修讲义第十章感觉器官的功能 上 524
- 格式:ppt
- 大小:9.67 MB
- 文档页数:5
第十章感觉器官一、眼的折光系统眼的折光系统包括角膜、房水、晶状体和玻璃体。
光线进入眼睛要通过角膜的前、后表面,晶状体的前、后表面。
这四个折射面的曲率半径不同,曲率半径越大,其折光率越小;曲率半径越小,其折光率就越大。
晶状体的曲率半径可以受神经反射性调节,所以在眼的折光系统中起着重要作用。
二、眼的调节眼的调节:正常眼看6米内的物体时,随着物体的移近,物体发出的光线是辐射的,经过眼的折光系统后,物像不能落在视网膜上,但经过眼的神经反射性调节,使折光力增大,光线仍可聚焦在视网膜上形成清晰物像。
眼的这一反射性调节活动称为眼的调节。
眼的调节包括三个方面:1.晶状体的调节:看近物时,眼的调节主要通过晶状体变凸使折光力增大来进行的。
通常把眼作充分调节后所能看清眼前物体的最近距离称为近点。
晶状体的弹性越好,变凸的程度越大,近点也就越近。
近点越近,表明眼的调节能力越强。
2.瞳孔的调节:瞳孔的大小可随视物距离和光线强弱而改变,这种改变受神经调节,包括瞳孔近反射和瞳孔对光反射。
瞳孔近反射:是指看近物时,两侧瞳孔反射性缩小。
瞳孔对光反射:是指眼在强光照射下,两侧瞳孔反射性缩小;在弱光下瞳孔反射性扩大。
瞳孔对光反射中枢在中脑,临床上常把瞳孔对光反射的异常或消失作为判断全身麻醉的程度、中枢神经系统病变的部位和病人危害程度的指标之一。
3.眼球会聚的调节:当看近物时,出现两眼视轴向鼻侧会聚的现象,称为眼球会聚反射。
三、眼的折光能力和调节能力异常1.近视原因:眼球前后径过长,或角膜、晶状体曲率过大,折光力过强。
表现:看远物时不清楚,看近物时无需调节就能看清楚。
矫正方法:配戴适度的凹透镜。
2.远视原因:眼球前后过短,多为遗传。
表现:经过眼的调节,看远物时可看清;但看近物时由于晶状体进一步变凸的余地较小,所以看不清楚。
远视眼看近看远都需要调节。
矫正方法:配戴适度的凸透镜。
3.散光原因:多是由于角膜表面各个方向上曲率半径不同,致使光线通过角膜后不能全部聚焦在视网膜上。
感觉器官的结构和功能感觉器官是人类生理系统中不可或缺的一部分,它们帮助我们感知和适应外界环境,使我们能够更好地生活和工作。
这些器官包括皮肤、眼睛、鼻子、耳朵和口腔,它们各自有着独特的结构和功能。
1. 皮肤皮肤是最大的感觉器官,也是最外层的保护层。
它由三层组成:表皮、真皮和皮下组织。
表皮包含了感觉神经末梢,负责感知外部刺激,如触摸、痛觉、温度和压力等。
表皮还含有味蕾和嗅觉神经末梢,使我们能够感受味道和气味。
真皮包含了毛囊和汗腺,它们帮助排除体内废物和调节体温。
皮下组织是起保护和缓冲作用的层,同时也是能量储存的地方。
2. 眼睛眼睛是人类最重要的感觉器官之一,它能够帮助我们解读和理解外部世界。
眼睛的结构包括角膜、虹膜、晶状体、视网膜和视神经。
角膜是透明的前部覆盖层,虹膜是有色环形结构,晶状体是透明的双凸透镜,视网膜使用光线转化成神经信号,视神经将这些信号传递到大脑中进行处理和理解。
3. 鼻子鼻子是感知气味和味道的主要器官,它由两个孔洞和许多味蕾组成。
鼻子中的气味分子会激活味蕾并产生所谓的气味痕迹。
不仅如此,鼻子还可以帮助在感冒和过敏情况中排除陌生物质。
4. 耳朵耳朵是帮助我们感知声音的器官。
它由外耳、中耳和内耳三个部分组成。
外耳包含了耳廓和外耳道,中耳包含了鼓膜、鼓室、听骨和喉头,内耳包含了前庭和耳蜗两个部分。
当声音进入耳朵时,外耳会将声波汇聚到鼓膜上,鼓膜开始振动,所产生的振动会被转化成中耳中听骨链的运动,最终被转化成神经脉冲并传递到大脑中进行处理。
5. 口腔口腔中的味蕾负责感知味道,而牙齿和舌头则负责辅助咀嚼和咽喉。
口感官有一个专门的约束和管控味道的聚集区,能够帮助我们分辨和识别各种不同的味道。
综上所述,感觉器官的结构和功能是人类生理系统的重要组成部分。
它们帮助我们感知和适应外界环境,让我们能够更好地生活和工作。
随着科技的进步,我们对感觉器官的认识和理解也在不断地加深,我们相信在未来,感觉器官的潜力和可能性仍将会不断被挖掘和发掘。
第十章感觉器官的功能(The functions of sense organs)本章导读感觉使人类认识了多姿多彩的世界。
它是人体对内、外环境变化的察觉,涉及复杂的生理及心理过程。
感觉形成的结构基础包括感受器或感觉器官、神经传导通路和皮层中枢。
机体通过感受器和感觉器官获取了丰富的环境信息,最简单的感受器是外周感觉神经末梢,一些高度分化的感受细胞连同附属结构一起构成了复杂的感觉器官。
适宜刺激、换能作用、编码功能和适应现象是感受器的一般生理特征。
感觉器官主要有眼、耳、皮肤、舌和鼻等。
人类对自然界的印象和记忆,大约70%~90%以上是通过眼睛看到的。
人眼可感受到的电磁波范围是370~740nm。
眼通过自身的折光系统将视物成像在视网膜上,视物成像经视网膜光感受器的感光换能和编码作用后以神经冲动的形式传递到视觉中枢。
视网膜的光感受器包括视杆系统和视锥系统。
视杆系统的光敏感度高,能感受到弱光刺激引起视觉,但仅能区别明暗,分辨率低,而且视物无色觉;视锥系统的光敏感度低,只被强光刺激激活,但可辨别颜色,看清楚物体细节,故分辨能力高。
视锥系统功能不全时,可以引起色弱甚至色盲。
听觉器官可感受到外界的声波振动,适宜刺激是16~20 000Hz的空气振动疏密波。
听觉形成过程包括声波经外耳、中耳等传音装置传到耳蜗后引起淋巴液和基底膜的振动,通过科蒂器官中毛细胞的感音换能作用,由听神经以特定的动作电位频率及组合形式编码声音信息,传送到听觉中枢引起听觉。
人体正常姿势的维持需要前庭器官、视觉器官和本体感觉感受器传入冲动所致反射活动的协同作用,以三个半规管、椭圆囊和球囊构成的前庭器官传入冲动引起的反射最为重要。
半规管主要感受机体旋转变速运动,而椭圆囊和球囊则主要感受直线变速运动。
味蕾由多个味觉细胞聚集而成,味觉细胞顶端的纤毛是味觉感受的关键部位,人类的味觉系统能分辨由四种基本味觉即酸、甜、苦、咸组成的多种味道。
嗅细胞上的嗅纤毛可以感受到空气中气味化学物质的刺激,并将刺激能量转换成嗅神经冲动传至嗅觉中枢,引起嗅觉。