高中数学一题多解《解析几何》(1)
- 格式:docx
- 大小:7.35 MB
- 文档页数:9
高中数学解析几何第一局部:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。
(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.αtan =k〔1〕.倾斜角为︒90的直线没有斜率。
〔2〕.每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率〔直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否那么会产生漏解。
〔3〕设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 那么当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o90=α;斜率不存在;二、直线的方程 1.点斜式:直线上一点P 〔x 0,y 0〕及直线的斜率k 〔倾斜角α〕求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:假设直线在y 轴上的截距〔直线与y 轴焦点的纵坐标〕为b ,斜率为k ,那么直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y = 注意:正确理解“截距〞这一概念,它具有方向性,有正负之分,与“距离〞有区别。
3.两点式:假设直线经过),(11y x 和),(22y x 两点,且〔2121,y y x x ≠≠那么直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。
4截距式:假设直线在x 轴,y 轴上的截距分别是a ,b 〔0,0≠≠b a 〕那么直线方程:1=+bya x ; 注意:1〕.截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
高中数学平面解析几何的常见题型及解答方法在高中数学学习中,平面解析几何是一个重要的内容,也是考试中的重点。
平面解析几何主要研究平面上的点、直线、圆等几何图形的性质和关系,通过坐标系和代数方法进行分析和解决问题。
下面我们将介绍一些常见的平面解析几何题型及解答方法,希望能给同学们提供一些帮助。
一、直线方程的求解直线方程的求解是平面解析几何中的基础内容。
常见的题型有已知直线上的两点,求直线方程;已知直线的斜率和一点,求直线方程等。
这里我们以已知直线上的两点,求直线方程为例进行说明。
例如,已知直线上的两点为A(2,3)和B(4,5),求直线方程。
解题思路:设直线的方程为y = kx + b,其中k为斜率,b为截距。
根据已知条件,我们可以列出方程组:3 = 2k + b5 = 4k + b解方程组,得到k和b的值,从而得到直线方程。
解题步骤:1.将方程组改写为矩阵形式:| 2 1 | | k | | 3 || 4 1 | | b | = | 5 |2.利用矩阵的逆运算,求出k和b的值。
3.将k和b的值代入直线方程y = kx + b,即可得到直线方程。
通过这个例子,我们可以看到求解直线方程的方法是通过已知条件列方程组,然后通过矩阵运算求解出未知数的值,最后将值代入直线方程得到结果。
二、直线与圆的位置关系直线与圆的位置关系是平面解析几何中的一个重要内容。
常见的题型有直线与圆的切线问题、直线与圆的交点问题等。
这里我们以直线与圆的切线问题为例进行说明。
例如,已知圆的方程为x^2 + y^2 = 4,直线的方程为y = 2x - 1,求直线与圆的切点坐标。
解题思路:首先,我们需要确定直线与圆是否有交点。
当直线与圆有交点时,我们可以通过求解方程组得到交点坐标。
当直线与圆没有交点时,我们需要判断直线与圆的位置关系,进而确定是否有切点。
解题步骤:1.将直线方程代入圆的方程,得到一个关于x的二次方程。
2.求解二次方程,得到x的值。
解析几何常规题型及方法(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ; (2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法典型例题 抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(4)圆锥曲线的有关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。
典型例题已知抛物线y 2=2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点A 、B ,|AB|≤2p(1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值。
解析几何参考答案解析几何参考答案解析几何是高中数学中的一门重要课程,它是数学的一个分支,主要研究几何图形的性质和变换。
在解析几何中,我们常常需要通过运用几何图形的坐标来解决问题。
下面,我们将对一些常见的解析几何问题给出参考答案。
1. 直线的方程在解析几何中,直线的方程是一个重要的概念。
对于一条直线,我们可以通过给定的条件来确定其方程。
常见的直线方程有点斜式、一般式和截距式。
对于点斜式方程,我们可以通过已知直线上的一点和其斜率来确定直线的方程。
例如,已知直线上的一点为P(x1, y1),斜率为k,那么直线的点斜式方程为y -y1 = k(x - x1)。
对于一般式方程,我们可以通过直线的斜率和截距来确定直线的方程。
例如,已知直线的斜率为k,截距为b,那么直线的一般式方程为y = kx + b。
对于截距式方程,我们可以通过直线在坐标轴上的截距来确定直线的方程。
例如,已知直线与x轴和y轴的截距分别为a和b,那么直线的截距式方程为x/a + y/b = 1。
2. 圆的方程在解析几何中,圆的方程也是一个重要的概念。
对于一个圆,我们可以通过给定的条件来确定其方程。
常见的圆方程有标准式和一般式。
对于标准式方程,我们可以通过圆心的坐标和半径来确定圆的方程。
例如,已知圆心的坐标为(h, k),半径为r,那么圆的标准式方程为(x - h)² + (y - k)² = r²。
对于一般式方程,我们可以通过圆心的坐标和与x轴夹角的正弦和余弦值来确定圆的方程。
例如,已知圆心的坐标为(h, k),与x轴夹角的正弦和余弦值分别为sinθ和cosθ,那么圆的一般式方程为(x - h)² + (y - k)² = r²sin²θ + r²cos²θ。
3. 直线与圆的位置关系在解析几何中,我们经常需要研究直线与圆的位置关系。
根据直线与圆的位置关系,我们可以得出一些结论。
《解析几何》知识点复习1解析几何是数学中的一个重要分支,它通过代数方法来研究几何图形的性质。
下面我们来系统地复习一下解析几何的一些关键知识点。
一、坐标系坐标系是解析几何的基础,它为我们描述点的位置提供了一种精确的方式。
1、直角坐标系直角坐标系也称为笛卡尔坐标系,由两条互相垂直的数轴组成,分别称为 x 轴和 y 轴。
坐标轴的交点称为原点,坐标用有序数对(x, y) 来表示。
2、极坐标系在极坐标系中,一个点的位置由极径和极角来确定。
极径表示点到极点的距离,极角表示极轴与线段的夹角。
二、直线直线是解析几何中最简单也是最基本的图形之一。
1、直线的方程(1)点斜式:已知直线上一点(x₁, y₁) 且直线的斜率为 k,则直线方程为 y y₁= k(x x₁) 。
(2)斜截式:如果直线斜率为 k 且在 y 轴上的截距为 b,则直线方程为 y = kx + b 。
(3)两点式:已知直线上两点(x₁, y₁) 和(x₂, y₂),则直线方程为(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁) 。
(4)截距式:如果直线在 x 轴和 y 轴上的截距分别为 a 和 b,则直线方程为 x/a + y/b = 1 。
2、直线的位置关系(1)平行:两条直线斜率相等。
(2)垂直:两条直线斜率的乘积为-1 。
3、点到直线的距离公式点(x₀, y₀) 到直线 Ax + By + C = 0 的距离为:d =|Ax₀+By₀+ C| /√(A²+ B²) 。
三、圆圆是一种常见的几何图形。
1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b) 为圆心坐标,r 为半径。
(2)一般方程:x²+ y²+ Dx + Ey + F = 0 ,其中 D²+ E² 4F> 0 时表示圆。
2、圆与直线的位置关系通过判断圆心到直线的距离 d 与半径 r 的大小关系来确定:(1)d > r ,相离。
解析几何的解题思路、方法与策略高三数学复习的目的. 一方面是回顾已学过的数学知识. 进一步巩固基础知识. 另一方面. 随着学生学习能力的不断提高. 学生不会仅仅满足于对数学知识的简单重复. 而是有对所学知识进一步理解的需求. 如数学知识蕴涵的思想方法、 数学知识之间本质联系等等. 所以高三数学复习既要“温故” . 更要“知新” . 既能引起学生的兴趣. 启发学生的思维. 又能促使学生不断提出问题. 有新的发现和创造. 进而培养学生问题研究的能力.以“圆锥曲线与方程”内容为主的解题思想思路、方法与策略是高中平面解析几何的核心内容. 也是高考考查的重点.每年的高考卷中.一般有两道选择或填空题以及一道解答题. 主要考查圆锥曲线的标准方程及其几何性质等基础知识、基本技能及基本方法的灵活运用. 而解答题注重对数学思想方法和数学能力的考查.重视对圆锥曲线定义的应用. 求轨迹及直线与圆锥曲线的位置关系的考查.解析几何在高考数学中占有十分重要的地位.是高考的重点、热点和难点.通过以圆锥曲线为主要载体.与平面向量、导数、数列、不等式、平面几何等知识进行综合.结合数学思想方法.并与高等数学基础知识融为一体.考查学生的数学思维能力及创新能力.其设问形式新颖、有趣、综合性很强.基于解析几何在高考中重要地位.这一板块知识一直以来都是学生在高三复习中一块“难啃的骨头” .所以研究解析几何的解题思路.方法与策略.重视一题多解.一题多变.多题一解这样三位一体的拓展型变式教学.是老师和同学们在高三复习一起攻坚的主题之一.本文尝试以笔者在实际高三复习教学中.在教辅教参和各类考试中遇到的几道题目来谈谈解析几何解题思路和方法策略.一、一道直线方程与面积最值问题的求解和变式例1 已知直线l 过点(2,1)M - .若直线l 交x 轴负半轴于A.交y 轴正半轴于B.O 为坐标原点.(1)设AOB ∆的面积为S .求S 的最小值并求此时直线l 的方程;(2)求OA OB +最小值; (3)求M MA B ⋅最小值.解:方法一:∵直线l 交x 轴负半轴.y 轴正半轴.设直线l 的方程为(2)1(0)y k x k =++>.∴)(0,12kk A -- )12,0(+k B . (1)∴422122)12(2≥++=+=kk k k S , ∴当1)22=k (时.即412=k .即 21=k 时取等号.∴此时直线l 的方程为221+=x y .(2)3223211221+≥++=+++=+k k k k OB OA .当且仅当22k =时取等号; (3)4212)1)(11(24411222222≥++=++=+⋅+=⋅k k k k k k MB MA . 当且仅当1k =时取等号;方法二:设直线截距式为)0,0(1><=+b a b y a x .∵过点(2,1)M -.∴112=+-ba (1)∵abb a -≥+-=22121. ∴822≥-⇒≥-ab ab .∴42121≥-==∆ab b a S AOB ; (2)322)2(3))(12(+≥+-=+-+-=+-=+=+ba ab b a b a b a b a OB OA ; (3)5)12)(2(52)1()2(2-+-+-=-+-=-++-=⋅-=⋅ba b a b a b a MB MA MB MA 422≥-+-=ab b a . (3)方法三: θsin 1=MA .θcos 2=MB . ∴42sin 4cos sin 2≥==⋅θθθMB MA .当且仅当12sin =θ时最小.∴4πθ=.变式1:原题条件不变.(1)求△AOB 的重心轨迹;(2)求△AOB 的周长l 最小值.解:(1)设重心坐标为(,)x y .且(,0)A a .(0,)B b .则3a x =.3b y =.又∵112=+-ba .∴13132=+-y x . ∴2332312332)23(3123+-=+-+=+=x x x x x y .该重心的轨迹为双曲线一部分; (2)令直线AB 倾斜角为θ.则20πθ<<.又(2,1)M -.过M 分别作x 轴和y 轴的垂线.垂足为,E F , 则θsin 1=MA . θcos 2=MB .θtan 1=AE .θtan 2=BF ∴)20(tan 2tan 1cos 2sin 13πθθθθθ<<++++=l 2sin 2cos )2cos 2(sin22cos 2sin 22cos 23cos )sin 1(2sin cos 132222θθθθθθθθθθθ-+++=++++=)420(12cot )2cot 1(22cot 3πθθθθ<<-+++=. 令12cot-=θt . 则t>0. ∴周长10)2(213≥++++=t t t l ∴32cot 212cot =⇒=-θθ。
解析几何一.命题趋向与解题方法、技巧 1.圆锥曲线基础题 主要是考查以下问题:①圆锥曲线的两种定义、标准方程、焦点、常见距离及其p e c b a ,,,,五个参数的求解;②讨论圆锥曲线的几何性质;③曲线的交点问题,即直线与二次曲线和两圆的交点问题;④圆锥曲线的对称性,一是曲线自身的对称性,二是曲线间的对称性。
2.轨迹问题主要有三种类型:①曲线形状已知,求其方程;②曲线形状未定,求其方程;③由曲线方程讨论其形状(一般含参数)。
此类问题解题步骤通常是通过建立坐标系,设动点的坐标,依题意设条件,列出等式、代入化简整理即得曲线的轨迹方程。
基本方法有:直译法、定义法、代入法、交轨法、几何法、参数法。
3.参数取值范围问题通常依据题设条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围。
基本方法有定义法、函数法、方程法、不等式法及几何法。
4.位置关系常涉及直线与圆锥曲线交点的判定、弦长、弦中点、垂直、对称、共线等问题。
应注意充分利用圆锥曲线的基本性质及韦达定理、方程思想。
根据新教材的特点,常结合平面向量的基本知识进行考查。
5.最值问题通常是依题设条件,建立目标函数,然后用求最值的方法来处理;有时也可用数形结合思想,利用几何法分析。
6.韦达定理在解决解析几何问题中的主要应用韦达定理在解决解析几何问题中起着重要作用,特别是在解决有关弦长、两条直线互相垂直、弦中点、对称、轨迹、定点问题时能化难为易,化繁为简。
【专题训练】一 、选择题1.从一块短轴长为2b 的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是223,4b b ⎡⎤⎣⎦,则这一椭圆离心率e 的取值范围是( )A .]23,35[B .]22,33[C .]22,35[D .]23,33[ 2.已知A 、B 是抛物线px y 22=(0p >)上异于原点O 的两点,则“OA ·0OB =”是“直线AB 恒过定点(0,2p )”的( ) A .充分非必要条件 B .充要条件 C .必要非充分条件 D .非充分非必要条件3.设椭圆的两个焦点分别为12F F ,,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF △为等腰直角三角形,则椭圆的离心率是 ( )A BC .2D 14.已知椭圆22221(0)x ya b a b+=>>与x 轴的正半轴交于点A O ,是原点,若椭圆上存在一点M ,使MA MO ⊥,则椭圆的离心率的取值范围是 ( )A .1,12⎛⎫⎪⎝⎭ B .⎤⎥⎣⎦ C .⎫⎪⎪⎣⎭D .⎫⎪⎪⎝⎭ 5.已知3AB =, A 、B 分别在y 轴和x 轴上运动,O 为原点,1233OP OA OB =+,则动点P 的轨迹方程是( )A . 1422=+y xB . 1422=+y xC .1922=+y xD .1922=+y x 6.已知直线:2430l x y ++=,P 为l 上的动点,O 为坐标原点,点Q 分线段OP 为1:2两部分,则点Q 的轨迹方程为( )A .2410x y ++=B .2430x y ++=C .2420x y ++=D .210x y ++=二、填空题 7.过抛物线214y x =准线上任一点作抛物线的两条切线,若切点分别为,M N ,则直线MN 过定点 .8.过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于,A B 两点,交准线于点C .若2CB BF =,则直线AB 的斜率为 .9.河上有抛物线型拱桥,当水面距拱顶5m 时,水面宽为8m ,一小船宽4m ,高2m ,载货后船露出水面上的部分高34m ,当小船开始不能通航时,水面上涨到距抛物线拱顶相距 m .三、解答题10.椭圆C 的一个焦点F 恰好是抛物线24y x =-的焦点,离心率是双曲线224x y -=离心率的倒数.(1)求椭圆C 的标准方程; (2)设过点F 且不与坐标轴垂直的直线l 交椭圆于,A B 两点,线段AB 的垂直平分线与x 轴交于点G ,当点G 的横坐标为14-时,求直线l 的方程.11.椭圆的对称中心在坐标原点,一个顶点为)2,0(A ,右焦点F 与点,B 的距离为2.(1)求椭圆的方程;(2)是否存在斜率0≠k 的直线l :2-=kx y ,使直线l 与椭圆相交于不同的两点N M ,满足||||AN AM =,若存在,求直线l 的倾斜角α;若不存在,说明理由.12.在ABC ∆中AC =B 是椭圆22154x y +=在x 轴上方的顶点,l 的方程是1y =-,当AC 在直线l 上运动时.(1)求ABC ∆外接圆的圆心P 的轨迹E 的方程;(2)过定点3(0,)2F 作互相垂直的直线12,l l ,分别交轨迹E 于,M N 和,R Q ,求四边形MRNQ 面积的最小值.【专题训练参考答案】1.解析:A 设椭圆方程为()222210x y a b a b+=>>,设矩形在第一象限的顶点坐标为(),x y ,根据对称性该矩形的面积为224422x y x y S xy ab ab ab a b a b ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==≤+=⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,即划出的矩形的最大面积是2ab ,根据已知22324b ab b ≤≤,即322b a b ≤≤,即1223b a ≤≤,故32c e a ===⎣⎦.2.解析:B3.解析:D 由题意,得1212PF F ===,又由椭圆的定义,得122PF PF a +=.即22c a +=,则1)a c =,得1ce a=,故选D.4.解析:D 设()M x y ,,则MA MO ⊥,得1y yx x a=-·.将其与椭圆方程联立,消去y 得222()()0x a b x a x b a --+=.由x a ≠,得22222ab ab x a b c==-.()M x y ,∵在椭圆上,[]x a a ∈-,∴, 又MA MO ⊥,则(0)x a ∈,,即220ab a c<<,2201b c <<∴,2222212a b c c +<=<,则2212c a >,e ∴.又01e <<∵,1e <<.5.解析:A 设()0,A a ,(),0B b ,则由3AB =得229a b +=.设(),P x y ,由1233OP OA OB =+得()()()12,0,,033x y a b =+,由此得32b x =,3a y =,代入229a b +=得2222999144x y x y +=⇒+=.6.解析:A 设点Q 的坐标为(),x y ,点P 的坐标为()11,x y .∵Q 分线段OP 为1:2,∴⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=+=211212112111y y x x ,即⎩⎨⎧==y y x x 3311 ∵点P 在直线l 上,∴112430x y ++=,把113,3x x y y ==代入上式并化简,得2410x y ++=,为所求轨迹方程.7.解析:()0,1.8.解析:3± 涉及抛物线的焦点弦的时候,常用应用抛物线的定义.注意本题有两解.9.解析:2 如图 建立适当的坐标系,设拱桥抛物线方程为)0(22>-=p py x ,由题意,将()4,5B -代入方程得58=p ,∴抛物线方程为y x 5162-=.∵ 当船的两侧和拱桥接触时船不能通航. 设此时船面宽为/AA , 则()2,A A y ,由A y 51622-=,得45-=A y ,又知船面露出水面上部分为34m ,324A h y m =+=.即水面上涨到距抛物线拱顶2m 时小船不能通航.10.解析:(1)根据已知该椭圆的一个焦点坐标是()1,0F -,即1c =,双曲线224x y -=2,2,即2c e a ==,故2a =从而1b =, 所以所求椭圆的标准方程是2212x y +=.(2)设直线l 的方程为(1)(0),y k x k =+≠代入221,2x y += 整理得2222(12)4220.k x k x k +++-=(6分)直线AB 过椭圆的左焦点F ,∴方程有两个不等实根. 记1122(,),(,),A x y B x y AB 中点00(,),N x y则21224,21k x x k +=-+故20122221k x x x k =+=-+,()002121ky k x k =+=+. (9分)又AB 的垂直平分线NG 的方程为001().y y x x k-=-- (10分) 令0,y =得22200222221112121212424G k k k x x ky k k k k =+=-+=-=-+=-++++,解得2k =±,故直线l的方程为()12y x =±+.11.解析:(1)依题意,设椭圆方程为)0(12222>>=+b a by a x ,则其右焦点坐标为22,)0,(b a c c F -=,由=||FB 2,得2=,即2(24c +=,解得22=c .又 ∵2=b ,∴ 12222=+=b c a ,即椭圆方程为141222=+y x . (2)由||||AN AM =知点A 在线段MN 的垂直平分线上, 由⎪⎩⎪⎨⎧=+-=1412222y x kx y 消去y 得12)2(322=-+kx x 即012)31(22=-+kx x k (*)由0≠k ,得方程(*)的0144)12(22>=-=∆k k ,即方程(*)有两个不相等的实数根.设),(11y x M 、),(22y x N ,线段MN 的中点),(00y x P ,则2213112k kx x +=+,∴22103162k k x x x +=+=, ∴ 22220031231)31(262k k k k kx y +-=++-=-=,即)312,316(22kk k P +-+ ,0≠k ,∴直线AP 的斜率为k k k k k k 6)31(2231623122221+--=+-+-=, 由AP MN ⊥,得16)31(222-=⨯+--k kk , ∴ 66222=++k ,解得:33±=k ,即33tan ±=α,又πα<≤0,故 6πα=,或65πα=,∴ 存在直线l 满足题意,其倾斜角6πα=,或65πα=.12.解析:(1)由椭圆方程22154x y +=得点(0,2),B 直线l 方程是1y =-AC ∴=且AC 在直线l 上运动.可设(1),(1),A m C m --则AC 的垂直平分线方程为x m = ①AB的垂直平分线方程为12y x -= ② P 是ABC ∆的外接圆圆心,∴点P 的坐标(,)x y 满足方程①和②由①和②联立消去m 得26x y =故圆心P 的轨迹E 的方程为26x y =(2)由图可知,直线1l 和2l 的斜率存在且不为零,设1l 的方程为32y kx =+, 12l l ⊥,2l ∴的方程为132y x k =-+.由23216y kx y x ⎧=+⎪⎪⎨⎪=⎪⎩得 2690x kx --= △=226360,k ∆=+>∴直线1l 与轨迹E 交于两点. 设1122(,),(,)M x y N x y ,则12126,9x x k x x +==.2||6(1).MN k ∴===+同理可得:21||6(1).RQ k=+∴四边形MRNQ 的面积2211||||18(2)18(272.2S MN RQ k k =•=++≥+= 当且仅当221k k=,即1k =±时,等号成立.故四边形MRNQ 的面积的最小值为72.。