等价关系和集合分类
- 格式:doc
- 大小:239.00 KB
- 文档页数:2
近世代数中关于集合的划分及其应⽤研究近世代数中关于集合的划分及其应⽤研究摘要我们对集合并不陌⽣,我们所熟知的集合实际上是朴素集合.那么我们为什么要讨论集合的划分呢?因为它在商群、商环、商域等其他⽅⾯中有着极其重要的应⽤.我们要研究集合的划分就必须研究等价关系,因为它们是互相决定的。
因此我们先从等价关系开始说起,之后再来探讨集合的划分,然后观察集合的划分在各⽅⾯的应⽤.第⼀章等价关系与等价类定义1.1:设S 是⼀个⾮空集合,R 是关于S 的元素的⼀个条件.如果对S 中任意⼀个有序元素对(a ,b ),我们总能确定a 与b 是否满⾜条件R ,就称R 是S 的⼀个关系(relation ).如果a 与b 满⾜条件R ,则称a 与b 满⾜条件R ,则称a 与b 有关系R ,记做aRb ;否则称a 与b ⽆关系R.关系R 也成为⼆元关系.定义1.2:设~是集合A 上的⼀个⼆元关系,若满⾜下列性质:(1)⾃反性:?a ∈A ,a~a;(2)对称性:?a,b ∈A,a~b,则b~a;(3)传递性:?a,b,c ∈A,a~b,b~c,则a~c.则称~A 上的⼀个等价关系.当a~b 时,称a 与b 等价.定义1.3:设⼀个集合A 分成若⼲个⾮空⼦集,使得A 中每⼀个元素属于且只属于⼀个⼦集,则这些⼦集的全体成为A 的⼀个分类。
每个⼦集称为⼀个类.类⾥任何⼀个元素称为这个类的⼀个代表.由定义可知,A 的⾮空⼦集族S={i A |i ∈I } 是A 的⼀个分类当且仅当其满⾜下列性质:(1) Ii iA ∈=A; (2)当j i ≠时,=j i A A ?,即不同的类互不相交.定理1.1 设S={i A |i ∈I } 是A 的⼀个分类,规定~为: a~b ?a 与b 同属于同⼀个类,则~是A 上的⼀个等价关系.证明:⾸先由分类的定义,~是A 的⼀个关系.⽽且,显然?a ∈A ,a~a ;⼜?a ,b ∈A ,若a~b ,则a 与b 属于同⼀个类,从⽽b~a ;?a ,b ,c ∈A ,若a~b ,b~c ,则a 与b 属于同⼀个类,b 与c 属于同⼀个类,于是a 与c 属于同⼀个类,从⽽a~c.因此~是A 上的⼀个等价关系.定理1.2 设~是A 上的⼀个等价关系,对于a ∈A ,令[a]={x|x ∈A,x~a},则A 的⼦集族是A 的⼀个分类.证明(1)?a ∈A ,因为,a~a ,所以a ∈[a],从⽽[a]是⼀个⾮空⼦集,并且[]=∈ A a a A.(2)若[a] [b]≠?,则?c ∈[a] [b],于是c~a ,c~b ,从⽽a~b.x ∈[a],有x~a ,于是x~b ,所以x ∈[b],即[a]?[b].同理[b]?[a].这⾥就得到[a]=[b].所以不同的等价类互不相交.该定理中所构成的⼦集[a]称为A 的⼀个包含a 的~等价类.定义4:设~是A 上的⼀个等价关系,由A 的全体不同~等价类所组成的集合族称为A 关于~的商集,记作A/~.第⼆章商群我们研究商群必须要知道:它是由什么样的等价关系确定的什么样的等价类,然后由这些等价类构成的集合再定义⼀种什么样的运算才是商群,最后为了把⼀些较为复杂的群转化较为简单的群,再给出群的同态基本定理.⼀、什么样的等价关系我们知道由⼀个正整数m ,确定了整数间的⼀个等价关系m R ,即a m Rb ?m|a —b ,?a ,b ∈Z .其中Z 是⼀个由1⽣成的循环加群,(m )是Z 的⼀个⼦加群,且从⽽m R 也可以认为是由Z 的⼀个⼦群(m )所确定的.现在将这个思想推⼴到⼀般的群中,设H 是群G 的⼀个⼦群,在G 中定义⼀个关系R :G b a H ab H a b aRb 1-1-∈?∈∈?,,且容易验证R 是⼀个等价关系.利⽤这个等价关系可以决定群G 的⼀个分类.⼆、什么样的等价类定义2.1 设H ≤G ,由等价关系R 所决定的类称为H 的陪集.定理2.1 设H ≤G ,则包含元素a 的陪集等于Ha aH 或.证明将包含元素a 的陪集记作[a].?b ∈[a],有bRa ,即H h ba H h b a 2-111-∈=∈=且,即b=a 1h =∈a h 2Ha aH =,所以有[a]aH ?=Ha .反之,?b ∈Ha aH =,?21h h ,∈H ,使b=a h ah 21=,于是H h ba H h b a 2-111-∈=∈=且,即bRa ,从⽽b ∈[a],所以有aH ]a [].a [Ha aH =?=因此.三、商群定理2.2 设G 是群,N G ,令G/N={aN |a ∈G},规定: ,/G bN aN N ab bN aN N ∈?=,,)(则(G/N,?)是⼀个群.证明⾸先证明?是G/N 的代数运算,即G/N 到G/N 的映射,也就是要证与代表元的选取⽆关.设aN N a 1=,,bN N b 1=则N n a a 111-∈=,.N n b b 21-1∈=因为N G ,所以11111使3111n b b n =,这样N n n n b b b n b b a a b b a ab 3231-111-111-11-111-∈====)()()()()(,从⽽(ab )N=(11b a )N ,所以?是G/N 的代数运算,⼜?,/G cN bN aN N ∈,,有=====N bc aN ]bc [a N ]c )ab [(cN N ab cN bN aN )()()()(),(cN bN aN ??从⽽?满⾜结合律,且,/G aN eN aN aN eN N ∈??=?,从⽽N=eN 是G/N 的单位元.?,/G aN N ∈存在,/G N a 1-N ∈使,eN aN N a N a aN -11-=?=?从⽽.aN N a 1-的逆元是因此G/N 是⼀个群. 该定理中够作的群G/N 称为G 关于N 的商群.四、有限阶群的阶和⼦群阶的关系定理2.3(Lagrange (拉格朗⽇))设G 是有限群,H 是G 的⼦群,则|G|=[G :H]|H|证明因为G 是有限群,所以[G :H]有限,设为k ,则G=U U H a H a 21…H a k U .⼜因为在H 和H a i 之间存在⼀个双射,所以|H a i |=|H|,因此|G|=H a 1+…+H a k =k|H|=[G :H]|H|. 五、群的同态基本定理定理2.4(同态基本定理)设f 是群G 到G ’的同态,则(1)Kerf G ;(2)G/ Kerf ?Imf.证明(1)因为e ∈ Kerf ,所以Kerf ≠?.⼜?a ,b ∈ Kerf ,x ∈G ,即f (a )=f (b )=e ',则f (a 1b -)= f (a )1b f -)(= e '1e -= e ',f(xa -1x )=f(x)f(a)1x f -)(= f(x) e '1x f -)(=e ',从⽽a 1b -,xa -1x ∈ Kerf ,因此Kerf G.(2)在G/ Kerf 到Imf 间规定⼀个法则:Φ:aKerf f (a ).a) ? aKerf ,bKerf ∈Kerf G/ Kerf ,有aKerf=bKerf ?1a -∈Kerf ?f(1a -b)= e '1a f -)(f (b )= e ' ? f (a )=f (b ),从⽽Φ是⼀个G/ Kerf 到Imf 的映射.b )?a ' ∈ Imf ,?a ∈G ,使 f (a )= a ',于是Φ(aKerf )= f (a )=a ',从⽽Φ是满射.c) ? aKerf ,bKerf ∈Kerf G/ Kerf ,有Φ( aKerf)= Φ( bKerf) ? f (a )=f (b )?1a f -)( f (b )=e ' ?f(1a -b)=e ' ? 1a -b ∈Kerf ? aKerf=bKerf ,从⽽Φ是单射.d) ? aKerf ,bKerf ∈Kerf G/ Kerf ,有Φ( aKerf ?bKerf) =Φ( abKerf)=f(ab)= f (a )f (b )=Φ( aKerf)? Φ( aKerf)? Φ(bKerf),从⽽Φ保持运算.因此Φ是同构.于是G/ Kerf ?Imf.第三章商环我们研究商环的思路是:在商加群的基础上再定义⼀种乘法运算,使得该种运算在某⼀⼦环下构成代数运算进⽽对该种运算构成半群且慢⾜:乘法运算对加法运算符合左分配律和右分配律,在学习过程中我们发现理想是可以在我们定义的乘法运算下满⾜上⾯条件的⼦环,因此我们先研究什么是理想,从⽽给出商环的定义,最后得出环的同态基本定理.⼀、理想定义3.1 设(R ,+,?)是⼀个环,(A ,+)是(R ,+)的⼀个⼦加群,(1)若?r ∈R ,a ∈A 有ra ∈A ,则称A 是R 的左理想;(2)若?r ∈R ,a ∈A 有ar ∈A ,则称A 是R 的右理想;(3)若A 既是R 的左理想,⼜是R 的右理想,则称A 是R 的⽴、理想,记作A R .(4)若A R ,且A ≠R ,则称A 是R 的真理想.由定义可知理想⼀定是⼦环.⼆、商环定义3.2 设R 是环,A R ,在商群(R ,+)/(A ,+)={[x]|x ∈R}={x+A| x ∈R }中再规定:[x]?[y]=[xy],? [x] ,[y] ∈R/A ,则(R/A ,+,?)是⼀个环(R/A 称为R 关于A 的商环或剩余类环,[x]=x+A 称为R 模A 的剩余类).证明⾸先证明上⾯规定的乘法运算是代数运算,即与代表元的选取⽆关.设[x]=[1x ],[y]=[1y ],则x-1x ∈A ,y-1y ∈A.因为A 是R 的理想,所以xy-1x 1y =(x-1x )y+1x (y-1y )∈A ,从⽽[xy]= [1x 1y ].其次? [x],[y] ,[z] ∈ R/A ,有([x]?[y])? [z]= [xy] ? [z]=[( xy)z]= [ x(yz)]= [x] ? [yz]= ([y] ? [z]),从⽽?满⾜结合律.且[x] ?([y] +[z])= [x] ?([y] +[z])=[x(y+z)]=[xy+xz]=[xy]+[xz]= [x]?[y]+ [x] ? [z] 从⽽?对+满⾜左右分配律.同理可证,?对+也满⾜右分配律.因此R/A 是⼀个环.三、环的同态基本定理定理3.1(同态基本定理)设f 是环R 到环R ’的同态,则(1) Kerf R ;(2) R/Kerf ?Imf.证明(1)Kerf 是(R ,+)的⼦加群,⼜a ?∈Kerf ,r ∈ R ,有f (ra )=f (r )f (a )=f (r )0'=0', f (ar )=f (a )f (r )=0’f(r)=0',从⽽ra ,ar ∈Kerf R.(2)因为在R/Kerf 到Imf 间存在⼀个双射: ?:a+Kerf f (a ),且保持加法运算。
等价关系,商集和集合的划分1.等价关系所需要的三个性质 --- 自反的,对称的,传递的必须同时具备,缺一不可2.同余关系纠正:同余关系需要三个数,一个正整数m,和两个整数a,b,如果整数(a - b)能够被m整除的话,则称a和b 是同余关系(需要注意的是整数0能够被仍和整数整除,整除的结果为0)1.关于第二点:负号不影响整除关系1通过特定规则(这个特定规则就是上面的这个生成元规则)获取的等价关系的子集称为等价类2.任何等价类都是非空集合,因为在这个等价类中一定包含了生成元本身3.有些等价类是完全相同的,有些等价类是完全不一样的4.所有等价类并在一起就能够得到总的集合a1.第二点的b证明处:证明两个集合没有交集的常用方法是反证法 --- 即证明有交集是矛盾的来得出没有交集这个结论2.关于第三点:两个集合互为子集则这两个集合等价1.商集其实就是集合的集合2.在集合中相同的元素只需要写一个,不用重复写最后一句话的意思就是:直到最后给定集合中的所有的元素都被找完第二部分 --- 集合的划分1.注意这里面的si都是非空集合a的非空子集1.通过等价关系,等价类和商集对集合进行划分1.关系的复合运算是左右两个关系中间一个圈,左右两个集合中间一个乘号这是笛卡尔积 --- 得到的结果是一个序偶集合,其中序偶的定义域由称号左边的集合元素提供,值域由乘号右边的集合元素提供2.上面这个等价关系是由每个划分的块集合的全关系序偶集合取并集得到的一个总的序偶集合,且每个块集合的全关系序偶集合都不一样(因为每个块集合的元素都不相同),所以等价关系这个序偶集合中的任意一个序偶元素都来自于某一个块集合的全关系序偶集合一个集合上的所有等价关系个数与这个集合的所有划分方式的个数相等。
集合的等价关系和划分概述在集合论中,等价关系和划分是两个重要的概念。
等价关系是指集合中的元素之间存在一种特定的关系,而划分则是将集合分为不相交的子集合。
本文将对这两个概念进行详细解释和讨论。
等价关系等价关系是一种二元关系,通常用符号“≡”表示。
对于集合A中的元素a和b,如果满足以下三个条件,则称a和b具有等价关系:1. 反身性(Reflexivity):对于集合A中的任意元素a,a≡a成立。
2. 对称性(Symmetry):对于集合A中的任意元素a和b,如果a≡b,那么b≡a也成立。
3. 传递性(Transitivity):对于集合A中的任意元素a、b和c,如果a≡b且b≡c,那么a≡c也成立。
等价关系可以将集合中的元素划分为等价类。
每个等价类包含具有相同等价关系的元素。
等价类之间两两不相交,并且它们的并集等于整个集合。
划分划分是将集合分为不相交的子集合的过程。
对于集合A,如果存在一个集合P,满足以下两个条件,则称P为A的一个划分:1. P中的每个元素都是A中的子集。
2. P中的元素两两不相交,并且它们的并集等于A。
划分可以通过等价关系来构建。
对于集合A中的元素a,可以定义P(a)为包含a的所有等价类组成的集合。
那么P={P(a)|a∈A}就是A的一个划分。
应用和重要性等价关系和划分在数学和计算机科学等领域具有广泛的应用。
它们可以用于建模和解决各种问题,例如图论、数据库设计和自然语言处理等。
在图论中,等价关系可以表示两个节点之间的等价性,从而简化网络分析和图算法的实现。
在数据库设计中,划分可以将数据分为多个不相交的部分,提高查询效率和数据管理的灵活性。
在自然语言处理中,等价关系和划分可以用于语义分析和情感分类等任务。
综上所述,了解和理解集合的等价关系和划分对于理解和应用集合论的相关概念和方法具有重要意义。
结论集合的等价关系和划分是集合论中的重要概念。
等价关系是一种特定的二元关系,可以将集合划分为等价类。
集合知识点考点总结1. 集合的基本概念(1) 集合的定义:集合是由一些确定的对象组成的整体。
这些对象可以是数字、字母、符号或者其他事物。
(2) 元素:组成集合的每个对象都称为集合的元素,通常用小写字母表示。
(3) 无序性:集合中的元素没有顺序之分,即两个相同的集合只有相同的元素组成,元素的排列次序不同,它们之间也是相等的。
(4) 互异性:集合中的元素各不相同,即每个元素在集合中只能出现一次。
(5) 集合的表示方法:集合可以用列举法、描述法和等价关系法表示。
2. 集合的分类(1) 空集:不包含任何元素的集合称为空集,通常用符号∅表示。
(2) 单集:只包含一个元素的集合称为单集。
(3) 有限集和无限集:集合中元素的个数有限的称为有限集,否则称为无限集。
(4) 相等集:具有相同元素的集合称为相等集。
3. 集合的运算(1) 并集:设A和B是两个集合,由所有属于集合A或属于集合B的元素组成的集合称为A和B的并集,通常用符号∪表示。
(2) 交集:设A和B是两个集合,由所有既属于集合A又属于集合B的元素组成的集合称为A和B的交集,通常用符号∩表示。
(3) 补集:设U是一个给定的集合,A是U的一个子集,由所有属于U而不属于A的元素组成的集合称为A的补集,通常用符号A'表示。
(4) 差集:设A和B是两个集合,由所有属于集合A而不属于集合B的元素组成的集合称为A和B的差集,通常用符号A-B表示。
4. 集合的运算法则和性质(1) 交换律:对于任意的集合A和B,A∪B = B∪A,A∩B = B∩A。
(2) 结合律:对于任意的集合A、B和C,(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)。
(3) 分配律:对于任意的集合A、B和C,A∩(B∪C) = (A∩B)∪(A∩C),A∪(B∩C) =(A∪B)∩(A∪C)。
(4) 吸收律:对于任意的集合A和B,A∪(A∩B) = A,A∩(A∪B) = A。
近世代数第一章基本概念答案§ 1 . 集合1.A B ⊂,但B 不是A 的真子集,这个情况什么时候才能出现? 解 由题设以及真子集的定义得,A 的每一个元都属于B ,因此B A ⊂.于是由A B ⊂ B A ⊂得B A =.所以上述情况在A=B 时才能出现.2. 假设B A ⊂,?=⋂B A ?=⋃B A解 (i ) 由于B A ⊂,所以A 的每一个元都属于B ,即A 的每一个元都是A 和B 的共同元,因而由交集的定义得B A A ⋂⊂但显然有A B A ⊂⋂所以A B A =⋂(ii) 由并集的定义,B A ⋃的每一个元素都属于A 和B 之一,但B A ⊂,所以B A ⋃的每一元素都属于B :B B A ⊂⋃另一方面B A B ⋃⊂,所以B B A =⋃.§ 2 . 映射1. A ={1,2,…,100}.找一个A A ⨯到A 的映射.解 用()b a ,表示A A ⨯的任意元素,这里a 和b 都属于A .按照定义做一个满足要求的映射即可,例如 Φ: ()b a ,→a 就是这样的一个,因为Φ替A A ⨯的任何元素()b a ,规定了一个唯一的象a ,而A a ∈.读者应该自己再找几个A A ⨯到A 的映射. 2.在你为习题1所找的映射之下,是不是A 的每一个元都是A A ⨯的一个元的象?解 在上面给出的映射Φ之下,A 的每一个元素都是A A ⨯的一个元的象,因为()b a ,中的a 可以是A 的任一元素.你自己找到的映射的情况如何?有没有出现A 的元素不都是象的情况?假如没有,找一个这样的映射.§ 3 .代数运算1. A ={所有不等于零的偶数}.找一个集合D ,使得普通除法是A A ⨯到D 的代数运算.是不是找得到一个以上的这样的D ?解 一个不等于零的偶数除一个不等于零的偶数所得结果总是一个不等于零的有理数.所以取 D ={所有不等于零的有理数} 普通除法就是一个A A ⨯到D 的代数运算.可以找得到一个以上的满足要求的D .读者可以自己找几个. 2.{}c b a A ,,=.规定A 的两不同的代数运算.解 (i )我们用运算表来给出A 的一个代数运算: a b ca a a ab a a ac a a a按照这个表,通过 ,对于A 的任何两个元素都可以得出一个唯一确定的结果a 来,而a 仍属于A ,所以 是A 的人一个代数运算.这个代数运算也可以用以下方式来加以描述 : ()y x a y x o =→, 对一切A y x ∈, (ii)同理: ()y x x y x o =→, 对一切A y x ∈,也是A 的一个代数运算.读者可用列表的方法来给出这个代数运算.读者应自己给出几个A 的代数运算.§4 .结合律1. A ={所有不等于零的实数}, 是普通的除法:ba b a =o 这个代数运算适合不适合结合律?解 这个代数运算 不适合结合律.例如, 当4=a 2==c b时()122224224)(====o o o o o c b a ()()414224224==⎪⎭⎫ ⎝⎛==o o o o o c b a所以当a ,b 和c 取上述值时()()c b a c b a o o o o ≠2. A ={所有实数},代数运算: (a,b )→a+2b=a b适合不适合结合律?解读者可以用解上一题的方法来证明,所给代数运算不适合结合律.3.A={a,b,c}.由表a b ca ab cb bc ac c a b给出的代数运算适合不适合结合律?解所给代数运算 适合结合律.为了得出这个结论,需要对元素a,b,c的27(=33)种排列(元素允许重复出现)加以验证.但是利用元素a的特性,可以把验证简化.仔细考察运算表,我们发现以下规律:对集合A的任意元素x来说,都有a x=x a=x由此得出,对于有a出现的排列,结合律都成立.这一点读者可以自己验证.还剩下a不出现的排列.这样的排列共有8(=32)种.我们在这里验证4种,其余4种读者可以自己验证.(b b) b=c b=ab (b b)=b c=a所以(b b) b=b (b b)(b b) c=c c=bb (b c)=b a=b所以 (b b) c=b (b c)(b c) b=a b=bb (c b)= b a=b所以 (b c) b=b (c b)(b c) c=a c=cb (c c)=b b=c所以 (b c) c=b (c c)§5.交换律1.A={所有实数}. 是普通减法:a b= a b这个代数运算适合不适合交换律?解容易验证,当a = 1,b = 2时a b b a ≠ 所以这个代数运算不适合交换律. 2. A ={a , b ,c , d},由表 a b c da abcd b b d a c c c a b d d d c a b所给的代数运算适合不适合交换律?解 要回答这个问题,只须考察一下运算表,看一看关于主对角线对称的位置上,有没有不相同的元素.易知此运算表不对称,所以此代数运算不适合交换律。
§8 等价关系和集合分类
设A ≠∅,D 只含两个元,不妨设D ={0,1}或D ={对,错}
定义:称一个A ×A 到D 的映射R 为A 的元间的一个关系。
若R (a ,b )=1则称a 和b 符合关系R ,记a R b
若R (a ,b )=0则称a 和b 不符合关系R ,记为a R b.
定义:称A ×A 的任何子集为A 上的一个关系。
其实,以上两个定义是等价的。
例 A ={所有实数}
R :A ×A →D 为R (a ,b )=对,若b-a >0
R (a ,b )=错,若b-a >0不成立。
则R 是A 上的一个关系。
其实,R 就是 上的“<”关系。
从 A 的元间的关系的定义可看,当给定一个集合后,该集合上有很多不同的关系,其中有一些是重要的,有些是并非重点。
现给出若干重要关系。
设有A 的元间关系R
(Ⅰ)若对a ∀,a R a ,则称R 为自反关系
(Ⅱ)若a R b ,则b R a ,则称R 为对称关系
(Ⅲ)若a R b ,则b R a ,则称R 为反对称关系
(Ⅳ)若a R b ,若b R c ,则a R c ,则称R 为传递关系
特别, R 满足(Ⅰ)(Ⅱ)(Ⅲ),则称R 为等价关系,此时用~表示R 。
Ex :“等于”这个关系是一个等价关系
Ex :A ={平面上直线},定义A 的上关系R 为:1l ,2l ∈A 时
1l R 2l ⇔1l ∥2l (1l =2l 认为平行)
则易证R 为等价关系。
定义:若把一个集合A 分成若干个叫做类的子集,使得A 的每个元属于而且只属于一个类,则称这些类的全体为集合A 的一个分类。
注:分类也可以如下定义,{}i i x ∈∧为x 的非空子集族,满足
(ⅰ)i
i x ∈∧
=x (要求∧≠∅) (ⅱ),,i i j x i j x x i j
=⎧⋂=⎨∅≠⎩ *等价关系与集合的分类的关系有如下重要结果。
定理1:集合A 的一个分类决定A 的元间的一个等价关系。
(证明):设a 、b A ∈,定义
a R
b ,如果a ,b 在同一个类中
则 (Ⅰ)因a 和a 一定在同一个分类中,于是a R a ,
(Ⅱ)若a R b ,说明a ,b 在同一个类中,于是b R a ,
(Ⅲ)若a R b ,b R c ,则a ,b 在同一类中,b ,c 在同一个类。
因为该类有公共元素c ,于是该两类其实是相同的。
于是a ,c 在同一类中,所以a R c ,
由(Ⅰ)(Ⅱ)(Ⅲ)知R 为A 的元间的等价关系。
定理2:集合A 的元间的一个等价关系决定一个分类。
(证明):对∀给定 a ∈A ,记[a ]={b A ∈∣a ~b },考查{[a ]∣a ∈A }。
(ⅰ)若a ~b ,则[a ]=[b]。
事实上,当c ∈[a ],则c ~a ,于是c ~b ∴c ∈[b],故[a ]⊂ [b]。
同理可证[b] ⊂[a ]。
∴[a ]=[b]。
(ⅱ)若a ∈[b] ⋂[c],则a ~b 且a ~c ⇒b ~c ⇒[b]=[c]
于是 [b] ⋂[c] =[b]或∅
(ⅲ)对∀a ∈A ,a ~a ,于是a ∈[a ]。
所以A =
[]a a ∈∧
由(ⅰ)(ⅱ)(ⅲ)可知{ [a ]∣a ∈A }是A 的一个分类。
定义:一个集合的一个分类的每一个元素中的任何元素叫做该类的一个代表, 刚好由每一类的一个代表做成的集合叫做一个全体代表团。
例 A =Z ,取n N ∈,对a ,b N ∈,定义
a R
b ,如果|n a b -.
易证R 为A 的一个等价关系.
若11a p n q =+,22a p n q =+其中0≤1q ,2q <n ,则
a b -1212()()p p q q =-+-,于是可知|n a b -⇔1q =2q
而1q =2q 说明a ≡b (n).于是上述等价关系叫做模n 的同于关系。
由于R 的等价关系,因此带来一个分类,易求每一个分类为
[0]={…,-2n,-n,0,n,2n,…}
[1]={…,-2n+1,-n+1,1,n+1,2n+1,…}
……
[n-1]={…,-n-1,-1, n-1,2n-1,…}.。