运动生物化学(8.1.1)--磷酸原供能能力训练的生化分析
- 格式:pdf
- 大小:3.93 MB
- 文档页数:17
运动员的运动生化指标分析运动生化是用生物化学的理论及方法, 研究人体运动时体内的化学变化即物质代谢及其调节的特点与规律。
在运动员训练的过程中, 运动生物化学已成为必不可少的重要基础知识。
研究人员通过运动生物化学的研究来揭示运动人体变化的本质, 具体详细的评定和监控运动员人体的机能, 进一步实现科技运动, 充分的发挥科技的作用, 能够科学地指导体育锻炼, 促进运动生化原理在运动训练中充分发挥其作用。
本文针对运动生化指标对运动员进行了具体的分析, 对运动员在训练中他们的血糖, 血乳酸以等进行了具体分析对运动员在训练中身体状况和机体的训练水平做了详细的了解, 运动生化原理在训练中对提高成绩起到很大的作用。
1.1 人体由水、蛋白质、糖、脂肪、核酸、维生素等组成。
每个人各物质的组成比例不同, 每个人在不同的生命阶段其组成比例也不同, 各种物质的变化及其规律就是生物化学。
人体在运动状态, 各组成成分会发生变化。
肌肉收缩直接的能量是三磷酸腺苷, 运动员在运动时需要大量的能量。
靠磷酸肌酸的转化和糖、蛋白质等的氧化分解生成能量。
人体内其它的微量元素也参与物质代谢, 糖参与无氧代谢辅助供能。
人体化学组成的变化及其规律, 就是运动生物化学。
不同运动, 人体的物质代谢也不同。
教练员作为运动训练的主导者, 通过掌握运动生物化原理, 来了解运动员训练的本质和原理科学指导运动训练, 进一步挖掘运动员的潜力。
运动员在运动的过程中, 人体从平衡转为不平衡, 在运动结束的时候又达到平衡状态。
在反复的训练中, 人体的运动能力得到不断提高。
外部刺激的强度与量直接影响运动训练的效果, 从运动生物化学角度分析, 代谢过程中会有很多中间产物, 通过分析运动后的血、尿和汗。
进一步掌握运动员在运动时人体化学组成的变化。
1.2 科学训练才能取得优异的运动成绩, 运动员在训练中的运动能力直接影响我国竞技体育的未来, 教练员位于主导地位, 通过技术手段来挖掘运动员的潜力, 教练员科学的训练手段能提高运动员的运动成绩, 促进竞技体育的可持续发展。
从运动生物化学的角度分析中长跑时体内三大供能系统的代谢特点随着体育科学的发展,运动训练的科学化水平已不断提高,从分子水平上阐明人体运动时的变化规律是当前体育科学发展的要求之一。
可以说,现代竞技体育的激烈竞争要求运动员在生物极限范围左右发挥自己的能力。
在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。
(1)ATP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
之后的能量供应就要依靠ATP的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。
无氧酵解约能维持2~3分钟时间。
(2)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。
综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。
对于中场跑项目我们大概可以把它分为三个阶段:起跑阶段,途中跑阶段和冲刺阶段。
不同的阶段供能系统也不同。
(1)起跑阶段一般是靠ATP-CP系统供能,ATP(三磷酸腺苷)和CP(磷酸肌酸)都是储备在细胞中的功能磷酸化合物。
肌肉在运动时ATP分解供能约为1~3s,然后是由CP供能,cp在肌酸激酶(CK)的催化下,可以使得ADP再次合成ATP,维持6~8S,他是功能最快速的供能系统。
如果想要运动员在起跑就占据一定的优势,那就需要最大限度的提高CP 的浓度,这样就可以延长功能的时间。
另一个目的就是要使得CK酶活性提高,从而有利于爆发力的增强。
运动生物化学当我们踏上运动的征程,无论是为了健康、竞技还是纯粹的热爱,身体内部都在悄然发生着一系列奇妙的化学反应。
运动生物化学,就是那扇通往理解这些变化的神秘之门。
首先,让我们来谈谈能量代谢。
想象一下,当你开始跑步或者进行其他剧烈运动时,身体就像是一个高效运转的能量工厂。
这个工厂有三个主要的能量供应系统:磷酸原系统、糖酵解系统和有氧氧化系统。
磷酸原系统就像是短跑运动员的起跑助推器,它能在瞬间释放出巨大的能量,但持续时间极短,大约只有几秒钟。
这是因为磷酸肌酸在酶的作用下迅速分解为肌酸和磷酸,同时释放出能量,为肌肉的急剧收缩提供动力。
接下来是糖酵解系统,它像是中短跑选手的有力支撑。
在缺氧的情况下,葡萄糖通过一系列反应分解成乳酸,同时产生能量。
这个过程虽然能较快地提供能量,但也会导致乳酸堆积,引起肌肉酸痛。
而有氧氧化系统,则是长跑运动员的持久动力源泉。
在氧气充足的条件下,葡萄糖、脂肪酸和氨基酸等物质被彻底氧化分解,产生大量的能量。
这个系统虽然启动相对较慢,但能够长时间持续供应能量,是我们进行长时间耐力运动的关键。
运动与蛋白质代谢之间也有着密切的关系。
蛋白质是构成身体组织和调节生理功能的重要物质。
在运动过程中,肌肉蛋白质会发生分解和合成的动态变化。
当运动强度较大时,肌肉蛋白质的分解会增加,以提供氨基酸作为能量来源或者用于合成其他重要的物质。
而在运动后的恢复期,通过合理的营养补充和休息,身体会促进蛋白质的合成,修复和增长肌肉组织,从而提高肌肉力量和耐力。
脂肪代谢在运动中同样扮演着重要的角色。
对于想要减脂的人来说,了解脂肪代谢的规律至关重要。
在运动初期,主要消耗的是血液中的脂肪酸。
随着运动时间的延长,脂肪组织中的甘油三酯被逐步分解为脂肪酸和甘油,释放到血液中供肌肉利用。
而且,不同运动强度和持续时间对脂肪代谢的影响也不同。
低强度、长时间的有氧运动能够更有效地促进脂肪的燃烧,这也是为什么很多人选择慢跑、游泳等运动来减肥的原因。
第四章人体代谢和供能能力训练的生化分析
问答题
1.竞技运动项目是如何按代谢类型和供能特点分类的?
答:根据不同的运动项目,人体内三种基本供能系统在运动时供能的比重各不相同,可以将一些竞技运动项目分为五种代谢类型:(1)磷酸原代谢类型;(2)磷酸原和糖酵解代谢类型;(3)糖酵解代谢类型;(4)糖酵解和有氧代谢类型;(5)有氧代谢类型。
2.提高磷酸原供能能力训练方法的生化依据是什么?
答:磷酸原系统的供能能力训练,即无氧低乳酸训练。
ATP和CP是进行10S以内最大功率输出运动的能量来源,提高这个系统的供能能力,应增加骨骼肌ATP和CP的贮量以及提高10S以内ATP再合成的能力。
3.最高乳酸训练和乳酸耐受力训练在训练项目、强度和时间的掌握以及血乳酸的变化等方面有何异?
答:最高乳酸训练:采用最大强度1min(400-500m跑),休息间歇是负荷时间的2-4倍(如4min休息)的间歇训练,血乳酸值随间歇跑重复次数的增加而增加。
乳酸耐受力训练:
采取间歇训练方法(如1min运动、5min休息),运动要求第一次负荷强度达到血乳酸值为12mmol/L左右,然后选择适当的休息间歇,血乳酸值保持在12mmol/L左右。
4.何谓乳酸阈强度训练?怎样训练可以提高有氧代谢的供能能力?
答:乳酸阈强度训练:指采用乳酸阈强度(乳酸阈)作为负荷强度的训练。
提高方法:在训练中,起跑后使血乳酸的浓度达到3-4mmol/L的范围内,并在这个跑速水平上持续运动45min左右。
1。
运动生物化学知到章节测试答案智慧树2023年最新山东体育学院第一章测试1.运动生物化学的研究内容包括()。
参考答案:运动时人体物质代谢与能量代谢的特点与规律;运动对人体化学组成的影响;体育锻炼的生化分析;运动训练的生化分析第二章测试1.以下哪一项不是脂肪作为能源储备的优点()。
参考答案:耗氧量少2.下列哪一类物质不属于血脂()。
参考答案:卵磷脂3.果糖、核糖、蔗糖、麦芽糖都属于单糖。
()参考答案:错4.脂类只包括有单纯脂、复合脂。
()参考答案:错5.酶是具有催化功能的一种特殊的蛋白质。
()参考答案:错6.体内维生素储量少且必须从食物中摄取,因此补充维生素越多越好。
()参考答案:错7.温度、酸碱度、酶浓度等理化因素变化都可影响酶的催化功能,进而影响酶促反应。
()参考答案:对8.运动引起的组织细胞损伤、体温升高等理化因素引起细胞膜通透性增大及酶老化,使血清中的酶增加。
()参考答案:对9.水平衡紊乱会影响细胞功能、降低运动能力。
即使是很少量的脱水(1%体重)也会增加心血管系统压力,使心率的变化与运动强度不协调,并限制人体从收缩肌肉传送热量到体表散热的能力,导致体温升高。
()参考答案:对10.运动训练过程中酶的含量增加及其活性增强是对运动训练产生适应的表现。
()参考答案:对第三章测试1.为最短时间、最大用力(速度)运动提供能源的系统是糖酵解供能系统。
()参考答案:错2.三羧酸循环是糖、脂肪、蛋白质三大代谢的中心环节。
()参考答案:对3.人体活动时骨骼肌是产生乳酸的主要场所,乳酸生成量与运动强度、持续时间及肌纤维类型等因素有关。
()参考答案:对4.骨骼肌氧化利用血浆游离脂肪酸的比例随运动时间的延长逐渐增加。
()参考答案:对5.长时间运动时,支链氨基酸参与供能比例增加,支链氨基酸包括亮氨酸、异亮氨酸、缬氨酸。
()参考答案:对6.()是人体最经济的能源。
参考答案:糖类7.在长时间运动前期,( )是血液葡萄糖的主要来源。
磷酸原系统供能的生理学解读--提高青少年百米跑的生理机制与训练方法王晖【摘要】青少年训练应强调以技术为中心的全面身体素质训练,素质训练主要以“快”为中心全身性练习。
掌握无氧耐力的生理学基础是提高无氧耐力能力的关键,用科学的训练方法是增强速度素质的重要手段。
速度素质是指人体在最短时间内完成某种运动的能力。
速度素质与机体能量供应系统密切相关。
【期刊名称】《当代体育科技》【年(卷),期】2015(000)002【总页数】2页(P40-40,42)【关键词】速度素质;磷酸原系统;训练方法;青少年【作者】王晖【作者单位】甘谷县第三中学甘肃甘谷 741200【正文语种】中文【中图分类】G807人体快速运动的能力在很大程度上还取决于机体能源系统提供能量的能力。
速度性练习的强度大、时间短,主要靠ATP~CP系统提供能量。
ATP是人体一切活动的直接能源,但其中肌肉中储备量极少,若以最大功率输出仅能维持1~2s,此时,储存于肌肉中的另一种高能磷酸化合物CP能十分迅速的释放能量供ATP合成。
在机体能源系统中,ATP~CP系统提供能最迅速,但期总能量输出很有限,约能维持7.5s左右,之后机体则主要依靠糖酵解系统供能,后者提供的能量则较低。
因此,肌肉中ATP~CP含量较多是速度素质重要的物质基础,提高肌肉组织ATP~CP的储备量及其能量释放与转换过程中酶的活性,对于发展速度是十分重要的。
通过速度训练,肌肉中CP的储备量随训练水平的提高而增加。
在运动开始时,糖未分解,此时肌肉运动的能量由ATP、CP分解的能量。
由ATP、CP分解的能量,不需氧、也不产生乳酸,则称为非乳酸功能,供能时长为10s,即非乳酸功能系统。
磷酸原系统供能: ATP—→ADP+P+E(1~2s),CP—→C+P+E(7.5s)。
在进行大强度运动训练时机体处于缺氧状态,此时肌肉活动能力主要依靠糖无氧酵解,同时产生乳酸而释放能量,需要养,产生乳酸,供能时较长(45s),则称为乳酸功能系统。
《运动生物化学》习题集绪论一.名词解释运动生物化学二.是非判断题1、人体的化学组成是相对稳定的,在运动的影响下,一般不发生相应的变化。
()2、运动生物化学是研究生物体化学组成的一门学科。
()3、1937年Krebs提出了三羧酸循环的代谢理论。
()4、《运动生物化学的起源》是运动生物化学的首本专著。
()三.填空题1、运动时人体内三个主要的供能系统是____、____、____。
2、运动生物化学的首本专著是____。
3、运动生物化学的研究任务是____。
四.单项选择题1. 运动生物化学成为独立学科的年代是()。
A. 1955年B. 1968年C. 1966年D. 1979年2. 运动生物化学是从下列那种学科发展起来的()。
A. 细胞学B. 遗传学C. 生物化学D. 化学3. 运动生物化学的一项重要任务是()。
A. 研究运动对机体组成的影响B. 阐明激素作用机制C. 研究物质的代谢D. 营养的补充4. 运动生物化学的主要研究对象是()。
A. 人体B. 植物体C. 生物体D. 微生物五.问答题1.运动生物化学的研究任务是什么2.试述运动生物化学的发展简史第一章物质代谢与运动概述一.名词解释1、新陈代谢2、酶3、限速酶4、同工酶5、维生素6、生物氧化7、氧化磷酸化8、底物水平磷酸化9、呼吸链二、是非判断题1、酶是蛋白质,但是所有的蛋白质不是酶。
()2、通过长期训练可以提高酶活性、增加酶含量。
()3、一般意义上的血清酶是指那些在血液中不起催化作用的非功能性酶。
()7、CP是骨骼肌在运动过程中的直接能量供应者。
()8、生物氧化发生的部位在细胞质。
()9、生物氧化中生成的水由有机物脱羧产生,二氧化碳由碳和氧结合生成。
()10、氧化磷酸化要求必须保证线粒体内膜的完整性,但是有无氧气参与均可。
()三、填空题1、人体都是由___、___、___、___、___、___、___7大类物质构成。
2、酶根据其化学组成可分为___、___两类。