-1)=1因为k_AB=k_AC,所以这三个点共线。
2. 点到直线距离问题:题目:已知直线L:2x-y+1=0,点P(3,4)到直线L的距离是多少?解析:点P到直线L的距离可以通过求点P到直线L的垂线的长度来计算。
我们先求出直线L的斜率k,因为与L垂直的直线的斜率为-k的倒数。
直线L的一般式表示为Ax+By+C=0,所以斜率k=-A/B。
将直线L的一般式转化为斜截式y=kx+b的形式,可以得到直线L的斜率为k=2/1=2。
所以与L垂直的直线的斜率为-1/2。
接下来我们求出与L垂直的直线的截距b。
因为点P在这条直线上,所以直线的表达式可以写为y=-1/2x+b,将点P代入这个方程组中可得b=5。
因此与点P到直线L的垂线的方程为y=-1/2x+5,求出点P到这条直线的垂足Q的坐标为(2,3)。
所以点P到直线L的距离为PQ的长度,即√((3-2)+(4-3))=1.41。
3. 直线交点问题:题目:已知直线L1:2x-y+1=0,直线L2:x+y-3=0,求出它们的交点。
解析:求出两条直线的交点,可以将两条直线的方程联立起来解方程组。
将L1的方程改写成x=(y-1)/2的形式,将其代入L2的方程中,得到:((y-1)/2)+y-3=0,即y=2,代入L1的方程中可以得到x=1。
因此两条直线的交点为(1,2)。
解析几何题型及解题方法总结
题型:1、求曲线方程(类型确定、类型未定);2、直线与圆锥曲线的
交点题目(含切线题目);3、与曲线有关的最(极)值题目;4、与曲线有关
的几何证实(对称性或求对称曲线、平行、垂直);5、探求曲线方程中几
何量及参数间的数目特征。
解题方法:
1、紧密结合代数知识解题:“求到两定点的距离之比等于常数的点
的轨迹”问题的求解过程中,取平面直角坐标系,使两定点的连线为x轴,且连线段的中点为原点,并设两定点的距离为2b,则两定点分别为M(b,0)N(-b,0),N(x,y)是轨迹上任意一点,常数为n,最终得到轨迹
方程(n2-1)(x2+y2)+2b(n2+1))x+b2(n2-1)=0。
2、充分利用几何图形性质简化解题过程:在对曲线轨迹方程求解的
过程中,通过几何条件,可以对轨迹的曲线类型进行判断,然后通过待定
系数法来求解。
3、用函数(变量)的观点来解决问题:对于解析几何问题而言,由
于线或点发生改变,从而导致图形中其他量的改变,这样类型的题目,往
往可以使用函数的观点来求解。
例如,在次全国高中数学竞赛题中,已知
抛物线y2=6x上的2个动点A(x1,y1)和B(x2,y2),其中x1≠x2且
1+2=4。
线段AB的垂直平分线与x轴交于点C,求AABC面积的最大值。
目录解析几何大题的解题技巧(只包括椭圆和抛物线) (1)一、设点或直线 (1)二、转化条件 (1)(1)求弦长 (2)(2)求面积 (2)(3)分式取值判断 (2)(4)点差法的使用 (4)四、能力要求 (6)五、补充知识 (6)关于直线 (6)关于椭圆: (7)例题 (7)解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线———————————————一、设点或直线做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。
直线与曲线的两个交点一般可以设为等。
对于椭圆上的唯一的动点,还可以设为。
在抛物线上的点,也可以设为。
◎还要注意的是,很多点的坐标都是设而不求的。
对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。
如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。
一般题目中涉及到唯一动直线时才可以设直线的参数方程。
如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。
(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次项,所以直线设为或x=my+n联立起来更方便。
二、转化条件有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。
对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。
下面列出了一些转化工具所能转化的条件。
向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1(使用斜率转化一定不要忘了单独讨论斜率不存在的情况!)几何:相似三角形(依据相似列比例式)、等腰直角三角形(构造全等)有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单,三思而后行。
高中数学解析几何案例分析一、直线与平面的交点在解析几何中,直线和平面的交点是一个重要的概念。
我们以一个案例来进行分析。
案例:已知平面P:2x - y + z = 5,直线L:x = 1 - t, y = 3t, z = t + 1。
解析:为了求解直线L与平面P的交点,我们可以将直线的参数方程代入平面方程中,得到:2(1 - t) - (3t) + (t + 1) = 5。
化简上述方程,我们可以得到 t = 1。
将 t 的值代回直线的参数方程中,我们可以得到直线与平面的交点坐标为 (0, 3, 2)。
二、平面间的夹角另一个重要的概念是平面间的夹角。
以下是一道相关案例的分析。
案例:已知平面A:x + 2y - 2z = 4,平面B:2x - y + z = 3,求平面A和平面B的夹角。
解析:为了求解平面A和平面B的夹角,我们可以计算两个平面的法向量,并利用向量的点乘公式求解夹角。
平面A的法向量为 (1, 2, -2) ,平面B的法向量为 (2, -1, 1) 。
根据向量的点乘公式,平面A和平面B的夹角θ可以计算为:cosθ = (1, 2, -2) · (2, -1, 1) / |(1, 2, -2)| |(2, -1, 1)|。
计算上述等式,我们可以得到cosθ = 1/6。
因此,平面A和平面B的夹角θ为 arccos(1/6)。
三、直线与直线的位置关系直线与直线的位置关系也是解析几何的重要内容之一。
以下是一道相关案例的分析。
案例:已知直线L1:x = 2t + 1, y = -t + 1, z = 3t + 1,直线L2:x = 3s + 1, y = 2s + 1, z = -3s + 1,求直线L1和直线L2的位置关系。
解析:为了确定直线L1和直线L2的位置关系,我们需要比较它们的参数方程中的方向向量。
直线L1的方向向量为 (2, -1, 3),直线L2的方向向量为 (3, 2, -3)。
初中解析几何题型及解题方法解析几何是初中数学中的一个重要部分,主要涉及直线、圆、抛物线、双曲线等图形的性质和特点。
以下是一些常见的初中解析几何题型及解题方法:1. 求直线的方程题型描述:给定直线上两点或一点及斜率,要求求出直线的方程。
解题方法:+ 两点式:$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$+ 点斜式:$y - y_1 = m(x - x_1)$2. 求圆的方程题型描述:给定圆上的三点或两点及半径,要求求出圆的方程。
解题方法:$(x - h)^2 + (y - k)^2 = r^2$,其中 $(h, k)$ 是圆心,$r$ 是半径。
3. 直线与圆的位置关系题型描述:给定直线和圆的方程,要求判断直线与圆的位置关系(相交、相切、相离)。
解题方法:计算圆心到直线的距离,与半径比较。
4. 求抛物线的方程题型描述:给定抛物线上的两点或一点及焦点,要求求出抛物线的方程。
解题方法:标准方程为 $y = ax^2 + bx + c$。
如果知道焦点和准线,则可以求出 $a$ 和 $b$ 的值。
5. 求最值问题题型描述:在给定的图形中,求某一点的坐标或某条线段的长度,使得该值最大或最小。
解题方法:使用配方法、顶点式、导数等方法求最值。
6. 实际应用题题型描述:给定生活中的实际问题,如最短路径、最大面积等,要求用解析几何知识求解。
解题方法:建立数学模型,转化为几何问题,然后使用解析几何的知识求解。
在解决解析几何问题时,除了掌握上述方法外,还需要培养自己的空间想象能力和逻辑推理能力。
同时,多做练习题也是提高解题能力的有效途径。
几何问题的解析几何解法几何问题是数学中一类常见的问题类型,而解析几何则是解决这类问题的一种有效方法。
解析几何通过运用代数和几何的相互联系,以坐标系为基础,利用代数符号和方程式来研究几何图形的性质和变换。
本文将介绍几何问题的解析几何解法,并提供一些实例来加深理解。
一、直线的解析几何解法直线是几何中最基本的元素之一,通过坐标系的引入,我们可以用解析几何的方法来研究直线的性质和特点。
对于已知两点A(x₁, y₁)和B(x₂, y₂),要确定这两点之间的直线方程,可以使用以下公式:\[\frac{{y-y₁}}{{x-x₁}} = \frac{{y₂-y₁}}{{x₂-x₁}}\]这个公式称为点斜式,其中斜率为 \(\frac{{y₂-y₁}}{{x₂-x₁}}\)。
通过这个方程,我们可以得到直线的斜率、截距等重要信息,从而进一步理解和分析直线的特性。
二、圆的解析几何解法圆是另一类常见的几何图形,在解析几何中也有相应的解法。
已知圆心为C(a, b),半径为r的圆,其方程可以表示为:\[(x-a)^2 + (y-b)^2 = r^2\]在解析几何中,我们可以根据圆心和半径的信息,推导出关于圆的性质和变换的一系列公式。
例如,通过对圆心的平移、旋转和缩放等操作,我们可以得到新的圆的方程和特征。
这些解析几何的方法在实际问题中具有广泛的应用,例如在计算机图形学和物理学领域。
三、多边形的解析几何解法多边形是由多条线段组成的几何图形,其解析几何解法也是基于坐标系的引入和运用。
对于一个n边形,我们可以通过提取顶点的坐标,组成一个由点组成的集合。
通过连接这些顶点,我们可以得到多边形的边界。
进一步,我们可以运用向量加法、平移以及旋转等解析几何的方法来研究多边形的性质和变换。
除了以上提到的几何图形,解析几何还可以用于研究曲线、立体图形等问题。
通过引入坐标系,用代数的方法来解决几何问题,解析几何在数学领域扮演着重要的角色。
解析几何的出现极大地促进了几何学和代数学的发展。
初中解析几何解题技巧与实例讲解解析几何是数学的一个重要分支,也是初中数学的一部分。
在学习解析几何时,同学们常常会遇到一些难题,需要一些技巧和方法来解决。
本文将介绍一些初中解析几何解题的技巧,并给出一些实例讲解,帮助同学们更好地掌握解析几何的应用。
一、直线与坐标在解析几何中,直线是一个重要的概念。
通过给定的条件,我们可以确定直线的方程或性质。
下面通过两个实例来说明解析几何中直线的解题技巧:实例1:已知点A(2,3)和点B(5,7),求线段AB的中点坐标。
解析:线段的中点坐标可以通过x坐标和y坐标的平均值来确定。
根据题意,点A的坐标是(2,3),点B的坐标是(5,7)。
所以线段AB的中点坐标为:[(2+5)/2,(3+7)/2],即中点的坐标为(3.5,5)。
实例2:已知直线的斜率为1/2,且经过点(4,3),求直线的方程。
解析:直线的方程可以通过斜率和截距来确定。
根据题意,直线的斜率为1/2,经过点(4,3)。
斜率为1/2说明直线上的任意两点横坐标的差和纵坐标的差的比值都是1/2。
现在取直线上的一点为(x,y),则有(x-4)/(y-3)=1/2。
通过解这个方程可以得到直线的方程。
二、直角三角形与勾股定理直角三角形是解析几何中常见的一个概念,其中最重要的定理就是勾股定理。
下面通过两个实例来说明直角三角形的解题技巧:实例1:已知直角三角形的两条直角边长度分别为3和4,求斜边的长度。
解析:根据勾股定理,直角三角形的斜边的平方等于两条直角边的平方和。
所以斜边的长度等于√(3^2+4^2)=5。
实例2:已知直角三角形的斜边长度为5,一直角边长度为3,求另一直角边的长度。
解析:根据勾股定理,直角三角形的斜边的平方等于两条直角边的平方和。
所以另一直角边的长度等于√(5^2-3^2)=4。
三、圆与圆的相交解析几何中考察的另一个重要概念是圆与圆的相交。
通过确定圆心和半径,我们可以确定圆的性质与位置关系。
下面通过一个实例来说明圆与圆的相交的解题技巧:实例:已知圆A的圆心为(2,3),半径为4;圆B的圆心为(5,7),半径为3,求圆A和圆B的交点坐标。
解析几何综合题解题思路案例分析1判别式----解题时时显神功案例1 已知双曲线122:22=-x y C ,直线l 过点()0,2A ,斜率为k ,当10<<k 时,双曲线的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时点B 的坐标。
分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B 作与l 平行的直线,必与双曲线C 相切. 而相切的代数表现形式是所构造方程的判别式0=∆. 由此出发,可设计如下解题思路:解题过程略.分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B 到直线l 的距离为2”,相当于化归的方程有唯一解. 据此设计出如下解题思路:212222=+-+-k kx kx ()10<<k ()*于是,问题即可转化为如上关于x 的方程. 由于10<<k ,所以kx x x >>+22,从而有y ,令判别式0=∆l 的距离为2.222222k x kx k x kx +++-=-+-于是关于x 的方程()*⇔)1(22222+=+++-k k x kx⇔()⎪⎩⎪⎨⎧>+-++-+=+02)1(2,)2)1(2(222222kx k k kx k k x⇔()()()⎪⎩⎪⎨⎧>+-+=--++-++-.02)1(2,022)1(22)1(221222222kx k k kkx k k k x k由10<<k 可知: 方程()()()022)1(22)1(22122222=--++-++-k kx k k kx k 的二根同正,故02)1(22>+-+kx k k 恒成立,于是()*等价于()()()022)1(22)1(22122222=--++-++-k kx k k k x k.由如上关于x 的方程有唯一解,得其判别式0=∆,就可解得 552=k . 点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.2 判别式与韦达定理-----二者联用显奇效案例2 已知椭圆C:x y 2228+=和点P (4,1),过P 作直线交椭圆于A 、B 两点,在线段AB 上取点Q ,使AP PB AQQB=-,求动点Q 的轨迹所在曲线的方程. 分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。
解析几何解题方法归纳一.求轨迹方程(常出现在小题或大题第一问): 1.【待定系数法】(1)已知焦点在x 轴上的椭圆两个顶点的坐标为(4,0±),离心率为12,其方程为 .2211612x y += 提示:2a c =,且24,2,12a c b =∴==.(2)已知椭圆中心在原点,焦距为2倍,则该椭圆的标准方程是 .提示:已知2222242,16b a b c a a b c⎧⎧===⎪⎪⇒⇒⇒⎨⎨=-=⎪⎪⎩⎩221164x y +=与221416x y +=为所求. (3)已知双曲线12222=-b y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; 解:∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x2. 【定义法】由动点P 向圆221x y +=引两条切线PA 、PB ,切点分别为A 、B ,60APB ∠=︒,则动点P 的轨迹方程为 .解:设(,)P x y ,连结OP ,则90,30PAO APO ∠=︒∠=︒, 所以22OP OA ==. 3.【几何性质代数化】与圆2240x y x +-=外切,且与y 轴相切的动圆圆心的轨迹方程是____________.y 2=8x (x >0)或y =0(x <0) 提示:若动圆在y 轴右侧,则动圆圆心到定点(2,0)与到定直线x =-2的距离相等,其轨迹是抛物线;若动圆在y 轴左侧,则动圆圆心轨迹是x 负半轴.4.【相关点法】P 是抛物线2210x y -+=上的动点,点A 的坐标为(0,1-),点M 在直线PA 上,且2PM MA =,则点M 的轨迹方程为解:设点(,)M x y ,由2PM MA =,()3,32P x y ∴+,代入2210x y -+=得22(3)3210x y --+=即218310x y --=5.【参数法】一元二次函数22()(21)1()f x x m x m m R =+++-∈的图象的顶点的轨迹方程是提示:设22(21)1()y x m x m m R =+++-∈顶点坐标为(,)x y ,则22211224(1)(21)544m x m m m y m +⎧=-=--⎪⎪⎨--+⎪==--⎪⎩,消去m ,得顶点的轨迹方程34x y -= 二.常见几何关系转化与常见问题类型 (1)中点问题:韦达定理、点差法变式:A 、B 、C 、D 共线且AB =CD 问题,可以转化为共中点问题,或者弦长相等; 例1:已知双曲线中心在原点且一个焦点为F,0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 。
数学解析几何题的解题思路和技巧数学是一门抽象而又具体的学科,而解析几何则是数学中的一个重要分支。
解析几何通过运用代数和几何的方法研究几何图形的性质和变换规律,是数学中的一种重要工具。
在解析几何中,我们常常需要解决一些具体的问题,下面将介绍一些解析几何题的解题思路和技巧。
一、直线和平面的交点问题在解析几何中,直线和平面的交点问题是比较常见且基础的问题。
解决这类问题的关键在于找到直线和平面的方程,并求解它们的交点。
以一个具体的例子来说明。
假设有一条直线L:y = 2x + 3和一个平面P:2x + y - z = 1,我们需要求解它们的交点。
首先,我们可以将直线L的方程和平面P的方程联立,得到一个含有两个未知数x和y的方程组:2x + y - z = 1,y = 2x + 3。
然后,我们可以通过代入法或消元法求解这个方程组。
将y = 2x + 3代入平面P的方程中,得到2x + (2x + 3) - z = 1,化简得到4x - z = -2。
接下来,我们可以将这个方程代入直线L的方程中,得到y = 2x + 3,化简得到y = 2x + 5。
最后,我们可以将y = 2x + 5代入平面P的方程中,得到2x + (2x + 5) - z = 1,化简得到4x - z = -4。
综上所述,我们得到了两个方程4x - z = -2和4x - z = -4,它们的解为x = 1,z = 6。
因此,直线L和平面P的交点为(1, 5, 6)。
二、直线与曲线的交点问题除了直线和平面的交点问题,直线与曲线的交点问题也是解析几何中常见的问题。
解决这类问题的关键在于找到直线和曲线的方程,并求解它们的交点。
以一个具体的例子来说明。
假设有一条直线L:y = 2x + 3和一个曲线C:y =x^2,我们需要求解它们的交点。
首先,我们可以将直线L的方程和曲线C的方程联立,得到一个含有一个未知数x的方程:x^2 = 2x + 3。
解题宝典解析几何问题的运算量较大,解法灵活,常以解答题的形式出现在各类试题中.为了提升解题的效率,我们需熟练掌握一些解答解析几何问题的常用措施.下面结合实例,来谈一谈解答此类问题的三个措施.一、利用平面几何知识解析几何和平面几何之间联系紧密.因此,在解答解析几何问题时,我们可以先明确圆锥曲线的几何特征,根据题意绘制出几何图形,将问题转化为平面几何问题,灵活运用直线、圆、三角形的性质以及相关定理来解题.例1.设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段圆弧,其弧长为3:1.求圆心到直线l :x -2y =0的距离最小的圆的方程.解:设所求圆的方程为(x -a )2+(y -b )2=r 2,根据条件(1)(2)易得r 2=a 2+1,r 2=2b 2,消去r 得2b 2-a 2=1.由此可见,圆心(a ,b )在双曲线2y 2-x 2=1上.设l '的方程为x -2y =c ,当直线l '与双曲线2y 2-x 2=1相切时,圆的半径最小.由l '与2y 2-x 2=1相切可得c =±1,所以圆的圆心为(1,1)或(-1,-1),r 2=2.故所求圆方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2.解答本题的关键是运用平面几何中关于切线的一个重要结论:与曲线的切线平行的直线到曲线的距离最短.利用平面几何知识解答解析几何问题,能将复杂的问题简单化,抽象的问题形象化.二、利用参数方程我们知道,每条曲线都有与之相应的参数方程.在解答解析几何中的动点、动直线问题时,可根据曲线的参数方程来设出相应的动点、动直线,将其代入题目条件中进行运算、推理,便能快速求得问题的答案.例2.如图1,已知椭圆x 224+y 216=1,直线l :x 12+y 8=1,P 是l 上的一点,射线OP 交椭圆于点R ,又点Q 在OP 上且满足|OQ |·|OP |=|OR |2.当点P 在l 上移动时,求点Q 的轨迹方程.解:由题设知点Q 不在原点,设P ,R ,Q 的坐标分别为(x P ,y P ),(x R ,y R ),(x ,y ),其中x ,y 不同时为零.OP 与x 轴正方向的夹角为θ(θ为参数).则x P =|OP |cos θ,y P =|OP |sin θ,x R =|OR |cos θ,y R =|OR |sin θ,x =|OQ |cos θ,y =|OQ |sin θ.由|OQ |·|OP |=|OR |2可得ìíîïïïïx P =|OP ||OQ |x ,y P =|OP ||OQ |y ,ìíîïïïïx 2R =|OR ||OQ |x 2,y 2R =|OR ||OQ |y 2,又点P 在直线l 上、点R 在椭圆上,则x P 12+y P 8=1,x 2R 24+y 2R 16=1.将x P 、y P 、x 2、y 2R 分别代入上面两式,化简整理得点Q 的轨迹方程为(x -1)252+(y -1)253=1(其中x ,y不同时为零).在运用参数方程解题时,要选择恰当的参数,这样便可以借助参数来建立各个量之间的联系,然后合理消去参数,问题便能顺利获解.三、设而不求有些解析几何问题中的点的坐标、直线的方程不方便或者不易求出,此时,我们可以采用设而不求的方法来解题.首先设出点的坐标或者直线的方程,然后将其代入题目条件中进行求解.例3.如图2,已知点A (a ,0)(a >0)和直线l :x =-1,B 是直线l 上的动点,∠BOA 的角平分线交AB 于C ,求点C 的的轨迹方程.解:设B (-1,b )(b ∈R),则直线OA 和OB 的方程分别为y =0和y =-bx .设动点C (x ,y ),则0≤x <a .由OC 平分∠AOB 可得|y |=,(1)又点C 在直线AB 上,则y =-b 1+a(x -a ),(2)由(1)(2)得(1-a )x 2-2ax +(1+a )y 2=0(0≤x <a ),该式即为点C 的轨迹方程.我们直接根据题意设出B 点的坐标,然后将其代入题设中求解,消去参数b ,便能求得点C 的轨迹方程.虽然解析几何问题较为复杂,但是我们只要根据解题需求选择恰当的措施,如利用平面几何知识、参数方程,设而不求等,便能有效地简化问题,优化解题的方案.(作者单位:甘肃省酒泉市瓜州县第一中学)图2图139。
yxABCA 1OF解解析几何的常用方法一、利用12x x -=(或12y y -=)将与长度或面积有关问题与韦达式联合例1,从抛物线22y px =外一点(2,4)A --引倾角为045的直线交抛物线于12,P P 两点。
若1122,,AP PP AP 成等比数列,求抛物线方程。
分析:设111(,)P x y ,222(,)P x y 由已知易得,直线方程为2y x =-,代入22y px =中,可得2(42)40x p x -++=,所以2(42)160p ∆=+->,解得0p >或4p <-,且121242,4x x p x x +=+=(*),因为1122,,AP PP AP 成等比数列,所以,112122AP PP PP AP =,利用平几知识,将平面直角坐标系下的距离比化为一维(x 轴)上的长度之比,即12121222x x x x x x +-=-+,即,将(*)式代入可化得,,若2121212122()4()4x x x x x x x x +++=+-244p p p +=+,则有,解的(舍去)0p >244p p p +=+1,4p p ==-若,此时无解。
若,解的,均应舍去。
故。
40p -≤<4p <-4,1p p =-=-1p =例2(2007年高考全国卷)已知椭圆的左、右焦点分别为.过的直线交椭圆于22132x y +=12,F F 1F 两点,过的直线交椭圆于两点,B D 、2F AC 、二、利用(或)实施消元变形。
12121211y y y y y y +=+12121211x x x x x x +=+例2:已知椭圆2212x y +=的右准线为l ,过右焦点F 的直线与椭圆相交于,A B 两点,经过B 点与x 轴平行的直线交右准线于C 点,求证直线AC 过一定点.解题分析:1.1首先用特殊直线探究定点位置。
当AB 垂直x 轴时就可以找到定点位置。
专题五 解答题题型归纳之解析几何题型归纳一、中点弦、轨迹方程考点1.中点弦——点差法1.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),离心率为√22.直线l 过点F且不平行于坐标轴,l 与C 有两交点A ,B ,线段AB 的中点为M . (Ⅰ)求椭圆C 的方程;(Ⅱ)证明:直线OM 的斜率与l 的斜率的乘积为定值;【分析】(Ⅰ)由题可知,c =1,e =ca =√22,再结合a 2=b 2+c 2,解出a 和b 的值即可得解;(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2),联立直线l 的方程和椭圆的方程,消去y 得到关于x 的一元二次方程,写出两根之和与系数的关系;由于M 为线段AB 的中点,利用中点坐标公式可用k 表示点M 的坐标,利用k OM =y Mx M可求出直线OM 的斜率,进而得解;【解答】解:(Ⅰ)由题意可知,c =1,e =c a =√22, ∵a 2=b 2+c 2,∴a =√2,b =1,∴椭圆的方程为x 22+y 2=1.(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 联立{y =k(x −1)x 22+y 2=1,消去y 得,(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0, 则x 1+x 2=4k22k 2+1,∵M 为线段AB 的中点,∴x M =x 1+x 22=2k 22k 2+1,y M =k(x M −1)=−k 2k 2+1,∴k OM =yM x M=−12k ,∴k OM ⋅k l =−12k ×k =−12为定值.2.已知中心在原点,一焦点为F (0,√50)的椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12.(1)求此椭圆的方程;(2)过定点M (0,9)的直线与椭圆有交点,求直线的斜率k 的取值范围.【分析】(1)设椭圆为x 2b +y 2a =1,由已知条件推导出a 2=b 2+50,6b 2a +9b =12,由此能求出椭圆.(2)设过定点M (0,9)的直线为l ,若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);若斜率k 存在,直线l 的方程为:y =kx +9,k ≠0,代入椭圆方程,由△≥0,能求出直线的斜率k 的取值范围. 【解答】解:(1)∵椭圆中心在原点,一焦点为F (0,√50),∴设椭圆为x 2b +y 2a =1,(a >b >0),a 2=b 2+c 2=b 2+50,① 把y =3x ﹣2代入椭圆方程,得 a 2x 2+b 2(3x ﹣2)2=a 2b 2,(a 2+9b 2)x 2﹣12b 2x +4b 2﹣a 2b 2=0,∵椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12,∴6b 2a 2+9b 2=12,整理,得a 2=3b 2,②由①②解得:a 2=75,b 2=25,∴椭圆为:x 225+y 275=1.(2)设过定点M (0,9)的直线为l ,①若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);②若斜率k =0,直线l 方程为y =9,与椭圆无交点; ③若斜率k 存在且不为0时,直线l 的方程为:y =kx +9,k ≠0 联立{y =kx +9x 225+y 275=1,得(3+k 2)x 2+18kx +6=0,△=(18k )2﹣24(3+k 2)≥0,解得k ≥√65或k ≤−√65.综上所述:直线的斜率k 的取值范围k ≥√65或k ≤−√65或k 不存在.考点2.轨迹方程——定义法、相关点法3.已知O 为坐标原点,圆M :x 2+y 2﹣2x ﹣15=0,定点F (﹣1,0),点N 是圆M 上一动点,线段NF 的垂直平分线交圆M 的半径MN 于点Q ,点Q 的轨迹为C . (Ⅰ)求曲线C 的方程;【分析】(Ⅰ)推导出动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆,由此能求出曲线C 的方程.【解答】解:(Ⅰ)由题意知|MQ |+|FQ |=|MN |=4, 又|MF |=2<4,∴由椭圆定义知动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆, 故2a =4,2c =2,∴曲线C 的方程是x 24+y 23=1.4.从抛物线y 2=36x 上任意一点P 向x 轴作垂线段,垂足为Q ,点M 是线段PQ 上的一点,且满足PM →=2MQ →.(1)求点M 的轨迹C 的方程;【分析】(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).利用向量关系,推出{x 0=x ,y 0=3y .,代入已知条件即可得到点M 的轨迹C 的方程.【解答】解:(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).因为PM →=2MQ →,所以(x ﹣x 0,y ﹣y 0)=2(x 0﹣x ,﹣y ),(2分) 即{x 0=x ,y 0=3y .,(3分) 因为点P 在抛物线y 2=36x 上,所以y 02=36x 0,即(3y )2=36x .所以点M 的轨迹C 的方程为y 2=4x . (5分)题型归纳二、弦长、面积考点1.弦长问题1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P (√3,12)在椭圆E 上. (Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |•|MB |=|MC |•|MD | 【解答】(Ⅰ)解:如图,由题意可得{a =2ba 2=b 2+c 23a 2+14b 2=1,解得a 2=4,b 2=1, ∴椭圆E 的方程为x 24+y 2=1;(Ⅱ)证明:设AB 所在直线方程为y =12x +m , 联立{y =12x +mx 24+y 2=1,得x 2+2mx +2m 2﹣2=0.∴△=4m 2﹣4(2m 2﹣2)=8﹣4m 2>0,即−√2<m <√2. 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则x 1+x 2=−2m ,x 1x 2=2m 2−2, |AB |=√1+14|x 1−x 2|=√54√(x 1+x 2)2−4x 1x 2=√54√4m 2−4(2m 2−2)=√10−5m 2.∴x 0=﹣m ,y 0=12x 0+m =m2,即M (−m ,m2),则OM 所在直线方程为y =−12x ,联立{y =−12x x 24+y 2=1,得{x =−√2y =√22或{x =√2y =−√22. ∴C (−√2,√22),D (√2,−√22). 则|MC |•|MD |=(2√2)⋅(2√2)=√(54m 2+52−52√2m)⋅(54m 2+52+52√2m)=√(52−54m 2)2=52−54m 2.而|MA |•|MB |=(12|AB|)2=14(10﹣5m 2)=52−5m 24.∴|MA |•|MB |=|MC |•|MD |. 2.已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t =4,|AM |=|AN |时,求△AMN 的面积; (Ⅱ)当2|AM |=|AN |时,求k 的取值范围.【解答】解:(Ⅰ)方法一、t =4时,椭圆E 的方程为x 24+y 23=1,A (﹣2,0),直线AM 的方程为y =k (x +2),代入椭圆方程,整理可得(3+4k 2)x 2+16k 2x +16k 2﹣12=0,解得x =﹣2或x =−8k 2−63+4k 2,则|AM |=√1+k 2•|2−8k 2−63+4k 2|=√1+k 2•123+4k 2, 由AN ⊥AM ,可得|AN |=√1+(−1k )2•123+4⋅(−1k)2=√1+k 2•123|k|+4|k|,由|AM |=|AN |,k >0,可得√1+k 2•123+4k 2=√1+k 2•123k+4k,整理可得(k ﹣1)(4k 2+k +4)=0,由4k 2+k +4=0无实根,可得k =1,即有△AMN 的面积为12|AM |2=12(√1+1•123+4)2=14449;方法二、由|AM |=|AN |,可得M ,N 关于x 轴对称,由MA ⊥NA .可得直线AM 的斜率为1,直线AM 的方程为y =x +2, 代入椭圆方程x 24+y 23=1,可得7x 2+16x +4=0,解得x =﹣2或−27,M (−27,127),N (−27,−127), 则△AMN 的面积为12×247×(−27+2)=14449;(Ⅱ)直线AM 的方程为y =k (x +√t ),代入椭圆方程, 可得(3+tk 2)x 2+2t √t k 2x +t 2k 2﹣3t =0, 解得x =−√t 或x =−t √tk 2−3√t 3+tk 2,即有|AM |=√1+k 2•|t √tk 2−3√t 3+tk 2−√t |=√1+k 2•6√t3+tk 2,|AN |═√1+1k2•6√t3+tk2=√1+k 2•6√t 3k+t k,由2|AM |=|AN |,可得2√1+k 2•6√t3+tk 2=√1+k 2•6√t3k+t k,整理得t =6k 2−3k k 3−2,由椭圆的焦点在x 轴上,则t >3,即有6k 2−3k k −2>3,即有(k 2+1)(k−2)k −2<0,可得√23<k <2,即k 的取值范围是(√23,2). 考点2.面积问题3.已知点A (0,﹣2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,F 是椭圆的右焦点,直线AF 的斜率为2√33,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.【解答】解:(Ⅰ) 设F (c ,0),由条件知2c=2√33,得c =√3,又ca=√32, 所以a =2,b 2=a 2﹣c 2=1,故E 的方程x 24+y 2=1.….(5分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y =kx ﹣2,设P (x 1,y 1),Q (x 2,y 2) 将y =kx ﹣2代入x 24+y 2=1,得(1+4k 2)x 2﹣16kx +12=0, 当△=16(4k 2﹣3)>0,即k 2>34时,x 1,2=8k±2√4k 2−31+4k 2从而|PQ|=√k 2+1|x 1−x 2|=4√k 2+1⋅√4k 2−31+4k 2又点O 到直线PQ 的距离d =√k 2+1,所以△OPQ 的面积S △OPQ =12d|PQ|=4√4k 2−31+4k 2,设√4k 2−3=t ,则t >0,S △OPQ =4tt 2+4=4t+4t≤1,当且仅当t =2,k =±√72等号成立,且满足△>0,所以当△OPQ 的面积最大时,l 的方程为:y =√72x ﹣2或y =−√72x ﹣2.…(12分)4.设圆x 2+y 2+2x ﹣15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【解答】解:(Ⅰ)证明:圆x 2+y 2+2x ﹣15=0即为(x +1)2+y 2=16, 可得圆心A (﹣1,0),半径r =4,由BE ∥AC ,可得∠C =∠EBD , 由AC =AD ,可得∠D =∠C , 即为∠D =∠EBD ,即有EB =ED , 则|EA |+|EB |=|EA |+|ED |=|AD |=4>|AB |, 故E 的轨迹为以A ,B 为焦点的椭圆,且有2a =4,即a =2,c =1,b =√a 2−c 2=√3, 则点E 的轨迹方程为x 24+y 23=1(y ≠0);(Ⅱ)椭圆C 1:x 24+y 23=1,设直线l :x =my +1,由PQ ⊥l ,设PQ :y =﹣m (x ﹣1),由{x =my +13x 2+4y 2=12可得(3m 2+4)y 2+6my ﹣9=0, 设M (x 1,y 1),N (x 2,y 2), 可得y 1+y 2=−6m3m 2+4,y 1y 2=−93m 2+4,则|MN |=√1+m 2•|y 1﹣y 2|=√1+m 2•√36m (3m 2+4)2+363m 2+4 =√1+m 2•√36(4m 2+4)3m 2+4=12•1+m 23m 2+4,A 到PQ 的距离为d =2=2,|PQ |=2√r 2−d 2=2√16−4m 21+m 2=4√3m 2+4√1+m 2,则四边形MPNQ 面积为S =12|PQ |•|MN |=12•4√3m 2+4√1+m 2•12•1+m 23m 2+4=24•√1+m 2√3m 2+4=24√13+11+m 2,当m =0时,S 取得最小值12,又11+m 2>0,可得S <24•√33=8√3,即有四边形MPNQ 面积的取值范围是[12,8√3).题型归纳三、定值、定点、定直线考点1.定值问题1.设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . 【解答】解:(1)c =√2−1=1, ∴F (1,0), ∵l 与x 轴垂直, ∴x =1,由{x =1x 22+y 2=1,解得{x =1y =√22或{x =1y =−√22,∴A (1.√22),或(1,−√22), ∴直线AM 的方程为y =−√22x +√2,y =√22x −√2, 证明:(2)当l 与x 轴重合时,∠OMA =∠OMB =0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA =∠OMB , 当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x ﹣1),k ≠0, A (x 1,y 1),B (x 2,y 2),则x 1<√2,x 2<√2, 直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =y 1x 1−2+y 2x 2−2, 由y 1=kx 1﹣k ,y 2=kx 2﹣k 得k MA +k MB =2kx 1x 2−3k(x 1+x 2)+4k (x 1−2)(x 2−2), 将y =k (x ﹣1)代入x 22+y 2=1可得(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0,∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2−22k 2+1, ∴2kx 1x 2﹣3k (x 1+x 2)+4k =12k 2+1(4k 3﹣4k ﹣12k 3+8k 3+4k )=0 从而k MA +k MB =0,故MA ,MB 的倾斜角互补, ∴∠OMA =∠OMB , 综上∠OMA =∠OMB . 2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,直线2x +y −6√3=0与直线MN 垂直,垂足为B 点,且点N 是线段MB 的中点. (1)求椭圆C 的方程;(2)如图,若直线l :y =kx +m 与椭圆C 交于E ,F 两点,点G 在椭圆C 上,且四边形OEGF 为平行四边形,求证:四边形OEGF 的面积S 为定值.【解答】解:(1)由题意知,椭圆C 的左顶点M (﹣a ,0),上顶点N (0,b ),直线MN 的斜率k =b a=12,得a =2b ,因为点N 是线段MB 的中点,∴点B 的坐标是B (a ,2b ), 由点B 在直线2x +y −6√3=0上,∴2a +2b =3√2,且a =2b , 解得b =√3,a =2√3, ∴椭圆C 的方程为x 212+y 23=1.(2)证明:设E (x 1,y 1),F (x 2,y 2),G (x 0,y 0),将y =kx +m 代入x 212+y 23=1,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2﹣12=0, 则x 1+x 2=−8m1+4k 2,x 1⋅x 2=4m 2−121+4k 2, ∴y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2, ∵四边形OEGF 为平行四边形, ∴OG →=OE →+OF →=(x 1+x 2,y 1+y 2), 得G(−8km1+4k 2,2m1+4k 2),将G 点坐标代入椭圆C 方程得m 2=34(1+4k 2),点O 到直线EF 的距离为d =√1+k 2,EF =√1+k 2|x 1−x 2|,∴平行四边形OEGF 的面积为S =d •|EF |=|m ||x 1﹣x 2|=|m|√(x 1+x 2)2−4x 1x 2 =4|m|√3−m 2+12k 21+4k 2=4|m|√3m 21+4k 2=4√3m 21+4k 2=3√3.故平行四边形OEGF 的面积S 为定值3√3.考点2.定点问题3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),点M (2√63,﹣1)在椭圆上,椭圆C 的离心率为12.(1)求椭圆的方程;(2)设点A 为椭圆长轴的左端点,P ,Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP ,AQ 斜率分别为k 1,k 2,若k 1k 2=−14,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.【解答】解:(1)由已知可得:{83a +1b =1c a =12a 2=b 2+c 2,解得a 2=4,b 2=3, 所以椭圆的方程为x 24+y 23=1;(2)因为A (﹣2,0),设P (x 1,y 1),Q (x 2,y 2), 当直线的斜率存在时,设直线PQ 的方程为:y =kx +m ,联立方程组{y =kx +m x 24+y 23=1,消去y 可得:(3+4k 2)x 2x 2+8mkx +4m 2﹣12=0,所以x1+x2=−8mk3+4k2,x1x2=4m2−123+4k2,因为k1k2=−14,所以k1k2=y1x1+2⋅y2x2+2=(kx1+m)(kx2+m)(x1+2)(x2+2)=k2x1x2+mk(x1+x2)+m2 x1x2+2(x1+x2)+4=−14所以4m 2k2−12k2−8k2m2+3m2+4m2k24m2−12−16mk+12+16k2=−14,所以m2﹣mk﹣2k2=0,所以(m﹣2k)(m+k)=0,所以m=2k或m=﹣k,当m=2k时,PQ:y=k(x+2),此时直线过定点(﹣2,0)不符合题意,当m=﹣k时,PQ:y=k(x﹣1),此时过定点(1,0),当直线的斜率不存在时,PQ的方程为:x=1,所以P,Q的坐标为(1,32),(1,−32),所以k AP⋅k AQ=321−(−2)⋅−321−(−2)=−14,满足要求,综上可知:直线PQ过定点(1,0).4.已知点F1(−√2,0),圆F2:(x−√2)2+y2=16,点M是圆上一动点,MF1的垂直平分线与MF2交于点N.(1)求点N的轨迹方程;(2)设点N的轨迹为曲线E,过点P(0,1)且斜率不为0的直线l与E交于A,B 两点,点B关于y轴的对称点为B′,证明直线AB′过定点,并求△P AB′面积的最大值.【解答】解:(1)由已知得:|NF1|=|NM|,∴|NF1|+|NF2|=|MN|+|NF2|=|4,又|F1F2|=2√2,∴点N的轨迹是以F1,F2为焦点,长轴长等于4的椭圆,∴2a =4,2c =2√2,即a =2,c =√2, ∴b 2=a 2﹣c 2=4﹣2=2, ∴点N 的轨迹方程是x 24+y 22=1.证明:(2)设直线AB :y =kx +1,(k ≠0),设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则B ′(﹣x 2,y 2), 联立直线AB 与椭圆得{x 2+2y 2=4y =kx +1,得(1+2k 2)x 2+4kx ﹣2=0, 显然△=8(1+4k 2)>0, ∴x 1+x 2=−4k 1+2k ,x 1x 2=−21+2k ∴k AB ′=y 1−y2x 1+x 2,∴直线AB ′:y ﹣y 1=y 1−y2x 1+x 2(x ﹣x 1),∴令x =0,得y =x 1y 2+x 2y 1x 1+x 2=x 1(kx 2+1)+x 2(kx 1+1)x 1+x 2=2kx 1x 2x 1+x 2+1=2,∴直线AB ′过定点Q (0,2), ∴△P AB ′的面积S =12|x 1+x 2|=2|k|1+2k =21|k|+2|k|≤√22, 当且仅当k =±√22时,等号成立. ∴△P AB ′的面积的最大值是√22.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形. (Ⅰ)求椭圆的方程;(Ⅱ)过点S(0,−13)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以AB 为直径的圆恒过点Q ?若存在求出点Q 的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)由椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,得b =c ,又斜边长为2,即2c =2,解得c =1,故a =√2c =√2,所以椭圆方程为x 22+y 2=1.(Ⅱ)当l 与x 轴平行时,以AB 为直径的圆的方程为x 2+(y +13)2=169; 当l 为y 轴时,以AB 为直径的圆的方程为x 2+y 2=1,由{x 2+(y +13)2=169x 2+y 2=1⇒{x =0y =1, 故若存在定点Q ,则Q 的坐标只可能为Q (0,1).下证明Q (0,1)为所求:若直线l 斜率不存在,上述已经证明.设直线l :y =kx −13,A(x 1,y 1),B(x 2,y 2),由{y =kx −13x 2+2y 2−2=0⇒(9+18k 2)x 2−12kx −16=0,△=144k 2+64(9+18k 2)>0,x 1+x 2=12k18k 2+9,x 1x 2=−1618k 2+9, QA →=(x 1,y 1−1),QB →=(x 2,y 2−1),QA →⋅QB →=x 1x 2+(y 1−1)(y 2−1)=(1+k 2)x 1x 2−4k3(x 1+x 2)+169=(1+k 2)−169+18k 2−4k 3⋅12k9+18k 2+169=0,∴QA →⊥QB →,即以AB 为直径的圆恒过点Q (0,1).6.已知直线l 1是抛物线C :x 2=2py (p >0)的准线,直线l 2:3x ﹣4y ﹣6=0,且l 2与抛物线C 没有公共点,动点P 在抛物线C 上,点P 到直线l 1和l 2的距离之和的最小值等于2.(Ⅰ)求抛物线C 的方程;(Ⅱ)点M 在直线l 1上运动,过点M 做抛物线C 的两条切线,切点分别为P 1,P 2,在平面内是否存在定点N ,使得MN ⊥P 1P 2恒成立?若存在,请求出定点N 的坐标,若不存在,请说明理由.【解答】解:(Ⅰ)作P A ,PB 分别垂直l 1和l 2,垂足为A ,B ,抛物线C 的焦点为F(0,p2), 由抛物线定义知|P A |=|PF |,所以d 1+d 2=|P A |+|PB |=|PF |+|PB |, 显见d 1+d 2的最小值即为点F 到直线l 2的距离,故d =|−2p−6|5=2⇒p =2,所以抛物线C 的方程为x 2=4y .(Ⅱ)由(Ⅰ)知直线l 1的方程为y =﹣1,当点M 在特殊位置(0,﹣1)时,显见两个切点P 1,P 2关于y 轴对称,故要使得MN ⊥P 1P 2,点N 必须在y 轴上.故设M (m ,﹣1),N (0,n ),P 1(x 1,14x 12),P 2(x 2,14x 22),抛物线C 的方程为y =14x 2,求导得y ′=12x ,所以切线MP 1的斜率k 1=12x 1,直线MP 1的方程为y −14x 12=12x 1(x −x 1),又点M 在直线MP 1上,所以−1−14x 12=12x 1(m −x 1),整理得x 12−2mx 1−4=0, 同理可得x 22−2mx 2−4=0,故x 1和x 2是一元二次方程x 2﹣2mx ﹣4=0的根,由韦达定理得{x 1+x 2=2m x 1x 2=−4,P 1P 2→⋅MN →=(x 2−x 1,14x 22−14x 12)⋅(−m ,n +1)=14(x 2−x 1)[﹣4m +(n +1)(x 2+x 1)]=14(x 2−x 1)[−4m +2m(n +1)]=12m(x 2−x 1)(n −1),可见n =1时,P 1P 2→⋅MN →=0恒成立,所以存在定点N (0,1),使得MN ⊥P 1P 2恒成立.考点3.定直线问题7.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M(√2,1),且左焦点为F 1(−√2,0) (Ⅰ)求椭圆C 的方程;(Ⅱ)当过点P (4,1)的动直线l 与椭圆C 相交于两不同点A ,B 时,在线段AB 上取点Q ,满足|AP →|•|QB →|=|AQ →|•|PB →|,证明:点Q 总在某定直线上. 【解答】解:(Ⅰ)由题意得{c 2=22a 2+1b 2=1c 2=a 2−b 2,解得a 2=4,b 2=2, 所以椭圆C的方程为x 24+y 22=1.(Ⅱ)设点Q 、A 、B 的坐标分别为(x ,y ),(x 1,y 1),(x 2,y 2). 由题设知|AP →|,|PB →|,|AQ →|,|QB →|均不为零,记λ=|AP →||PB →|=|AQ →||QB →|,则λ>0且λ≠1又A ,P ,B ,Q 四点共线,从而AP →=−λPB →,AQ →=λQB →于是4=x 1−λx 21−λ,1=y 1−λy 21−λ,x =x 1+λx 21+λ,y =y 1+λy 21+λ从而x 12−λ2x 221−λ2=4x①,y 12−λ2y 221−λ2=y②,又点A 、B 在椭圆C 上,即x 12+2y 12=4 ③,x 22+2y 22=4 ④, ①+②×2并结合③、④得4x +2y =4, 即点Q (x ,y )总在定直线2x +y ﹣2=0上.8.已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切. (1)求p 的值;(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN →=MA →+MB →,求证:点N 在定直线上,并求该定直线的方程. 【解答】解:(1)依题意设直线l 1的方程为y =x +p2,由已知得:圆C 2:(x +1)2+y 2=2的圆心C 2(﹣1,0),半径r =√2, 因为直线l 1与圆C 2相切, 所以圆心到直线l 1:y =x+p2的距离d=|−1+p 2|22=√2,即|−1+p2|2=√2,解得p =6或p =﹣2(舍去).所以p =6;(2)解法一:依题意设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y , 所以y =x 212,所以y ′=x6,设A(x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1.令x =0,y =−16x 12+y 1=−16×12y 1+y 1=−y 1,即l 2交y 轴于B 点坐标为(0,−y 1),所以MA →=(x 1−m ,y 1+3),(9分)MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3).设N 点坐标为(x ,y ),则y =3, 所以点N 在定直线y =3上.解法二:设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y ,① 设A(x 1,y 1),以A 为切点的切线l 2的方程为y =k(x −x 1)+y 1②,联立①②得:x 2=12[k(x −x 1)+112x 12],因为△=144k 2−48kx 1+4x 12=0,所以k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1. 令x =0,得切线l 2交y 轴的B 点坐标为(0,−y 1), 所以MA →=(x 1−m ,y 1+3),MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3),设N 点坐标为(x ,y ),则y =3,所以点N 在定直线y =3上.题型归纳四、探索性问题考点1.是否存在定值1.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是√22,点P (0,1)在短轴CD 上,且PC →•PD →=−1(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA →•OB →+λPA →•PB →为定值?若存在,求λ的值;若不存在,请说明理由.【解答】解:(Ⅰ)根据题意,可得C (0,﹣b ),D (0,b ),又∵P (0,1),且PC →•PD →=−1, ∴{1−b 2=−1c a=√22a 2−b 2=c 2,解得a =2,b =√2,∴椭圆E 的方程为:x 24+y 22=1;(Ⅱ)结论:存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3. 理由如下:对直线AB 斜率的存在性进行讨论:①当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1, A (x 1,y 1),B (x 2,y 2),联立{x 24+y 22=1y =kx +1,消去y 并整理得:(1+2k 2)x 2+4kx ﹣2=0, ∵△=(4k )2+8(1+2k 2)>0, ∴x 1+x 2=−4k1+2k 2,x 1x 2=−21+2k 2,从而OA →•OB →+λPA →•PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1﹣1)(y 2﹣1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =(−2λ−4)k 2+(−2λ−1)1+2k 2=−λ−11+2k 2−λ﹣2.∴当λ=1时,−λ−11+2k 2−λ﹣2=﹣3,此时OA →•OB →+λPA →•PB →=−3为定值;②当直线AB 的斜率不存在时,直线AB 即为直线CD ,此时OA →•OB →+λPA →•PB →=OC →⋅OD →+PC →⋅PD →=−2﹣1=﹣3;故存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3.2.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)短轴长为2,F 是C 的左焦点,A ,B 是C 上关于x轴对称的两点,△ABF 周长的最大值为8. (1)求椭圆C 的标准方程;(2)斜率为k 且不经过原点O 的直线l 与椭圆C 交于M ,N 两点,若直线OM ,ON 的斜率分别为k 1,k 2,且k 2=k 1k 2,求直线l 的斜率,并判断|OM |2+|ON |2的值是否为定值?若为定值,试求出此定值;否则,说明理由.【分析】(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意可得|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,进而可得△ABF 周长取最大值4a =8,解得a ,b ,进而可得椭圆C 的标准方程. (2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),联立直线l 与椭圆的方程,可得关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,在化简k 2=k 1k 2,解得k ,再计算|OM |2+|ON |2,即可得答案.【解答】解:(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意|AH |≤|AF 2|,则|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,当AB 过右焦点F 2时,△ABF 周长取最大值4a =8,∴a =2, 且b =1,∴椭圆C 的标准方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),由{x 24+y 2=1y =kx +m,得(1+4k 2)x 2+8kmx +4(m 2﹣1)=0,∴x 1+x 2=−8km 1+4k2,x 1x 2=4(m 2−1)1+4k2,由题知k 2=k 1k 2=y 1y 2x 1x 2=(kx 1+m)(kx 2+m)x 1x 2=k 2+km(x 1+x 2)+m 2x 1x 2, ∴km(x 1+x 2)+m 2=0,∴−8k 2m 21+4k 2+m 2=0,∵m 2=0(舍去)或k 2=14, 此时(x 1+x 2)2=(−8km 1+4k2)2=4m 2,x 1x 2=4(m 2−1)1+4k2=2(m 2−1),则|OM|2+|ON|2=x 12+y 12+x 22+y 22=x 12+1−x 124+x 22+1−x 224=34(x 12+x 22)+2=34[(x 1+x 2)2−2x 1x 2]+2=34[4m 2−4(m 2−1)]+2=5, 故直线l 的斜率为k =±12,|OM |2+|ON |2=5. 考点2.是否存在定点3.已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l过点(m3,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=−2kb9+k2,则x M=x1+x22=−kb9+k2,y M=kx M+b=9b9+k2,于是直线OM的斜率k OM=y Mx M =−9k,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(m3,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m−k3m,∴k2m2>9(m−k3m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM 的方程为y =−9kx ,设P 的横坐标为x P , 由{y =−9k x9x 2+y 2=m 2得x P 2=k 2m 29k 2+81,即x P =3√9+k 2将点(m3,m )的坐标代入l 的方程得b =m(3−k)3,即l 的方程为y =kx +m(3−k)3,将y =−9k x ,代入y =kx +m(3−k)3,得kx +m(3−k)3=−9k x 解得x M =k(k−3)m 3(9+k 2),四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M , 于是3√9+k2=2×k(k−3)m 3(9+k 2),解得k 1=4−√7或k 2=4+√7, ∵k i >0,k i ≠3,i =1,2,∴当l 的斜率为4−√7或4+√7时,四边形OAPB 能为平行四边形.4.已知椭圆C :x 2a +y 2b =1(a >b >0)的离心率为√22,焦距为2c ,直线bx ﹣y +√2a =0过椭圆的左焦点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线bx ﹣y +2c =0与y 轴交于点P ,A ,B 是椭圆C 上的两个动点,∠APB 的平分线在y 轴上,|P A |≠|PB |.试判断直线AB 是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.【分析】(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,又因为离心率为√22,从而求出b =2,又因为a 2=b 2+c 2,求出a 的值,从而求出椭圆C 的标准方程;(Ⅱ)先求出点P 的坐标,设直线AB 的方程为y =kx +m ,联立方程组,利用根与系数的关系,设A (x 1,y 1),B (x 2,y 2),得到k 1+k 2=8k(m−1)2,又因为∠APB 的平分线在y轴上,所以k 1+k 2=0,从而求出m 的值,得到直线AB 的方程为y =kx +1过定点坐标. 【解答】解:(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,∴ca=√2b =√22,解得b =2, 又∵a 2=b 2+c 2=b 2+12a 2,解得a =2√2, ∴椭圆C 的标准方程为:x 28+y 24=1;(Ⅱ)由(Ⅰ)得c =√22a =2,∴直线bx ﹣y +2c =0的方程为2x ﹣y +4=0, 令x =0得,y =4,即P (0,4), 设直线AB 的方程为y =kx +m ,联立方程组{y =kx +mx 28+y 24=1,消去y 得,(2k 2+1)x 2+4kmx +2m 2﹣8=0, 设A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=−4km 2k 2+1,x 1x 2=2m 2−82k 2+1,则直线P A 的斜率k 1=y 1−4x 1=k +m−4x 1, 则直线PB 的斜率k 2=y 2−4x 2=k +m−4x 2, 所有k 1+k 2=2k +(m−4)(x 1+x 2)x 1x 2=2k +(m−4)(−4km)2m 2−8=8k(m−1)m 2−4,∵∠APB 的平分线在y 轴上,∴k 1+k 2=0,即8k(m−1)m 2−4=0,又|P A |≠|PB |,∴k ≠0,∴m =1,∴直线AB 的方程为y =kx +1,过定点(0,1). 考点3.是否存在圆5.已知抛物线C :x 2=2py (p >0)的焦点为F ,M (﹣2,y 0)是C 上一点,且|MF |=2. (Ⅰ)求C 的方程;(Ⅱ)过点F 的直线与抛物线C 相交于A ,B 两点,分别过点A ,B 两点作抛物线C 的切线l 1,l 2,两条切线相交于点P ,点P 关于直线AB 的对称点Q ,判断四边形P AQB 是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由. 【解答】解:(Ⅰ)抛物线C :x 2=2py (p >0)的焦点为F (0,p2),准线方程为y =−p2,M (﹣2,y 0)是C 上一点,且|MF |=2,可得4=2py 0,y 0+p2=2, 解得p =2,即抛物线的方程为x 2=4y ; (Ⅱ)由F (0,1),设l AB :y =kx +1, 代入x 2=4y 中,得x 2﹣4kx ﹣4=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k ,x 1•x 2=﹣4.所以|AB|=√1+k2•|x1﹣x2|=√1+k2•√16k2+16=4(k2+1).因为C:x2=4y,即y=x 24,所以y′=12x.所以直线l1的斜率为k1=12x1,直线l2的斜率为k2=12x2.因为k1k2=x1x24=−1,所以P A⊥PB,即△P AB为直角三角形.点P关于直线AB的对称点Q,即有QA⊥QB,即四点Q,A,B,P共圆.四边形P AQB存在外接圆,所以外接圆的圆心为线段AB的中点,线段AB是直径.因为|AB|=4(k2+1),所以当k=0时线段AB最短,最短长度为4,此时圆的半径最小,且为2,面积最小,最小面积为4π.6.已知平面内一个动点M到定点F(3,0)的距离和它到定直线l:x=6的距离之比是常数√22.(Ⅰ)求动点M的轨迹T的方程;(Ⅱ)若直线l:x+y﹣3=0与轨迹T交于A,B两点,且线段AB的垂直平分线与T交于C,D两点,试问A,B,C,D是否在同一个圆上?若是,求出该圆的方程;若不是,说明理由.【分析】(Ⅰ)设M的坐标,由题意得出等式,化简得M的轨迹方程;(Ⅱ)由题意求出A,B的坐标,进而求出AB的中垂线方程,与椭圆联立求出C,D的坐标,进而求出CD的中点E的坐标,求出EA,EB,CD之间的关系,进而求出A,B,C,D是在同一个圆上,且圆心,半径都可以求出.【解答】解:(Ⅰ)设动点M (x ,y ),由题意知:√(x−3)2+y 2|x−6|=√22,整理得:x 218+y 29=1,所以动点M 的轨迹T 的方程为:x 218+y 29=1;(Ⅱ)将直线与椭圆联立:{x +y −3=0x 218+y 29=1,解得:A (0,3),B (4,﹣1),所以AB 的中点N (2,1),k CD =1,∴AB 的中垂线CD 的方程为:x ﹣y ﹣1=0,设C (x ,y ),D (x ',y '), 联立直线CD 与椭圆的方程整理:3x 2﹣4x ﹣16=0,x +x '=43,xx '=−163,∴CD =2√(x +x ′)2−4xx′=√2⋅√(43)2−4⋅(−163)=4√263, 设CD 的中点为E ,则|DE |=|CE |=12|CD|,又x E =x+x′2=23,y E =x E ﹣1=−13,所以E (23,−13),∴|EA |=√(23)2+(−13−3)2=2√263=12|CD|=|EB|,所以A ,B ,C ,D 是在同一个圆上,且以E 为圆心,以2√263为半径的圆上, 此时圆的方程:(x −23)2+(y +13)2=1049.考点4.是否存在直线7.已知抛物线y 2=2px (p >0)过点P (m ,2),且P 到抛物线焦点的距离为2,直线l 过点Q (2,﹣2),且与抛物线相交于A ,B 两点. (1)求抛物线的方程;(2)若点Q 恰为线段AB 的中点,求直线l 的方程;(3)过点M (﹣1,0)作直线MA 、MB 分别交抛物线于C ,D 两点,请问C ,D ,Q 三点能否共线?若能,求出直线l 的斜率k ;若不能,请说明理由.【解答】解:(1)抛物线y 2=2px (p >0)过点P (m ,2),可得2pm =4,即pm =2, P 到抛物线焦点的距离为2,可得√(m −p2)2+4=2,即m =p2, 解得p =2,m =1,则抛物线方程为y 2=4x ;(2)直线l 过点Q (2,﹣2),可设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0, 设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=4k,由点Q (2,﹣2)恰为线段AB 的中点,可得4k=−4,即k =﹣1,满足△>0,可得直线l 的方程为y =﹣x ;(3)设(y 124,y 1),B (y 224,y 2),C (y 324,y 3),D (y 424,y 4),设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0,y 1+y 2=4k,y 1y 2=−8k+8k,由M ,A ,C 三点共线可得y1y 124+1=y 3−y 1y 324−y 124=4y3+y 1,化为y 1y 3=4,即y 3=4y 1,同理可得y 4=4y 2,假设C ,D ,Q 三点共线,可得y 3+2y 324−2=y 4−y 3y 424−y 324即y 3y 4+2(y 3+y 4)+8=0,可得2y 1y 2+y 1+y 2y 1y 2+1=0,即k−4k−4+1−2k−2+1=0,解得k =−23,所以当直线l 的斜率为−23,C ,D ,Q 三点共线.8.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为2,且过点(1,√22).(1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M ,N 两点,问是否存在直线l ,使得F 为△BMN 的垂心,若存在,求出直线l 的方程;若不存在,说明理由.【分析】(1)由题意知焦距和过的点的坐标及a ,b ,c 之间的关系求出椭圆的方程;(2)由(1)可得B ,F 的坐标假设存在这样的直线满足体积设直线方程,求出两根之和及两根之积,由垂心可得垂直关系,即数量积为0求出直线l 的方程.【解答】解:(1)由题意知:2c =2,1a +12b =1,a 2=b 2+c 2,解得:a 2=2,b 2=1, 所以椭圆的方程为:x 22+y 2=1;(2)假设存在这样的直线l ,使得F 为△BMN 的垂心,由(1)得B (0,1),F (1,0),∴k BF =﹣1,由题意可得l ⊥BF ,NF ⊥BM ,设直线l 的方程为:y =x +m ,M (x ,y ),N (x ',y '), 联立直线与椭圆的方程整理得:3x 2+4mx +2m 2﹣2=0,∴△=16m 2﹣4×3×(2m 2﹣2)>0,可得m 2<3,即−√3<m <√3,且x +x '=−4m 3,xx '=2m 2−23,yy '=xx '+m (x +x ')+m 2 ∵FN →⋅BM →=(x '﹣1,y ')(x ,y ﹣1)=xx '﹣x +yy '﹣y '=xx '+yy '﹣x ﹣(x '+m )=2xx '+(m ﹣1)(x +x ')+m 2﹣m =2•2m 2−23−(m ﹣1)⋅4m 3+m 2﹣m =3m 2+m−43, 因为NF ⊥BM ,所以NF →⋅BM →=0,所以3m 2+m ﹣4=0,解得:m =1或m =−43,当m =1过了B 点,所以舍去所以存在直线l:y=x−43符合F为△BMN的垂心.。
解析几何小题方法总结解析几何小题的方法总结如下:1. 将题目中的几何图形转化为代数表达式进行求解。
这种方法适用于熟悉几何图形的性质,并能将其转化为代数表达式求解的情况。
例如,将直角三角形的边长表示为变量,然后利用勾股定理进行联立方程求解。
2. 利用几何图形的对称性质进行推导。
这种方法适用于几何图形具有对称性的情况。
例如,求一个多边形的对角线个数,可以根据图形的对称性质进行推导,而不需要具体计算。
3. 利用相似三角形进行比较和推导。
这种方法适用于几何图形中存在相似三角形的情况。
例如,利用相似三角形的边长比例关系求解未知边长。
4. 利用等腰三角形或等边三角形的性质进行推导。
这种方法适用于利用等腰三角形或等边三角形的性质求解问题的情况。
例如,利用等腰三角形的底角相等的性质进行推导。
5. 利用圆的性质进行推导。
这种方法适用于利用圆的性质进行求解的问题。
例如,利用圆的弧度定义和圆心角的性质进行推导。
6. 利用平行线与等角线的性质进行推导。
这种方法适用于利用平行线和等角线的性质进行推导的情况。
例如,利用平行线的性质推导出两个角相等或对应角相等。
7. 利用向量的性质进行推导。
这种方法适用于利用向量的性质进行推导的情况。
例如,利用向量的加减法和数量积的定义进行推导。
总之,解析几何小题的求解方法主要依靠几何图形的性质和代数表达式的推导,需要熟练掌握各种几何图形的性质和定理,以及代数运算和方程的求解技巧。
同时,灵活运用不同方法结合题目的特点进行求解,可以更有效地解决问题。
高考数学解析几何题如何运用几何知识解题解析几何是高考数学中的重要内容,也是一道考察学生运用几何知识解题能力的重要题型。
本文将以高考数学解析几何题为例,介绍如何运用几何知识解题。
一、直线与平面的交点解析几何中,直线与平面的交点是较为常见的题型。
当需要求解直线与平面的交点时,我们可以先列出直线和平面的方程,然后联立求解。
例如,已知直线L:2x+3y-4=0与平面α:x+y+z-6=0相交,求交点的坐标。
解:首先,我们可以化简直线和平面的方程为参数方程:直线L:x=2-3t, y=t, z=t平面α:x+y+z=6然后,将直线的参数方程代入平面的方程,得到:(2-3t) + t + t = 64t = 4t = 1将t=1代回直线的参数方程,得到交点的坐标为:x = 2-3(1) = -1z = 1所以,交点的坐标为(-1, 1, 1)。
二、直线与平面的位置关系除了求解交点外,直线与平面的位置关系也是解析几何中常见的题型。
当需要判断直线与平面的位置关系时,我们可以比较直线与平面的方程的系数。
例如,已知直线L:2x-y+1=0与平面α:x-y+z+2=0的位置关系是相交,求直线L在平面α上的投影长度。
解:首先,我们可以化简直线和平面的方程为参数方程:直线L:x=1+t, y=2t+1, z=0平面α:x=y-2z-2然后,将直线的参数方程代入平面的方程,得到:(1+t) = (2t+1)-2(0)-21+t = 2t-1t = 2将t=2代回直线的参数方程,得到直线L在平面α上的交点坐标为:x = 1+2 = 3y = 2(2)+1 = 5所以,直线L在平面α上的交点坐标为(3, 5, 0)。
三、直线与直线的位置关系除了与平面的位置关系外,直线与直线的位置关系也是解析几何中常见的题型。
当需要判断直线与直线的位置关系时,我们可以比较两条直线的方程的系数。
例如,已知直线L1:2x+y-1=0与直线L2:x+2y-3=0的位置关系是相交,求交点坐标。
解析几何题怎么解高考解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题), 共计30分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查直线, 圆, 圆锥曲线, 参数方程和极坐标系中的基础知识. 解答题重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 求解有时还要用到平几的基本知识,这点值得考生在复课时强化.例1 已知点T 是半圆O 的直径AB 上一点,AB=2、OT=t (0<t<1),以AB 为直腰作直角梯形B B A A '',使A A '垂直且等于AT ,使B B '垂直且等于BT ,B A ''交半圆于P 、Q 两点,建立如图所示的直角坐标系. (1)写出直线B A ''的方程; (2)计算出点P 、Q 的坐标;(3)证明:由点P 发出的光线,经AB 反射后,反射光线通过点Q. 讲解: 通过读图, 看出'',B A 点的坐标. (1 ) 显然()t A-1,1', (),,‘t B +-11 于是 直线B A '' 的方程为1+-=tx y ;(2)由方程组⎩⎨⎧+-==+,1,122tx y y x 解出),(10P 、),(2221112t t t t Q +-+; (3)tt k PT 1001-=--=, t t t t t tt t t k QT11112011222=--=-+-+-=)(. 由直线PT 的斜率和直线QT 的斜率互为相反数知,由点P 发出的光线经点T 反射,反射光线通过点Q.需要注意的是, Q 点的坐标本质上是三角中的万能公式, 有趣吗?例2 已知直线l 与椭圆)0(12222>>=+b a by a x 有且仅有一个交点Q ,且与x 轴、y 轴分别交于R 、S ,求以线段SR 为对角线的矩形ORPS 的一个顶点P 的轨迹方程. 讲解:从直线l 所处的位置, 设出直线l 的方程,由已知,直线l 不过椭圆的四个顶点,所以设直线l 的方程为).0(≠+=k m kx y 代入椭圆方程,222222b a y a x b =+ 得 .)2(22222222b a m kmx x k a x b =+++ 化简后,得关于x 的一元二次方程.02)(222222222=-+++b a m a mx ka x b k a于是其判别式).(4))((4)2(222222222222222m b k a b a b a m a b k a m ka -+=-+-=∆ 由已知,得△=0.即.2222m b k a =+ ① 在直线方程m kx y +=中,分别令y=0,x=0,求得).,0(),0,(m S kmR -令顶点P 的坐标为(x ,y ), 由已知,得⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧=-=.,.,y m x y k m y k m x 解得代入①式并整理,得 12222=+yb x a , 即为所求顶点P 的轨迹方程.方程12222=+yb x a 形似椭圆的标准方程, 你能画出它的图形吗?例3已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23(1)求双曲线的方程; (2)已知直线)0(5≠+=k kx y 交双曲线于不同的点C ,D 且C ,D 都在以B 为圆心的圆上,求k的值.讲解:∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b cabb a ab d .故所求双曲线方程为 .1322=-y x(2)把33522=-+=y x kx y 代入中消去y ,整理得 07830)31(22=---kx x k .设CD y x D y x C ),,(),,(2211的中点是),(00y x E ,则 012000220115515,.21313BE y x x k x y kx k k k x k++==⋅=+===--- ,000=++∴k ky x 即7,0,03153115222=∴≠=+-+-k k k kk k k 又 故所求k=±7. 为了求出k 的值, 需要通过消元, 想法设法建构k 的方程.例4 已知椭圆C 的中心在原点,焦点F 1、F 2在x 轴上,点P 为椭圆上的一个动点,且∠F 1PF 2的最大值为90°,直线l 过左焦点F 1与椭圆交于A 、B 两点,△ABF 2的面积最大值为12. (1)求椭圆C 的离心率; (2)求椭圆C 的方程. 讲解:(1)设112212||,||,||2PF r PF r F F c ===, 对,21F PF ∆ 由余弦定理, 得1)2(2441244242)(24cos 22122212221221221212221121-+-≥--=--+=-+=∠r r c a r r c a r r c r r r r r r c r r PF F 0212=-=e ,解出 .22=e (2)考虑直线l 的斜率的存在性,可分两种情况: i) 当k 存在时,设l 的方程为)(c x k y +=………………①椭圆方程为),(),,(,122112222y x B y x A b y a x =+ 由.22=e 得 2222,2c b c a ==. 于是椭圆方程可转化为 222220x y c +-=………………②将①代入②,消去y 得 02)(22222=-++c c x k x ,整理为x 的一元二次方程,得 0)1(24)21(22222=-+++k c x ck x k .则x 1、x 2是上述方程的两根.且221221122||k k c x x ++=-,2212221)1(22||1||k k c x x k AB ++=-+=,AB 边上的高,1||2sin ||22121k k c F BF F F h +⨯=∠=c k k k k c S 21||)211(2221222+++= 2.==<ii) 当k 不存在时,把直线c x -=代入椭圆方程得2,||,2y AB S =±== 由①②知S 的最大值为22c 由题意得22c =12 所以2226b c == 2122=a故当△ABF 2面积最大时椭圆的方程为:.12621222=+y x下面给出本题的另一解法,请读者比较二者的优劣: 设过左焦点的直线方程为:c my x-=…………①(这样设直线方程的好处是什么?还请读者进一步反思反思.)椭圆的方程为:),(),,(,122112222y x B y x A by a x =+由.22=e 得:,,22222c b c a ==于是椭圆方程可化为:022222=-+c y x ……② 把①代入②并整理得:02)2(222=---c mcy y m 于是21,y y 是上述方程的两根.21|||AB y y ==-2)2(441222222++++=m m c c m m2)1(2222++=m m c , AB 边上的高212mc h +=,也可这样求解:||||212121y y F F S -⋅=||||21x x k c -⋅⋅=从而222222)2(122122)1(2221||21++=+⨯++⨯==m m c m c m m c h AB S .221111222222c m m c ≤++++=当且仅当m=0取等号,即.22maxc S =由题意知1222=c , 于是 212,26222===a c b . 故当△ABF 2面积最大时椭圆的方程为:.12621222=+y x例5 已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 相交于A 、B 两点,且线段AB 的中点在直线02:=-yx l 上.(1)求此椭圆的离心率;(2 )若椭圆的右焦点关于直线l 的对称点的在圆422=+y x上,求此椭圆的方程.讲解:(1)设A 、B 两点的坐标分别为⎪⎩⎪⎨⎧=++-=11).,(),,(22222211b y a x x y y x B y x A ,则由 得 02)(2222222=-+-+b a a x a x b a ,根据韦达定理,得,22)(,2222212122221b a b x x y y b a a x x +=++-=++=+∴线段AB 的中点坐标为(222222,b a b b a a ++).由已知得2222222222222)(22,02c a c a b a ba b b a a =∴-==∴=+-+,故椭圆的离心率为22=e .(2)由(1)知,c b =从而椭圆的右焦点坐标为),0,(b F 设)0,(b F 关于直线02:=-y x l 的对称点为,02221210),,(000000=⨯-+-=⋅--y b x b x y y x 且则解得 b y b x 545300==且由已知得4,4)54()53(,422222=∴=+∴=+b b b y x ,故所求的椭圆方程为14822=+y x .例6 已知⊙M :x Q y x是,1)2(22=-+轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点,(1)如果324||=AB ,求直线MQ 的方程;(2)求动弦AB 的中点P 的轨迹方程.讲解:(1)由324||=AB ,可得,31)322(1)2||(||||2222=-=-=AB MA MP 由射影定理,得 ,3|||,|||||2=⋅=MQ MQ MP MB 得 在Rt △MOQ 中,523||||||2222=-=-=MO MQ OQ ,故55-==a a 或,所以直线AB 方程是;0525205252=+-=-+y x y x 或(2)连接MB ,MQ ,设),0,(),,(a Q y x P 由点M ,P ,Q 在一直线上,得(*),22xy a -=- 由射影定理得|,|||||2MQ MP MB ⋅=即(**),14)2(222=+⋅-+a y x把(*)及(**)消去a ,并注意到2<y ,可得).2(161)47(22≠=-+y y x适时应用平面几何知识,这是快速解答本题的要害所在,还请读者反思其中的奥妙.例7 如图,在Rt △ABC 中,∠CBA=90°,AB=2,AC=22。
DO ⊥AB 于O 点,OA=OB ,DO=2,曲线E 过C 点,动点P 在E 上运动,且保持| PA |+| PB |的值不变. (1)建立适当的坐标系,求曲线E 的方程;(2)过D 点的直线L 与曲线E 相交于不同的两点M 、N 且M 在D 、N 之间,设λ=DNDM,试确定实数λ的取值范围.讲解: (1)建立平面直角坐标系, 如图所示∵| PA |+| PB |=| CA |+| CB |y=22)22(22222=++∴动点P 的轨迹是椭圆∵1,1a b c ==∴曲线E 的方程是1222=+y x . (2)设直线L 的方程为2+=kx y , 代入曲线E 的方程2222=+y x ,得068)12(22=+++kx x k 设M 1(),(),221,1y x N y x , 则①② ③⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+-=+>⨯+-=∆.126,128,06)12(4)8(2212212k x x k k x x k k i) L 与y 轴重合时,31||||==DN DM λii) L 与y 轴不重合时, 由①得.232>k 又∵21x x x x x x DN DM N D MD =--==λ,∵,012<<x x 或 ,012>>x x ∴0<λ<1 ,∴212)(122121221++=++=⋅+λλx x x x x x x x ∵)12(332)12(664)(2222122kk k x x x x +=+=⋅+ 而,232>k∴.8)12(362<+<k∴ ,316)12(33242<+<k∴ 316214<++<λλ,31012<+<λλ,.131,3101,21,10<<⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧<+>+<<λλλλλλ∴λ的取值范围是⎪⎭⎫⎢⎣⎡1,31 . 值得读者注意的是,直线L 与y 轴重合的情况易于遗漏,应当引起警惕 例8 直线l 过抛物线)0(22≠=p px y 的焦点,且与抛物线相交于A ),(),(2211y x B y x 和两点.(1)求证:2214p x x =;(2)求证:对于抛物线的任意给定的一条弦CD ,直线l 不是CD 的垂直平分线.讲解: (1)易求得抛物线的焦点)0,2(P F . 若l ⊥x 轴,则l 的方程为4,2221P x x P x ==显然.若l 不垂直于x 轴,可设)2(P x k y -=,代入抛物线方程整理得4,04)21(221222P x x P x k P P x ==++-则. 综上可知2214p x x =.(2)设d c d p d D c p c C ≠且),2(),,2(22,则CD 的垂直平分线l '的方程为)4(2222pd c x p d c d c y +-+-=+-假设l '过F ,则)42(22022pd c p p d c d c +-+-=+-整理得 0)2)((222=+++d c p d c 0≠p02222≠++∴d c p ,0=+∴d c . 这时l '的方程为y=0,从而l '与抛物线px y 22=只相交于原点.而l 与抛物线有两个不同的交点,因此l '与l 不重合,l 不是CD 的垂直平分线. 此题是课本题的深化,你能够找到它的原形吗?知识在记忆中积累,能力在联想中提升. 课本是高考试题的生长点,复课切忌忘掉课本!例9 某工程要将直线公路l 一侧的土石,通过公路上的两个道口A 和B ,沿着道路AP 、BP 运往公路另一侧的P 处,PA=100m ,PB=150m ,∠APB=60°,试说明怎样运土石最省工?讲解: 以直线l 为x 轴,线段AB 的中点为原点对立直角坐标系,则在l 一侧必存在经A 到P 和经B 到P 路程相等的点,设这样的点为M ,则|MA|+|AP|=|MB|+|BP|,即|MA|-|MB|=|BP|-|AP|=50,750||=AB ,∴M 在双曲线1625252222=⨯-y x 的右支上. 故曲线右侧的土石层经道口B 沿BP 运往P 处,曲线左侧的土石层经道口A 沿AP 运往P 处,按这种方法运土石最省工.。