高中数学一题多解《解析几何》(1)
- 格式:docx
- 大小:7.35 MB
- 文档页数:9
高中数学解析几何第一局部:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。
(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.αtan =k〔1〕.倾斜角为︒90的直线没有斜率。
〔2〕.每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率〔直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否那么会产生漏解。
〔3〕设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 那么当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o90=α;斜率不存在;二、直线的方程 1.点斜式:直线上一点P 〔x 0,y 0〕及直线的斜率k 〔倾斜角α〕求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:假设直线在y 轴上的截距〔直线与y 轴焦点的纵坐标〕为b ,斜率为k ,那么直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y = 注意:正确理解“截距〞这一概念,它具有方向性,有正负之分,与“距离〞有区别。
3.两点式:假设直线经过),(11y x 和),(22y x 两点,且〔2121,y y x x ≠≠那么直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。
4截距式:假设直线在x 轴,y 轴上的截距分别是a ,b 〔0,0≠≠b a 〕那么直线方程:1=+bya x ; 注意:1〕.截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
高中数学平面解析几何的常见题型及解答方法在高中数学学习中,平面解析几何是一个重要的内容,也是考试中的重点。
平面解析几何主要研究平面上的点、直线、圆等几何图形的性质和关系,通过坐标系和代数方法进行分析和解决问题。
下面我们将介绍一些常见的平面解析几何题型及解答方法,希望能给同学们提供一些帮助。
一、直线方程的求解直线方程的求解是平面解析几何中的基础内容。
常见的题型有已知直线上的两点,求直线方程;已知直线的斜率和一点,求直线方程等。
这里我们以已知直线上的两点,求直线方程为例进行说明。
例如,已知直线上的两点为A(2,3)和B(4,5),求直线方程。
解题思路:设直线的方程为y = kx + b,其中k为斜率,b为截距。
根据已知条件,我们可以列出方程组:3 = 2k + b5 = 4k + b解方程组,得到k和b的值,从而得到直线方程。
解题步骤:1.将方程组改写为矩阵形式:| 2 1 | | k | | 3 || 4 1 | | b | = | 5 |2.利用矩阵的逆运算,求出k和b的值。
3.将k和b的值代入直线方程y = kx + b,即可得到直线方程。
通过这个例子,我们可以看到求解直线方程的方法是通过已知条件列方程组,然后通过矩阵运算求解出未知数的值,最后将值代入直线方程得到结果。
二、直线与圆的位置关系直线与圆的位置关系是平面解析几何中的一个重要内容。
常见的题型有直线与圆的切线问题、直线与圆的交点问题等。
这里我们以直线与圆的切线问题为例进行说明。
例如,已知圆的方程为x^2 + y^2 = 4,直线的方程为y = 2x - 1,求直线与圆的切点坐标。
解题思路:首先,我们需要确定直线与圆是否有交点。
当直线与圆有交点时,我们可以通过求解方程组得到交点坐标。
当直线与圆没有交点时,我们需要判断直线与圆的位置关系,进而确定是否有切点。
解题步骤:1.将直线方程代入圆的方程,得到一个关于x的二次方程。
2.求解二次方程,得到x的值。
解析几何常规题型及方法(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ; (2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法典型例题 抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(4)圆锥曲线的有关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。
典型例题已知抛物线y 2=2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点A 、B ,|AB|≤2p(1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值。
解析几何参考答案解析几何参考答案解析几何是高中数学中的一门重要课程,它是数学的一个分支,主要研究几何图形的性质和变换。
在解析几何中,我们常常需要通过运用几何图形的坐标来解决问题。
下面,我们将对一些常见的解析几何问题给出参考答案。
1. 直线的方程在解析几何中,直线的方程是一个重要的概念。
对于一条直线,我们可以通过给定的条件来确定其方程。
常见的直线方程有点斜式、一般式和截距式。
对于点斜式方程,我们可以通过已知直线上的一点和其斜率来确定直线的方程。
例如,已知直线上的一点为P(x1, y1),斜率为k,那么直线的点斜式方程为y -y1 = k(x - x1)。
对于一般式方程,我们可以通过直线的斜率和截距来确定直线的方程。
例如,已知直线的斜率为k,截距为b,那么直线的一般式方程为y = kx + b。
对于截距式方程,我们可以通过直线在坐标轴上的截距来确定直线的方程。
例如,已知直线与x轴和y轴的截距分别为a和b,那么直线的截距式方程为x/a + y/b = 1。
2. 圆的方程在解析几何中,圆的方程也是一个重要的概念。
对于一个圆,我们可以通过给定的条件来确定其方程。
常见的圆方程有标准式和一般式。
对于标准式方程,我们可以通过圆心的坐标和半径来确定圆的方程。
例如,已知圆心的坐标为(h, k),半径为r,那么圆的标准式方程为(x - h)² + (y - k)² = r²。
对于一般式方程,我们可以通过圆心的坐标和与x轴夹角的正弦和余弦值来确定圆的方程。
例如,已知圆心的坐标为(h, k),与x轴夹角的正弦和余弦值分别为sinθ和cosθ,那么圆的一般式方程为(x - h)² + (y - k)² = r²sin²θ + r²cos²θ。
3. 直线与圆的位置关系在解析几何中,我们经常需要研究直线与圆的位置关系。
根据直线与圆的位置关系,我们可以得出一些结论。
《解析几何》知识点复习1解析几何是数学中的一个重要分支,它通过代数方法来研究几何图形的性质。
下面我们来系统地复习一下解析几何的一些关键知识点。
一、坐标系坐标系是解析几何的基础,它为我们描述点的位置提供了一种精确的方式。
1、直角坐标系直角坐标系也称为笛卡尔坐标系,由两条互相垂直的数轴组成,分别称为 x 轴和 y 轴。
坐标轴的交点称为原点,坐标用有序数对(x, y) 来表示。
2、极坐标系在极坐标系中,一个点的位置由极径和极角来确定。
极径表示点到极点的距离,极角表示极轴与线段的夹角。
二、直线直线是解析几何中最简单也是最基本的图形之一。
1、直线的方程(1)点斜式:已知直线上一点(x₁, y₁) 且直线的斜率为 k,则直线方程为 y y₁= k(x x₁) 。
(2)斜截式:如果直线斜率为 k 且在 y 轴上的截距为 b,则直线方程为 y = kx + b 。
(3)两点式:已知直线上两点(x₁, y₁) 和(x₂, y₂),则直线方程为(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁) 。
(4)截距式:如果直线在 x 轴和 y 轴上的截距分别为 a 和 b,则直线方程为 x/a + y/b = 1 。
2、直线的位置关系(1)平行:两条直线斜率相等。
(2)垂直:两条直线斜率的乘积为-1 。
3、点到直线的距离公式点(x₀, y₀) 到直线 Ax + By + C = 0 的距离为:d =|Ax₀+By₀+ C| /√(A²+ B²) 。
三、圆圆是一种常见的几何图形。
1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b) 为圆心坐标,r 为半径。
(2)一般方程:x²+ y²+ Dx + Ey + F = 0 ,其中 D²+ E² 4F> 0 时表示圆。
2、圆与直线的位置关系通过判断圆心到直线的距离 d 与半径 r 的大小关系来确定:(1)d > r ,相离。
解析几何的解题思路、方法与策略高三数学复习的目的. 一方面是回顾已学过的数学知识. 进一步巩固基础知识. 另一方面. 随着学生学习能力的不断提高. 学生不会仅仅满足于对数学知识的简单重复. 而是有对所学知识进一步理解的需求. 如数学知识蕴涵的思想方法、 数学知识之间本质联系等等. 所以高三数学复习既要“温故” . 更要“知新” . 既能引起学生的兴趣. 启发学生的思维. 又能促使学生不断提出问题. 有新的发现和创造. 进而培养学生问题研究的能力.以“圆锥曲线与方程”内容为主的解题思想思路、方法与策略是高中平面解析几何的核心内容. 也是高考考查的重点.每年的高考卷中.一般有两道选择或填空题以及一道解答题. 主要考查圆锥曲线的标准方程及其几何性质等基础知识、基本技能及基本方法的灵活运用. 而解答题注重对数学思想方法和数学能力的考查.重视对圆锥曲线定义的应用. 求轨迹及直线与圆锥曲线的位置关系的考查.解析几何在高考数学中占有十分重要的地位.是高考的重点、热点和难点.通过以圆锥曲线为主要载体.与平面向量、导数、数列、不等式、平面几何等知识进行综合.结合数学思想方法.并与高等数学基础知识融为一体.考查学生的数学思维能力及创新能力.其设问形式新颖、有趣、综合性很强.基于解析几何在高考中重要地位.这一板块知识一直以来都是学生在高三复习中一块“难啃的骨头” .所以研究解析几何的解题思路.方法与策略.重视一题多解.一题多变.多题一解这样三位一体的拓展型变式教学.是老师和同学们在高三复习一起攻坚的主题之一.本文尝试以笔者在实际高三复习教学中.在教辅教参和各类考试中遇到的几道题目来谈谈解析几何解题思路和方法策略.一、一道直线方程与面积最值问题的求解和变式例1 已知直线l 过点(2,1)M - .若直线l 交x 轴负半轴于A.交y 轴正半轴于B.O 为坐标原点.(1)设AOB ∆的面积为S .求S 的最小值并求此时直线l 的方程;(2)求OA OB +最小值; (3)求M MA B ⋅最小值.解:方法一:∵直线l 交x 轴负半轴.y 轴正半轴.设直线l 的方程为(2)1(0)y k x k =++>.∴)(0,12kk A -- )12,0(+k B . (1)∴422122)12(2≥++=+=kk k k S , ∴当1)22=k (时.即412=k .即 21=k 时取等号.∴此时直线l 的方程为221+=x y .(2)3223211221+≥++=+++=+k k k k OB OA .当且仅当22k =时取等号; (3)4212)1)(11(24411222222≥++=++=+⋅+=⋅k k k k k k MB MA . 当且仅当1k =时取等号;方法二:设直线截距式为)0,0(1><=+b a b y a x .∵过点(2,1)M -.∴112=+-ba (1)∵abb a -≥+-=22121. ∴822≥-⇒≥-ab ab .∴42121≥-==∆ab b a S AOB ; (2)322)2(3))(12(+≥+-=+-+-=+-=+=+ba ab b a b a b a b a OB OA ; (3)5)12)(2(52)1()2(2-+-+-=-+-=-++-=⋅-=⋅ba b a b a b a MB MA MB MA 422≥-+-=ab b a . (3)方法三: θsin 1=MA .θcos 2=MB . ∴42sin 4cos sin 2≥==⋅θθθMB MA .当且仅当12sin =θ时最小.∴4πθ=.变式1:原题条件不变.(1)求△AOB 的重心轨迹;(2)求△AOB 的周长l 最小值.解:(1)设重心坐标为(,)x y .且(,0)A a .(0,)B b .则3a x =.3b y =.又∵112=+-ba .∴13132=+-y x . ∴2332312332)23(3123+-=+-+=+=x x x x x y .该重心的轨迹为双曲线一部分; (2)令直线AB 倾斜角为θ.则20πθ<<.又(2,1)M -.过M 分别作x 轴和y 轴的垂线.垂足为,E F , 则θsin 1=MA . θcos 2=MB .θtan 1=AE .θtan 2=BF ∴)20(tan 2tan 1cos 2sin 13πθθθθθ<<++++=l 2sin 2cos )2cos 2(sin22cos 2sin 22cos 23cos )sin 1(2sin cos 132222θθθθθθθθθθθ-+++=++++=)420(12cot )2cot 1(22cot 3πθθθθ<<-+++=. 令12cot-=θt . 则t>0. ∴周长10)2(213≥++++=t t t l ∴32cot 212cot =⇒=-θθ。
解析几何一.命题趋向与解题方法、技巧 1.圆锥曲线基础题 主要是考查以下问题:①圆锥曲线的两种定义、标准方程、焦点、常见距离及其p e c b a ,,,,五个参数的求解;②讨论圆锥曲线的几何性质;③曲线的交点问题,即直线与二次曲线和两圆的交点问题;④圆锥曲线的对称性,一是曲线自身的对称性,二是曲线间的对称性。
2.轨迹问题主要有三种类型:①曲线形状已知,求其方程;②曲线形状未定,求其方程;③由曲线方程讨论其形状(一般含参数)。
此类问题解题步骤通常是通过建立坐标系,设动点的坐标,依题意设条件,列出等式、代入化简整理即得曲线的轨迹方程。
基本方法有:直译法、定义法、代入法、交轨法、几何法、参数法。
3.参数取值范围问题通常依据题设条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围。
基本方法有定义法、函数法、方程法、不等式法及几何法。
4.位置关系常涉及直线与圆锥曲线交点的判定、弦长、弦中点、垂直、对称、共线等问题。
应注意充分利用圆锥曲线的基本性质及韦达定理、方程思想。
根据新教材的特点,常结合平面向量的基本知识进行考查。
5.最值问题通常是依题设条件,建立目标函数,然后用求最值的方法来处理;有时也可用数形结合思想,利用几何法分析。
6.韦达定理在解决解析几何问题中的主要应用韦达定理在解决解析几何问题中起着重要作用,特别是在解决有关弦长、两条直线互相垂直、弦中点、对称、轨迹、定点问题时能化难为易,化繁为简。
【专题训练】一 、选择题1.从一块短轴长为2b 的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是223,4b b ⎡⎤⎣⎦,则这一椭圆离心率e 的取值范围是( )A .]23,35[B .]22,33[C .]22,35[D .]23,33[ 2.已知A 、B 是抛物线px y 22=(0p >)上异于原点O 的两点,则“OA ·0OB =”是“直线AB 恒过定点(0,2p )”的( ) A .充分非必要条件 B .充要条件 C .必要非充分条件 D .非充分非必要条件3.设椭圆的两个焦点分别为12F F ,,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF △为等腰直角三角形,则椭圆的离心率是 ( )A BC .2D 14.已知椭圆22221(0)x ya b a b+=>>与x 轴的正半轴交于点A O ,是原点,若椭圆上存在一点M ,使MA MO ⊥,则椭圆的离心率的取值范围是 ( )A .1,12⎛⎫⎪⎝⎭ B .⎤⎥⎣⎦ C .⎫⎪⎪⎣⎭D .⎫⎪⎪⎝⎭ 5.已知3AB =, A 、B 分别在y 轴和x 轴上运动,O 为原点,1233OP OA OB =+,则动点P 的轨迹方程是( )A . 1422=+y xB . 1422=+y xC .1922=+y xD .1922=+y x 6.已知直线:2430l x y ++=,P 为l 上的动点,O 为坐标原点,点Q 分线段OP 为1:2两部分,则点Q 的轨迹方程为( )A .2410x y ++=B .2430x y ++=C .2420x y ++=D .210x y ++=二、填空题 7.过抛物线214y x =准线上任一点作抛物线的两条切线,若切点分别为,M N ,则直线MN 过定点 .8.过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于,A B 两点,交准线于点C .若2CB BF =,则直线AB 的斜率为 .9.河上有抛物线型拱桥,当水面距拱顶5m 时,水面宽为8m ,一小船宽4m ,高2m ,载货后船露出水面上的部分高34m ,当小船开始不能通航时,水面上涨到距抛物线拱顶相距 m .三、解答题10.椭圆C 的一个焦点F 恰好是抛物线24y x =-的焦点,离心率是双曲线224x y -=离心率的倒数.(1)求椭圆C 的标准方程; (2)设过点F 且不与坐标轴垂直的直线l 交椭圆于,A B 两点,线段AB 的垂直平分线与x 轴交于点G ,当点G 的横坐标为14-时,求直线l 的方程.11.椭圆的对称中心在坐标原点,一个顶点为)2,0(A ,右焦点F 与点,B 的距离为2.(1)求椭圆的方程;(2)是否存在斜率0≠k 的直线l :2-=kx y ,使直线l 与椭圆相交于不同的两点N M ,满足||||AN AM =,若存在,求直线l 的倾斜角α;若不存在,说明理由.12.在ABC ∆中AC =B 是椭圆22154x y +=在x 轴上方的顶点,l 的方程是1y =-,当AC 在直线l 上运动时.(1)求ABC ∆外接圆的圆心P 的轨迹E 的方程;(2)过定点3(0,)2F 作互相垂直的直线12,l l ,分别交轨迹E 于,M N 和,R Q ,求四边形MRNQ 面积的最小值.【专题训练参考答案】1.解析:A 设椭圆方程为()222210x y a b a b+=>>,设矩形在第一象限的顶点坐标为(),x y ,根据对称性该矩形的面积为224422x y x y S xy ab ab ab a b a b ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==≤+=⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,即划出的矩形的最大面积是2ab ,根据已知22324b ab b ≤≤,即322b a b ≤≤,即1223b a ≤≤,故32c e a ===⎣⎦.2.解析:B3.解析:D 由题意,得1212PF F ===,又由椭圆的定义,得122PF PF a +=.即22c a +=,则1)a c =,得1ce a=,故选D.4.解析:D 设()M x y ,,则MA MO ⊥,得1y yx x a=-·.将其与椭圆方程联立,消去y 得222()()0x a b x a x b a --+=.由x a ≠,得22222ab ab x a b c==-.()M x y ,∵在椭圆上,[]x a a ∈-,∴, 又MA MO ⊥,则(0)x a ∈,,即220ab a c<<,2201b c <<∴,2222212a b c c +<=<,则2212c a >,e ∴.又01e <<∵,1e <<.5.解析:A 设()0,A a ,(),0B b ,则由3AB =得229a b +=.设(),P x y ,由1233OP OA OB =+得()()()12,0,,033x y a b =+,由此得32b x =,3a y =,代入229a b +=得2222999144x y x y +=⇒+=.6.解析:A 设点Q 的坐标为(),x y ,点P 的坐标为()11,x y .∵Q 分线段OP 为1:2,∴⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=+=211212112111y y x x ,即⎩⎨⎧==y y x x 3311 ∵点P 在直线l 上,∴112430x y ++=,把113,3x x y y ==代入上式并化简,得2410x y ++=,为所求轨迹方程.7.解析:()0,1.8.解析:3± 涉及抛物线的焦点弦的时候,常用应用抛物线的定义.注意本题有两解.9.解析:2 如图 建立适当的坐标系,设拱桥抛物线方程为)0(22>-=p py x ,由题意,将()4,5B -代入方程得58=p ,∴抛物线方程为y x 5162-=.∵ 当船的两侧和拱桥接触时船不能通航. 设此时船面宽为/AA , 则()2,A A y ,由A y 51622-=,得45-=A y ,又知船面露出水面上部分为34m ,324A h y m =+=.即水面上涨到距抛物线拱顶2m 时小船不能通航.10.解析:(1)根据已知该椭圆的一个焦点坐标是()1,0F -,即1c =,双曲线224x y -=2,2,即2c e a ==,故2a =从而1b =, 所以所求椭圆的标准方程是2212x y +=.(2)设直线l 的方程为(1)(0),y k x k =+≠代入221,2x y += 整理得2222(12)4220.k x k x k +++-=(6分)直线AB 过椭圆的左焦点F ,∴方程有两个不等实根. 记1122(,),(,),A x y B x y AB 中点00(,),N x y则21224,21k x x k +=-+故20122221k x x x k =+=-+,()002121ky k x k =+=+. (9分)又AB 的垂直平分线NG 的方程为001().y y x x k-=-- (10分) 令0,y =得22200222221112121212424G k k k x x ky k k k k =+=-+=-=-+=-++++,解得2k =±,故直线l的方程为()12y x =±+.11.解析:(1)依题意,设椭圆方程为)0(12222>>=+b a by a x ,则其右焦点坐标为22,)0,(b a c c F -=,由=||FB 2,得2=,即2(24c +=,解得22=c .又 ∵2=b ,∴ 12222=+=b c a ,即椭圆方程为141222=+y x . (2)由||||AN AM =知点A 在线段MN 的垂直平分线上, 由⎪⎩⎪⎨⎧=+-=1412222y x kx y 消去y 得12)2(322=-+kx x 即012)31(22=-+kx x k (*)由0≠k ,得方程(*)的0144)12(22>=-=∆k k ,即方程(*)有两个不相等的实数根.设),(11y x M 、),(22y x N ,线段MN 的中点),(00y x P ,则2213112k kx x +=+,∴22103162k k x x x +=+=, ∴ 22220031231)31(262k k k k kx y +-=++-=-=,即)312,316(22kk k P +-+ ,0≠k ,∴直线AP 的斜率为k k k k k k 6)31(2231623122221+--=+-+-=, 由AP MN ⊥,得16)31(222-=⨯+--k kk , ∴ 66222=++k ,解得:33±=k ,即33tan ±=α,又πα<≤0,故 6πα=,或65πα=,∴ 存在直线l 满足题意,其倾斜角6πα=,或65πα=.12.解析:(1)由椭圆方程22154x y +=得点(0,2),B 直线l 方程是1y =-AC ∴=且AC 在直线l 上运动.可设(1),(1),A m C m --则AC 的垂直平分线方程为x m = ①AB的垂直平分线方程为12y x -= ② P 是ABC ∆的外接圆圆心,∴点P 的坐标(,)x y 满足方程①和②由①和②联立消去m 得26x y =故圆心P 的轨迹E 的方程为26x y =(2)由图可知,直线1l 和2l 的斜率存在且不为零,设1l 的方程为32y kx =+, 12l l ⊥,2l ∴的方程为132y x k =-+.由23216y kx y x ⎧=+⎪⎪⎨⎪=⎪⎩得 2690x kx --= △=226360,k ∆=+>∴直线1l 与轨迹E 交于两点. 设1122(,),(,)M x y N x y ,则12126,9x x k x x +==.2||6(1).MN k ∴===+同理可得:21||6(1).RQ k=+∴四边形MRNQ 的面积2211||||18(2)18(272.2S MN RQ k k =•=++≥+= 当且仅当221k k=,即1k =±时,等号成立.故四边形MRNQ 的面积的最小值为72.。
22年新高考1卷数学解析几何题 一、在平面直角坐标系中,若点A的横坐标是3,纵坐标是-4,则点A位于哪个象限? A、第一象限 B、第二象限 C、第三象限 D、第四象限(答案)D 解析:在平面直角坐标系中,横坐标为正、纵坐标为负的点位于第四象限。
二、已知直线l的方程为y=2x+1,那么这条直线的斜率是多少? A、1 B、2 C、-1 D、-2(答案)B 解析:直线方程y=2x+1中,x的系数即为直线的斜率,所以斜率为2。
三、若一个圆的方程为(x-3)²+(y-4)²=9,则这个圆的圆心坐标是多少? A、(3,4) B、(4,3) C、(-3,-4) D、(-4,-3)(答案)A 解析:圆的标准方程(x-a)²+(y-b)²=r²中,(a,b)即为圆心坐标,所以圆心坐标为(3,4)。
四、已知点P(2,3)在直线l上,且直线l的斜率为-1,那么直线l的方程可能是什么? A、y=x+1 B、y=-x+5 C、y=x-5 D、y=-x+1(答案)B 解析:利用点斜式方程y-y₁=k(x-x₁),其中(x₁,y₁)是直线上的一点,k是直线的斜率。将点P(2,3)和斜率-1代入,得到方程y-3=-1(x-2),化简得y=-x+5。
五、若两直线平行,且其中一条直线的方程为y=3x-2,那么另一条直线的方程可能是什么? A、y=3x+1 B、y=-3x+1 C、y=6x-2 D、y=3x-2(答案)A 解析:两直线平行,则它们的斜率相等。已知一条直线的方程为y=3x-2,斜率为3,所以另一条直线的斜率也应为3,且截距不同。选项中只有A选项的直线斜率为3且截距不同。
六、已知点A(1,2)和点B(4,6)在直线l上,那么直线l的斜率是多少? A、1 B、2 C、3/4 D、4/3(答案)D 解析:利用两点式求斜率公式k=(y₂-y₁)/(x₂-x₁),将点A(1,2)和点B(4,6)代入,得到斜率k=(6-2)/(4-1)=4/3。
解析几何常规题型及方法〔 1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(x1 , y1 ) , ( x2 , y2 ) ,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
典型例题给定双曲线 x2y 2 1 。
过A〔2,1〕的直线与双曲线交于两点P1及 P2,求线段 P1 P2的中点P2的轨迹方程。
〔 2〕焦点三角形问题椭圆或双曲线上一点P,与两个焦点F1、 F2构成的三角形问题,常用正、余弦定理搭桥。
典型例题x2y 21 上任一点, F1 (c,0) , F2 ( c,0) 为焦点, PF1 F2, PF2 F1。
设 P(x,y) 为椭圆2b2asin();〔1〕求证离心率esinsin〔2〕求|PF1|3PF2 |3的最值。
〔 3〕直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的根本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的方法典型例题抛物线方程 y 2p (x 1) ( p 0),直线 x y t与 x轴的交点在抛物线准线的右边。
(1〕求证:直线与抛物线总有两个不同交点(2〕设直线与抛物线的交点为A 、 B,且 OA ⊥ OB,求 p 关于 t 的函数 f(t) 的表达式。
(4〕圆锥曲线的有关最值〔范围〕问题圆锥曲线中的有关最值〔范围〕问题,常用代数法和几何法解决。
<1> 假设命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
<2> 假设命题的条件和结论表达明确的函数关系式,那么可建立目标函数〔通常利用二次函数,三角函数,均值不等式〕求最值。
典型例题抛物线 y2=2px(p>0) ,过 M 〔 a,0〕且斜率为 1 的直线 L 与抛物线交于不同的两点 A 、 B , |AB|≤ 2p〔 1〕求 a 的取值范围;〔2〕假设线段 AB 的垂直平分线交x 轴于点 N ,求△ NAB 面积的最大值。
破解高中数学中的平面解析几何问题的解题技巧解析几何是高中数学的一部分,也是较难掌握的数学分支之一。
在解析几何中,平面解析几何问题是其中的重要组成部分。
为了帮助同学们更好地掌握平面解析几何的解题技巧,本文将介绍一些实用的方法和技巧。
一、建立坐标系在解决平面解析几何问题之前,首先要建立坐标系。
选择一个合适的坐标系有助于简化解题过程,减少冗余计算。
通常,我们可以选择直角坐标系或极坐标系,具体选择取决于问题的特点。
对于直角坐标系,可以将问题中涉及到的点坐标表示为(x, y)的形式,从而将几何问题转化为代数问题。
对于极坐标系,可以通过引入极坐标参数来分析问题,有时候更具优势。
建立坐标系之后,我们就可以根据题目的要求选择合适的方法来解决问题了。
二、利用性质和定理在平面解析几何中,有许多性质和定理可以应用于解题过程中。
熟练掌握这些定理和性质是解决问题的关键。
1. 距离公式:根据两点的坐标,可以用距离公式计算它们之间的距离。
对于直角坐标系,距离公式为:d = √((x2 - x1)² + (y2 - y1)²)。
对于极坐标系,距离公式为:d = √(r1² + r2² - 2r1r2cos(θ2 - θ1))。
2. 中点公式:根据两点的坐标,可以求得它们连线的中点坐标。
对于直角坐标系,中点公式为:(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2)。
3. 斜率公式:根据两点的坐标,可以求得它们连线的斜率。
对于直角坐标系,斜率公式为:斜率k = (y2 - y1) / (x2 - x1)。
但需要注意的是,当(x2 - x1)为0时,斜率不存在或为无穷大。
4. 直线方程:利用点斜式或两点式可以得到直线的方程。
点斜式:y - y1 = k(x - x1);两点式:(y - y1) / (x - x1) = (y2 - y1) / (x2 - x1)。
5. 圆的方程:根据圆心和半径的坐标可以得到圆的方程。
解析几何综合题解题思路案例分析解析几何综合题是高考命题的热点内容之一. 这类试题往往以解析几何知识为载体,综合函数、不等式、三角、数列等知识,所涉及到的知识点较多,对解题能力考查的层次要求较高,考生在解答时,常常表现为无从下手,或者半途而废。
据此笔者认为:解决这一类问题的关键在于:通观全局,局部入手,整体思维. 即在掌握通性通法的同时,不应只形成一个一个的解题套路,解题时不加分析,跟着感觉走,做到那儿算那儿. 而应当从宏观上去把握,从微观上去突破,在审题和解题思路的整体设计上下功夫,不断克服解题征途中的道道运算难关.1 判别式----解题时时显神功案例1 已知双曲线122:22=-x y C ,直线l 过点()0,2A ,斜率为k ,当10<<k 时,双曲线的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时点B 的坐标。
分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B 作与l 平行的直线,必与双曲线C 相切. 而相切的代数表现形式是所构造方程的判别式0=∆. 由此出发,可设计如下解题思路:解题过程略.分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B 到直线l 的距离为2”,相当于化归的方程有唯一解. 据此设计出如下解题思路:y ,令判别式0=∆l 的距离为2212222=+-+-k kx kx ()10<<k ()*于是,问题即可转化为如上关于x 的方程. 由于10<<k ,所以kx x x >>+22,从而有.222222k x kx k x kx +++-=-+-于是关于x 的方程()*⇔)1(22222+=+++-k k x kx⇔()⎪⎩⎪⎨⎧>+-++-+=+02)1(2,)2)1(2(222222kx k k kx k k x⇔()()()⎪⎩⎪⎨⎧>+-+=--++-++-.02)1(2,022)1(22)1(221222222kx k k kkx k k k x k由10<<k 可知: 方程()()()022)1(22)1(22122222=--++-++-k kx k k kx k 的二根同正,故02)1(22>+-+kx k k 恒成立,于是()*等价于()()()022)1(22)1(22122222=--++-++-k kx k k k x k.由如上关于x 的方程有唯一解,得其判别式0=∆,就可解得 552=k . 点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.2 判别式与韦达定理-----二者联用显奇效案例2 已知椭圆C:x y 2228+=和点P (4,1),过P 作直线交椭圆于A 、B 两点,在线段AB 上取点Q ,使AP PB AQQB=-,求动点Q 的轨迹所在曲线的方程. 分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。
解几最值求有妙法,构造函数多方出击一、攻关方略与圆锥曲线有关的最值或范围问题大都是综合性问题,解法灵活,技巧性强,涉及代数函数、三角函数、平面几何等方面的知识,求最值常见的解法有几何法和代数法两种,若题目的条件和结论能明显体现几何特征及意义,如与圆锥曲线的定义相关或涉及过焦点的弦长、焦半径、焦点三角形等,则考虑利用图形性质来解决;若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,圆锥曲线中的最值问题的载体是直线与圆锥曲线的关系,特别是相交所引出的图形的最值问题,大致可分为两类:①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.本讲重点放在用目标函数法求最值的策略.建立目标函数解与圆锥曲线有关的最值问题是一种常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.运用目标函数法解此类题的难点体现在两个方面:①如何建立目标函数.关键要把相关图形的特点吃透,变量可以是直线的斜截、截距、曲线上的动点坐标、变动的线段等等,通常所得到的解析式的形式不会太简单,对下一步的求解会带来困难.②对所求得的目标函数如何求其最值,常常需要进行再次构造为常见函数并运用相应的解题策略解之,比如转化为二次函数或三角函数的最值问题,然后利用配方法、基本不等式、函数的单调性或三角函数的有界性等,尤其是对复杂函数解析式的再构造,其方法并非唯一,不同的构造必有多种不同的解法,或繁或简,通过解题经验的积累,尽可能找到最为巧妙的构造,得到最为简捷的解法,真可谓:解几最值求有妙法,构造函数多方出击.思维发散或繁或简,纵横联结枝繁叶茂.【典例】已知点()0,2A -,圆2222:1x y E a b +=(0a b >>F 是椭圆E的右焦点,直线AF O 为坐标原点.(1)求E 的方程;(2)设过点A 的直线l 与椭圆E 相交于P ,Q 两点,当OPQ △的面积最大时,求l 的方程.解题策略解析几何是用代数方法研究几何问题的一门数学学科,代数方法当然离不开比较复杂的计算,高考命题特别提出“多考想,少考算”,突出考查学生分析推理、转化的数学逻辑思维能力,如何在解析几何中避免繁杂、冗长的计算,即简化计算,也就成了处理这类问题的难点与关键,解析几何题目中常用的简化运算的技巧有:圆锥曲线的概念、条件等价转化、以形助数、设而不求以及通过构造以巧妙的方法减少运算量等,本例第(1)问,根据已知条件,利用基本量求椭圆方程;第(2)问,先建立OPQ △面积的函数表达式,再求最值,其中函数变量的选取尤为重要,不同的解析式有不同的求最值的方法.策略一由弦长公式求PQ ,由点到直线距离公式求d ,由12=⋅S PQ d 得解析式,换元法转化为用基本不等式求最值和l 的方程策略二由POQ AOQ AOP S S S =-△△△得函数解析式再进一步求解策略三利用坐标法求解析式再进一步求解(1)解:设(c,0)F ,由条件知,23c =,得c =又2c a =,∴2a =,2221b a c =-=,故E 的方程为2214x y +=.(2)解法一当l x ⊥轴时,不合题意,故设:2l y kx =-,()11,P x y 、()22,Q x y ,将2y kx =-代入椭圆方程,整理得()224116120k x kx +-+=.则()()222(16)48411643k k k ∆=-+=-当0∆>,即234k >时由弦长公式得12||PQ x =-==.又由点到直线的距离公式得点O 到直线l的距离d =∴OPQ △的面积221||24141S PQ k k d ===++⨯.t =,244144t S t t t ==++.则2243k t =+且0t >,当4t t =,即2t =时,OPQ △2=,解得2k =.故所求直线l的方程为2y =-或2y =-.解法二设直线:2l y kx =-交椭圆E 于()11,P x y ,()22,Q x y .且P 在线段AQ 上.由222,440y kx x y =-⎧⎨+-=⎩得()224116120k x kx +-+=,1221641k x x k +=+,1221241x x k =+.由0∆>得234k ≥.则21122POQ AOQ AOP S S S x x =-=⨯-==△△△同解法一得所求直线l 的方程为2y =-或2y =-.解法三设l 的方程为2y kx =-,与椭圆方程联立得222,44,y kx x y =-⎧⎨+=⎩消去y 整理得()224116120k x kx +-+=.则1221641k x x k +=+,1221241x x k =+,且由0∆>,得234k >.设点P 、Q 的坐标分别为()11,x y ,()22,x y .点O 的坐标为(0,0),用坐标法求OPQ △的面积S 可表示为11221112001x y S x y =.即()()1221122112112222S x y x y x kx x kx x x =-=---=-⎡⎤⎣⎦241k k ==+.同解法一得所求直线l 的方程为2y =-或2y =-.【点评】运用目标函数法解此类题的难点体现在两个方面:①如何建立目标函数.关键要把相关图形的特点吃透,变量可以是直线的斜截、截距、曲线上的动点坐标、变动的线段等等,通常所得到的解析式的形式不会太简单,对下一步的求解会带来困难.②对所求得的目标函数如何求其最值,常常需要进行再次构造为常见函数并运用相应的解题策略解之,【针对训练】1.已知椭圆的方程为22143x y +=,1F ,2F 分别为椭圆的左、右焦点,线段PQ 是椭圆上过点2F 的弦,则1PFQ △内切圆面积的最大值为______.2.已知抛物线2:4C y x =上一点()4,4M -,A ,B 是抛物线C 上的两动点,且0MA MB ⋅= ,则点M 到直线AB 距离的最大值是______.(2021全国乙卷理11)3.设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦(2021全国新高考Ⅰ卷5)4.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .65.已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.6.已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB 面积的最大值.(2022·浙江)7.如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(1)若116=p ,求抛物线2C 的焦点坐标;(2)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.(2022·浙江)8.如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RN PN QN =⋅,求直线l 在x 轴上截距的范围.(2019年高考数学浙江卷第21题)9.如图所示,已知点()1,0F 为抛物线22y px =(0p >)的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧,记AFG 、CQG 的面积分别为1S ,2S.(1)求p 的值及抛物线的准线方程;(2)求的12S S 最小值及此时点G 的坐标.10.如图,已知抛物线2x y =.点A 1139-2424B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P (x,y )13-x 22⎛⎫ ⎪⎝⎭<<,过点B 作直线AP 的垂线,垂足为Q(I)求直线AP斜率的取值范围;PA PQ的最大值(II)求·参考答案:1.9π16【分析】()111142PF Q S PF QF PQ r r =++⋅=△,∴14PF Q S r =△,解法一:112PF Q S PQ d =⋅ ,点1F 到直线PQ 的距离为d .由弦长公式和点到直线距离公式,求最大值.解法二:1121212PF Q S F F y y =- ,由弦长公式和基本不等式求最大值.【详解】解法一如图所示,1PFQ △的()111142PF Q S PF QF PQ r r =++⋅=△,∴14PF Q S r =△.当直线PQ 的斜率不存在时,易得||3PQ =,此时1121||32PF Q S F F PQ =⋅⋅=△,∴34r =;当直线PQ 的斜率为k 时,直线PQ 的方程为(1)y k x =-.将(1)y k x =-代入22143x y +=,并整理得:()22224384120k x k x k +-+-=.设()11,P x y 、()22,Q x y ,则2122843k x x k +=+,212241243k x x k -=+.||PQ ==()2212143k k +==+.∵点1F 到直线PQ 的距离d =.则12112|||243PF Qd k S PQ k ==⋅+△,则()()()()222222222211124331PFQ k k k k S k k k ++⎛⎫== ⎪⎡⎤⎝⎭+++⎣⎦△,设21u k =+,2v k =,则122112(3)96PF Q S uv u v u v v u⎛⎫== ⎪+⎝⎭⨯++△,且2211u k v k +=>,设(1)u t t v=>,设1()96f t t t =++,则21()9f t t '=-,当1t >时,()0f t '>,∴96(1)16u v f v u ⋅++>=,则1212116PF Q S ⎛⎫ ⎪⎝<⎭△,∴13PF Q S <△,∴34r <.综上,当直线PQ 垂直于x 轴时,1PFQ △的内切圆半径r 取得最大值34,∴1PFQ △的内切圆面积的最大值为9π16.解法二显然直线PQ 的斜率不为0,故可设其方程为1x my =+,将1x my =+代入22143x y+=,并整理得()2234690m y my ++-=,设()11,P x y ,()22,Q x y ,则122634m y y m +=-+,122934y y m =-+,∴1121221234PF Q S F F y y m =-===+△121,令1t ≥.设1()3f t t t =+,则21()3f t t'=-,则当1t >时,()0f t '>[]1,+∞,∴(1)4f =≥(当0m =时等号成立),∴1PF Q S △的最大值为3.此时1344PF Q S r ==△,即r 的最大值为34.∴1PFQ △的内切圆面积的最大值为9π16.故答案为:9π162.【分析】解法一:首先利用坐标表示直线MA ,MB 和直线AB 的斜率,并利用坐标表示1MA MB k k ⋅=-,代入直线AB 的方程,化简求直线所过定点,利用几何法表示点M 到直线AB距离的最大值;解法二:利用1MA MB k k ⋅=-得()()12124324y y y y y x +-++=,利用换元得直线AB 的方程为44320x ty t -+-=,列出点到直线距离公式d ==关系求函数最大值;解法三:首先设直线AB 的方程为x ky b =+,与抛物线方程联立,并利用韦达定理表示0MA MB ⋅=,得22123616164b b k k -+=-+,化简后表示,k b 的关系,可求得定点坐标,再利用两点距离表示点到直线距离的最大值.【详解】解法一:如图所示,设()11,A x y ,()22,B x y ,则直线MA 的斜率为()()()11111144444444MA y y k x y y y ++===-+--.同理可得直线MB 的斜率为244MB k y =-.直线AB 的斜率为12122212121244AB y y y y k y y x x y y --===--+.由1244144MA MB k y y k =⨯=---⋅,得()1212432y y y y -+=-.又直线AB 的方程为()11124y y x x y y -=-+,故()12124y y y y y x +-=.∴()()12124324y y y y y x +-++=.即()12(4)4(8)y y y x +-=-,∴直线AB 过定点()8,4P .点M 到直线AB距离的最大值为||MP ==解法二:同解法一得()()12124324y y y y y x +-++=.令12y y t +=,则直线AB 的方程为44320x ty t -+-=.点M 到直线AB的距离d ==令2t s -=,则有d =,当10s =-时等号成立,即点M 到直线AB距离的最大值为解法三:设直线AB 的方程为x ky b =+,211,4y A y ⎛⎫⎪⎝⎭,222,4y B y ⎛⎫ ⎪⎝⎭.由24x ky by x=+⎧⎨=⎩,得2440y ky b --=.∴()2160k b ∆=+>,124y y k +=,124y y b =-.∴0MA MB ⋅= ,即2212124,44,4044y y y y ⎛⎫⎛⎫-+⋅-+= ⎪ ⎪⎝⎭⎝⎭,∴()()22212121212122432016y y y y y y y y y y ⎡⎤-+-++++=⎣⎦.①把121244y y ky y b+=⎧⎨=-⎩代入(1)式整理得22123616164b b k k -+=-+.即22(6)(42)b k -=-,∴48b k =-+或44b k =+.当44b k =+时,直线AB 的方程为(4)4x k y =++,恒过点(4,4)-M ,不符合题意;当48b k =-+时,直线AB 的方程为(4)8x k y =-+,恒过点()8,4P ,符合题意.∴点M 到直线AB的距离的最大值是||MP =故答案为:3.C【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【详解】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤当32b b c->-,即22b c <时,42222max b PB a b c =++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .【点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.4.C【分析】法一:根据椭圆定义得到1226MF MF a +==,结合基本不等式进行求解;法二:设出()00,M x y ,使用焦半径结合033x -≤≤进行求解.【详解】法一:由题意,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).法二:设()00,M x y ,033x -≤≤,由焦半径公式可得:1002003,3MF a ex MF a ex =+=+=-=-,故21200053399MF MF x x ⎛⎫⎛⎫⋅=+⋅=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为033x -≤≤,所以2009x ≤≤,当200x =,即00x =时,12MF MF ⋅取得最大值,最大值为9.故选:C .5.(1)24y x =(2)13【分析】(1)由抛物线焦点与准线的距离即可得解;(2)设()00,Q x y ,由平面向量的知识可得()00109,10P x y -,代入抛物线方程,进而可得20025910y x +=,可得点Q 的轨迹,再由斜率公式及基本不等式即可得解.【详解】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥=,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.6.(1)2p =(2)()max = PAB S 【分析】(1)方法一利用两点间距离公式求得FN 关于圆M 上的点()00,N x y 的坐标的表达式,进一步转化为关于0y 的表达式,利用二次函数的性质得到最小值,进而求得p 的值;方法二,利用圆的性质,F 与圆22:(4)1M x y ++=上点的距离的最小值,简洁明快,为最优解;(2)方法一设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求得两切线方程,由切点弦方程思想得到直线AB 的坐标满足方程00220x x y y --=,然手与抛物线方程联立,由韦达定理可得1202x x x +=,1204x x y =,利用弦长公式求得AB 的长,进而得到面积关于()00,P x y 坐标的表达式,利用圆的方程转化得到关于0y 的二次函数最值问题;方法二,同方法一得到1202x x x +=,1204x x y =,过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y .由121||2PAB S PQ x x =⋅- 求得面积关于()00,P x y 坐标的表达式,并利用三角函数换元求得面积最大值,方法灵活,计算简洁,为最优解;方法三直接设直线:AB l y kx b =+,联立直线AB 和抛物线方程,利用韦达定理判别式得到20k b +>,且12124,4x x k x x b +==-.利用点P 在圆M 上,求得,k b 的关系,然后利用导数求得两切线方程,解方程组求得P 的坐标(2,)P k b -,进而利用弦长公式和点到直线距离公式求得面积关于b 的函数表达式,然后利用二次函数的性质求得最大值;【详解】(1)[方法一]:利用二次函数性质求最小值由题意知,0,2p F ⎛⎫ ⎪⎝⎭,设圆M 上的点()00,N x y ,则()22041++=x y .所以()()22001453=-+-≤≤-x y y .从而有||=FN =因为053y -≤≤-,所以当03y =-时,min ||4==FN .又0p >,解之得2p =,因此2p =.[方法二]【最优解】:利用圆的几何意义求最小值抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =;(2)[方法一]:切点弦方程+韦达定义判别式求弦长求面积法抛物线C 的方程为24x y =,即24x y =,对该函数求导得=2xy ',设点()11,A x y 、()22,B x y 、()00,P x y ,直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=,同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=,所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=,由韦达定理可得1202x x x +=,1204x x y =,所以,AB ==,点P 到直线AB的距离为d =,所以,()3220011422PABS AB d x y =⋅=-△,()()2222000000041441215621x y y y y y y -=-+-=---=-++ ,由已知可得053y -≤≤-,所以,当05y =-时,PAB的面积取最大值321202⨯=[方法二]【最优解】:切点弦法+分割转化求面积+三角换元求最值同方法一得到1201202,4+==x x x x x y .过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y.()32221200001111||242222⎛⎫=⋅-=-=- ⎪⎝⎭PABS PQ x x x y x y .P 点在圆M 上,则00cos ,4sin ,x y αα=⎧⎨=-+⎩()()333222222001114cos 4sin 16(sin 2)21222ααα⎡⎤=-=-+=-++⎣⎦ PABS x y .故当sin 1α=-时PAB 的面积最大,最大值为[方法三]:直接设直线AB 方程法设切点A ,B 的坐标分别为211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭.设:AB l y kx b =+,联立AB l 和抛物线C 的方程得2,4,y kx b x y =+⎧⎨=⎩整理得2440x kx b --=.判别式2Δ16160=+>k b ,即20k b +>,且12124,4x x k x x b +==-.抛物线C 的方程为24x y =,即24x y =,有2x y '=.则()2111:42-=-PA x x l y x x ,整理得21124x x y x =⋅-,同理可得222:24=⋅-PB x x l y x .联立方程211222,24,24x x y x x xy x ⎧=⋅-⎪⎪⎨⎪=⋅-⎪⎩可得点P 的坐标为1212,24x x x x P +⎛⎫ ⎪⎝⎭,即(2,)P k b -.将点P 的坐标代入圆M 的方程,得22(2)(4)1+-+=k b ,整理得221(4)4b k --=.由弦长公式得12||=-=AB x=点P 到直线AB的距离为d =所以21||222==+== PABS AB d k b=其中[5,3]=-∈--P y b ,即[3,5]∈b .当5b =时,()max = PAB S 7.(1)1(,0)32(2)max p 【分析】(1)根据抛物线的焦点坐标公式求解即可;(2)设直线:l x y m λ=+,与椭圆联立,结合韦达定理得到中点M 的坐标,代入抛物线,再将直线与抛物线联立,结合韦达定理用参数表示点A 坐标,再将椭圆与抛物线联立得到点A 坐标,结合均值不等式,分析即得解.【详解】(1)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(2)由题意,直线l 的斜率不为0,设()()()112200,,,,,,:A x y B x y M x y l x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩,1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++,由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++,又22222()220y pxy p y m y p y pm x y m λλλ⎧=⇒=+⇒--=⎨=+⎩,012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒=-+222221822228162p p p m p p p λλλλλ+⇒-++⋅=++≥+,18p ≥,21160p ≤,p ≤所以,p,此时A .8.(1)24y x=(2)(,7[7(1,)-∞---++∞ .【分析】(1)根据2MF =,求p ,再求抛物线方程;(2)方法一:主要是用()()1122,,,A x y B x y 坐标表示直线,MA MB ,利用弦长公式将线段长度关系转为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围;方法二:利用焦点弦的性质求得直线,MA MB 的斜率之和为0,再利用线段长度关系即为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.方法三:利用点,A B 在抛物线上,巧妙设点坐标,借助于焦点弦的性质求得点,A B 横坐标的关系,这样有助于减少变元,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.【详解】(1)因为2MF =,故2p =,故抛物线的方程为:24y x =.(2)[方法一]:通式通法设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n ,所以直线:2yl x n =+,由题设可得1n ≠且12t ≠.由214x ty y x=+⎧⎨=⎩可得2440y ty --=,故12124,4y y y y t =-+=,因为2RN PN QN =⋅,故2R P Q ⎫=⎪⎪⎭,故2R P Q y y y =⋅.又()11:11y MA y x x =++,由()11112y y x x y x n⎧=+⎪+⎪⎨⎪=+⎪⎩可得()1112122P n y y x y +=+-,同理()2222122Q n y y x y +=+-,由12x ty yx n =+⎧⎪⎨=+⎪⎩可得()2121R n y t -=-,所以()()()2212211212121=212222n n y n y t x y x y -++⎡⎤⨯⎢⎥-+-+-⎣⎦,整理得到()()()2212221112112222y y n t n x y x y -⎛⎫=- ⎪++-+-⎝⎭,()22221214212222t y y y y -=⎛⎫⎛⎫+-+- ⎪⎪⎝⎭⎝⎭()()()()2222222121212112214212134+++2+442t t t y y y y y y y y y y y y --==+--⨯-+故()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,令21s t =-,则12s t +=且0s ≠,故()22222234242411331+444421t s s s s s s t +++⎛⎫==+=++≥ ⎪⎝⎭-,故213141n n n ⎧+⎛⎫≥⎪ ⎪-⎨⎝⎭⎪≠⎩即214101n n n ⎧++≥⎨≠⎩,解得7n ≤--71n -+≤<或1n >.故直线l 在x 轴上的截距的范围为7n ≤--71n -+<或1n >.[方法二]:利用焦点弦性质设直线AB 的方程为11x k y =+,直线MA 的方程为21x k y =-,直线MB 的方程为31x k y =-,直线l 的方程为221212,,,,,(,0)244y y y x m A y B y N m ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,由题设可得1m ≠且112k ≠.由121,4x k y y x=+⎧⎨=⎩得21440y k y --=,所以121124,4y y k y y +==-.因为2112231121114,44y y y k k y y y +==+=+,12121223111212110444y y y y y y k k k k y y y y ++∴+=++++=-=,()21221212231121212111111441642y y y y y y k k k y y y y y y +⎛⎫⎛⎫=++=+⋅+-=-- ⎪⎪⎝⎭⎝⎭.由21,2x k y y x m =-⎧⎪⎨=+⎪⎩得2112p m y k +=-.同理3112Q m y k +=-.由11,2x k y y x m =+⎧⎪⎨=+⎪⎩得1112R m y k -=-.因为2||||||RN PN QN =⋅,所以2R P Q y y y -⋅=即222211231(1)(1)13112422m m m k k k k ⎛⎫ ⎪-++== ⎪⎛⎫⎛⎫ ⎪-+--- ⎪⎪⎝⎭⎝⎭⎝⎭.故22121314112k m m k ++⎛⎫= ⎪-⎝⎭⎛⎫- ⎪⎝⎭.令112t k =-,则222221111113311244m t t m t t t t +++⎛⎫⎛⎫==++=++≥ ⎪ ⎪-⎝⎭⎝⎭.所以210,1410,m m m -≠⎧⎨++≥⎩,解得7m ≤--71m -+≤<或1m>.故直线l 在x轴上的截距的范围为(,7[7)(1,)-∞---++∞ .[方法三]最优解设()()22,2(0),,2A a a a B b b >,由,,A F B 三点共线得22222221b a ab a a b a -==-+-,即1ab =-.所以直线MA 的方程为22(1)1a y x a =++,直线MB 的方程为2222(1)(1)11b ay x x b a -=+=+++,直线AB 的方程为22(1)1ay x a =--.设直线l 的方程为2(2)y x m m =+≠-,则222(2)(2)(2),,,1112P Q R N m a m a m a my y y x a a a a a a ----====--+++--.所以()()2222222222(2)(2)||||||11m a m a RN PN QN aa aa +-=⋅⇔=--+-.故()()2222222222221112(1)2140,2133111a a a m t t t a m t t a a a a ⎛⎫-- ⎪--+--+⎛⎫⎡⎤⎝⎭====∈ ⎪⎢⎥-++⎝⎭⎣⎦⎛⎫+-+- ⎪⎝⎭(其中1t a a =-∈R ).所以(,14[14)m ∈-∞-++∞ ,且2m ≠-,因此直线l 在x轴上的截距为(,7[7(1,)2m-∈-∞---++∞ .9.(1)2p =,=1x -(2)最小值为1(2,0).【分析】(1)根据焦点坐标求解p ,再根据准线方程公式求解即可;(2)直线AB 的方程为(1)y k x =-,与抛物线联立,得到关于y 的韦达定理,用坐标表示12S S ,求得取得最小值时t 的值,再由()()22212312311312G x x x x y y y =++=++,结合韦达定理,求解即可.【详解】(1)由题意得12p=,即2p =,∴抛物线的准线方程为=1x -.(2)设()11,A x y ,()22,B x y ,()33,,C x y 不妨设12y y >,又Q 在点F 的右侧,故1230y y y >>>,又直线AB 的方程为(1)y k x =-.联立2(1)4y k x y x =-⎧⎨=⎩,得2440y y k --=,∴124y y =-.1112AGB AGB AF y S S S AB y y ==-△△,3231AGC AGC CQ y S S S CA y y -==-+△△,由G 为ABC 的重心,有AGB AGC S S =△△,且1230y y y ++=.故2424211311121111122422421231212121121224242416S y y y y y y y y y y y S y y y y y y y y y y y y y -++---=⋅=⋅===---+---.令12S n S =,21y t =,则222416t t n t -=-,即2(2)4160n t t n --+=.①当2n =时,122S S =,此时8t =;②当2n ≠时,二次方程至少有一个正根,故0∆≥,解得22n ≥,若方程有两个非正根,此时12124021602x x n n x x n ⎧+=≤⎪⎪-⎨⎪=≥⎪-⎩,不等式组无解,故22n +≥,即12min1S S ⎛⎫=+ ⎪⎝⎭8t =+.()()()222222123123121211131212G x x x x y y y y y y y ⎡⎤=++=++=+++⎣⎦()22121216y y y y =++.而218y t ==+2221168y y ==-,故G 点坐标为(2,0).10.(I )(-1,1);(II )2716.【详解】(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+,因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-.(Ⅱ)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩解得点Q 的横坐标是22432(1)Q k k x k -++=+.因为|PA12x +1)k +,|PQ|=2)Q x x -=-,所以3(1)(1)k k PA PQ ⋅--+=.令3()(1)(1)f k k k =--+,因为2'()(42)(1)f k k k =--+,所以f (k )在区间1(1,2-上单调递增,1(,1)2上单调递减,因此当k =12时,||||PA PQ ⋅取得最大值2716.【点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力,通过表达||PA 与||PQ 的长度,通过函数3()(1)(1)f k k k =--+求解||||PA PQ ⋅的最大值.。
专题09平面解析几何真题汇编1.设A,B为椭圆的长轴顶点,E,F为的两个焦点,|ABl=4,,P为上一点,满足,则△PEF的面积为.【答案】1【解析】由题意知该椭圆可设为.由余弦定理,.所以.2.在平面直角坐标系xOy中,椭圆的左、右焦点分别是,椭圆C的弦ST与UV分别平行于x轴与y轴,且相交于点P.已知线段PU,PS,PV,PT的长分别为1,2,3,6,则的面积为【答案】【解析】由对称性,不妨设在第一象限,则由条件知.即P(2,1).进而由得U(2,2)),S(4,1),代入椭圆C的方程知,解得a2=20,b2=5.从而.3.在平面直角坐标系中,椭圆C的方程为,F、A分别为椭圆C的上焦点、右顶点.若P为椭圆C上位于第一象限内的动点,则四边形面积的最大值为___________。
【答案】【解析】易知,,设则其中,当时,四边形OAPF面积的最大值为.故答案为:4.在平面直角坐标系中,点集,在点集K中随机取出三个点,则这三点中存在两点之间距离为的概率为___________。
【答案】【解析】易知,点集K中有9个点,故在点集K中随机取出三个点的种数为。
将点集K中的点按图标记为其中有8对点之间的距离为。
由对称性,考虑取两点的情形.则剩下的一个点有7种取法,这样有个三点组(不计每组中三点的次序)。
对每个,点集中恰有两点与距离为,因而,恰有这8个三点组被计算了两次。
故满足条件的三点组个数为从而所求概率为.故答案为:5.已知双曲线C:,左、右焦点分别为F1、F2.过点F2作一直线与双曲线C的右半支交于点P、Q,使得.则的内切圆半径为________.【答案】【解析】如图所示.由双曲线的性质知:.由.从而,的内切圆半径为:.6.设椭圆的两个焦点为,过点的直线与椭圆交于点P、Q.若,且,则椭圆的短轴与长轴的比值为__________.【答案】【解析】不妨设.设椭圆的长轴、短轴的长度分别为,焦距为.则,且由椭圆的定义知.故.如图所示,设H为线段的中点.则,且.由勾股定理知:7.抛物线的焦点为,准线为是抛物线上的两个动点,且满足.设线段的中点上的投影为,则的最大值是_______.【答案】1【解析】根据抛物线的定义可知,,故,在三角形中,根据余弦定理有,由于,所以,即,故.点睛:本题主要考查直线与抛物线的位置关系,考查基本不等式求最值的方法,考查化归与转化的数学思想方法.抛物线的定义是:动点到定点的距离等于到定直线的距离,这是在有关抛物线的小题中常考考知识点.本题中利用抛物线的定义,进行转化后,利用余弦定理和基本不等式来求解最值.8.直线与抛物线交于两点,为抛物线上的一点,.则点的坐标为______.【答案】【解析】设.由.则①又,则②因为,所以,.故.将方程组①、②代入上式并整理得.显然,.否则,.于是,点在直线上,即点重合.所以,.故所求点.故答案为:9.双曲线的右半支与直线围成的区域内部(不含边界)整点(横纵坐标均为整数的点)的个数是________. 【答案】9800 【解析】由对称性知,只需先考虑轴上方的情况. 设与双曲线右半支交于点,与直线交于点.则线段内部的整点的个数为.从而,在轴上方区域内部整点的个数为. 又轴上有98个整点,则所求整点的个数为.10.已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】[]36,【解析】设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M 相交,得342d ≤. 解得36a ≤≤. 11.椭圆上任意两点,若,则乘积的最小值为 .【答案】【解析】 设,.由在椭圆上,有①②得.于是当时,达到最小值.12.在平面直角坐标系xOy中,圆与抛物线:y2=4x恰有一个公共点,且圆与x轴相切于的焦点F.求圆的半径.【答案】【解析】设圆的半径为R,圆心为(1,R)(-1,R),则圆的方程可写作.不妨设圆与抛物线相切于点,则过该切点的切线方程:以圆为对象,得以抛物线为对象,得.于是可得①②又切点在抛物线y2=4x上,③由①得,由②得.解得:.故圆半径为.13.如图,在锐角△ABC中,M是BC边的中点.点P在△A BC内,使得AP平分∠BAC.直线MP与△ABP,△ACP的外接圆分别相交于不同于点P的两点D,E.证明:若DE=MP,则BC=2BP.【答案】证明见解析【解析】如图:只要证明两小黄全等△DBP,△EMC。