[物理]第七章 均匀设计
- 格式:ppt
- 大小:459.25 KB
- 文档页数:55
1. 了解均匀设计的基本思想
方开泰
中国科学院应用数学研究所香港浸会大学
The regression equation is
默认值
Alpha-to-Enter: 0.15
Step
增大为
X3
P-Value X23
P-Value X13
P-Value
重要变量
次要变量
第四个回归方程:
要顺利进行尾板设计,必须要解决两个关键问题:
尾板方案及试验设计,只进行了7次试验就基本上获
我于1996年受国家教委公派去加拿大滑铁卢大学化工系
指导教授看到我在两个星期内就拿出了雪白又细腻均匀的乳液样品,而且还有配方变化后的稳定区间图,简直不敢相信
思考题
练习题
1.在阿魏酸的合成工艺考察中,为了提高产量,选取了原料配比(A)、吡啶。
均匀设计方法简介在工农业生产和科学研究中,常须做试验,以获得予期目的:改进生产工艺,提高产品收率或质量,合成出某化合物等等。
怎样做试验,是大有学问的。
本世纪30年代,费歇(R.A.Fisher)在试验设计和统计分析方面做了一系列先驱工作,使试验设计成为统计科学的一个分支。
今天,试验设计理论更完善,试验设计应用更广泛。
本节着重介绍均匀设计方法。
一、试验设计对于一项试验,例如用微波加热法通过离子交换制备Cu13X分子筛。
我们可以13X分子筛、CuCl2为原料来制备,为寻找最佳条件,应如何设计这个试验呢?若我们已确定了微波加热功率(A)、交换时间(B)、交换液摩尔浓度(C)为三个影响因素,每个因素取五个不同值(即水平:A1,…,A5,B1,…,B5,C1,…,C5)。
有两种方法最易想到:1.全面试验:将每个因素的不同水平组合做同样数目的试验。
对上述示例,不计重复试验,共需做5×5×5=125次试验。
2.多次单因素试验:依次考查各因素(考查某因素时,其它因素固定)取最佳值。
容易知道,对上示例(不计重复试验)共需做3×5=15次试验。
该法在工程和科学试验中常被人们采用,可当考查的因素间有交互作用时,该法所得结论一般不真。
3.正交设计法:利用正交表来安排试验。
本世纪60年代,日本统计学家田口玄一将试验设计中应用最广的正交设计表格化,使正交试验设计得到更广泛的使用。
70年代以来,我国许多统计学家深入工厂、科研单位,与广大工程技术人员、工人一起,广泛开展正交设计的研究、应用,取得了大批成果。
该法是目前最流行,效果相当好的方法。
正交表记为:L n(q m),这里“L”表示正交表,“n”表总共要做的试验次数,“q”表每个因素都有q个水平,“m”表该表有4列,最多可安排m个因素。
常用的二水平正交表为L4(23),L8(27),L16(215),L32(231);三水平正交表有L9(34),L27(313);四水平正交表L16(45)及五水平正交表L25(56)等。
7.均匀试验设计本章要点:均匀试验设计的概念,特点;均匀试验均匀性准则,均匀试验基本方法和应用。
重点:因素、水平数确定,均匀试验设计表选择和使用;含有定性因素的均匀设计。
难点:如何采用均匀试验设计求得最佳试验结果,难点就在如何进行数据分析,目前可以通过数据处理软件SAS 、Minitab 、Mathematics 、MATLAB 、SPSS 等进行,因此必须掌握其中一种,使得均匀试验设计发挥出真正作用。
7.1均匀试验设计的概念与特点均匀试验设计就是只考虑试验点在试验范围内均匀分布的一种试验设计方法,是部分因子设计的主要方法之一。
它适用于多因素、多水平的试验设计场合。
试验次数等于因素的水平数, 是大幅度减少试验次数的一种优良的试验设计方法。
和正交试验设计相比,均匀设计给试验者更多的选择,从而有可能用较少的试验次数获得期望的结果。
均匀设计也是电脑仿真试验设计(computer experiments)的重要方法之一,同时也是一种稳健试验设计(robust experimental design)。
70 年代以来,我国推广“正交设计”方法并取得丰硕的成果。
然而当试验需考察的因素较多,且每个因素有较多的水平时,运用“正交设计”方法所需做的试验次数仍会较多,以至难于安排试验。
设一个试验中有m 个因素,它们各自取了n 个水平.若用正交试验法来安排这一试验,欲估计某一因素的主效应,在方差分析模型中占n -1个自由度,m 个因素共有m(n -1)个自由度.如果进一步考虑任两个因素的交互作用,共有m C 2个这样的交互作用,每个占(n —1)2个自由度.上述两项自由度之和为m(n-1)+1/2 m(m-1)(n-1)2,若高阶交互作用可以忽略,其试验数必须大于m(n-1)+1/2 m(m-1)(n-1)2。
例如,在一个5因素三水平的试验中,试验数必须大于5×2+1/2·5·4·22=50。
均匀设计实验方法
它是一种很特别的实验设计方法哦。
你想想看,做实验的时候,我们常常想要用最少的实验次数得到最多最有用的信息,均匀设计就有这个本事呢。
比如说,要是传统的全面实验法,那可能要做超级多的实验组合,又费时间又费材料。
但是均匀设计呢,就像是一个聪明的小助手,它会巧妙地安排实验点,让这些点在整个实验范围内分布得超级均匀。
这种均匀分布有啥好处呢?这就好比你在一个大果园里摘果子,你要是乱走乱摘,可能有的地方果子好你没发现,有的地方你又白跑了。
但要是按照均匀设计的方法,就像是有个小地图,告诉你在哪几个地方摘,就能摘到各种不同类型的果子,把果园的情况摸得门儿清。
在实际操作的时候呢,它有自己的一套规则。
它会根据因素的个数和水平数来确定实验方案。
就像搭积木一样,每个积木块(因素)都有自己不同的样子(水平),均匀设计能把这些积木搭得又整齐又合理。
而且哦,它的实验点不会集中在某个小区域,而是均匀地散落在整个实验空间里。
均匀设计在很多领域都大显身手呢。
在化学实验里,要调配各种试剂的比例,用均匀设计就能快速找到比较好的配比组合。
在农业上,研究不同肥料、水分、光照对作物的影响,也可以靠它。
它就像一个多面手,到处都能帮忙。
均匀设计的基本步骤
均匀设计是一种实验设计方法,用于在有限次试验中寻找最佳的试验条件。
以下是均匀设计的基本步骤:
1.确定实验目的和响应变量:首先需要明确实验的目的,确定要研究的响应变量,以便于确定实验的主要内容和目标。
2.确定实验因素和水平:根据专业知识和实际经验,选择对响应变量影响较大的因素作为实验因素。
根据实际情况和历史数据,为每个实验因素选择适当的水平。
3.制定均匀设计表:根据实验因素和水平的数量,选择合适的均匀设计表进行实验。
均匀设计表是一种特殊的矩阵,用于安排实验并确保各因素水平在实验中均匀分布。
4.安排实验:根据均匀设计表,安排实验的具体实施方案。
确保每个实验条件只被试验一次或多次,以确保结果的准确性。
5.收集数据:按照实验方案进行实验,并记录各实验条件下的响应变量值。
6.分析数据:对收集到的数据进行分析,探索各因素与响应变量之间的关系。
可以采用回归分析、方差分析等方法进行数据分析。
7.优化条件:根据数据分析结果,选择最优的实验条件进行进一步优化。
这可能涉及对实验方案进行调整或重复试验。
8.验证和确认:对优化后的条件进行验证和确认,以证明其在实践中具有可行性和有效性。
9.总结和报告:整理实验过程和结果,编写详细的实验报告,总
结实验的经验和教训,并提出改进意见和建议。
以上步骤是一个典型的均匀设计过程的基本流程。
具体的实施过程中,可以根据实际需求和条件进行调整和优化。
均匀试验设计均匀设计均匀设计(uniform design)是中国数学家方开泰和王元于1978年首先提出来的,它是一种只考虑试验点在试验范围内均匀散布的一种试验设计方法。
与正交试验设计类似、均匀设计也是通过一套精心设计的均匀表来安排试验的。
由于均匀设计只考虑试验点的“均匀散布”,而不考虑“整齐可比”,因而可以大大减少试验次数,这是它与正交设计的最大不同之处。
例如,在因素数为5,各因素水平数为31的试验中,若采用正交设计来安排试验,则至少要作312 =961次试验,这将令人望而生畏,难以实施,但是若采用均匀设计,则只需作31次试验。
可见,均匀设计在试验因素变化范围较大,需要取较多水平时,可以极大地减少试验次数。
经过20多年的发展和推广,均匀设计法已广泛应用于化工、医药、生物、食品、军事工程、电子、社会经济等诸多领域,并取得了显著的经济和社会效益。
1. 均匀设计表1.1 等水平均匀设计表均匀设计表,简称均匀表,是均匀设计的基础,与正交表类似,每一个均匀设计表都有一个代号,等水平均匀设计表可用U n ( r l)或U n* (r l)表示,其中,U为均匀表代号;n为均匀表横行数(需要做的试验次数);r为因素水平数,与n相等;l为均匀表纵列数。
代号U右上角加“*”和不加“*”代表两种不同的均匀设计表,通常加“*”的均匀设计表有更好的均匀性,应优先选用。
表1-1、表1-3分别为均匀表U7 (74)与U7* (74),可以看出,U7 ( 74)和U7*(74)都有7行4列,每个因素都有7个水平,但在选用时应首选U7*(74 )。
表1-1 U7 (74)表1-2 U7 (74)的使用表表1-3 U7* (74)表1-4 U7* (74)的使用表每个均匀设计表都附有一个使用表,根据使用表可将因素安排在适当的列中。
例如,表1-2是U7 ( 74)的使用表,由该表可知,两个因素时,应选用1,3两列来安排试验;当有三个因素时,应选用1,2,3三列,……。