工程测井技术
- 格式:ppt
- 大小:5.13 MB
- 文档页数:2
工程测井的概念
工程测井是指在工程建设和施工过程中利用测孔或者测井设备对地下岩石层和水文地质条件进行探测和评价的技术方法。
通过工程测井,可以获取地下岩石层的物理性质、水文地质参数、工程岩体的稳定性等重要信息,为工程设计、施工和管理提供科学依据。
工程测井的主要目的是评价地下岩石层的物理性质和结构状态,以及确定地下水动态、地下水位、含水层分布、水文地质参数等信息。
通过工程测井,可以确保工程的安全性、可靠性和经济性,帮助工程设计者和施工人员决策和调整工程参数,降低工程风险,提高工程质量。
工程测井的方法包括地震勘探、电测井、自然电位法、电缆测深、地电阻率法、地热测试、水位测井、地下水取样等。
这些方法可以通过不同的物理量和测量参数来获取地下岩石层和水文地质条件的信息,以满足不同工程需求。
总而言之,工程测井是一种利用测孔和测井设备对地下岩石层和水文地质条件进行评价的技术方法,用于工程设计、施工和管理,以确保工程的安全性、可靠性和经济性。
工程测井法1井径测井—套管变形检测井径测井是修井施工中常用的套管技术状况检测方法之一,其检测速度快,尤其在深井检测中,可以比机械法减少16~24h,检测结论也较准确。
1.1检测原理测井仪器串组装完后与电缆连接下入井底,通过电信号使测井仪各对称方向角脚释放出来,在弹簧作用下紧贴套管内壁上。
电缆提拉仪器向上缓慢移动,当套管内径有变化或遇有接箍时,角脚收拢或扩张,这一收拢或扩张,将在仪器内产生电脉冲信号,通过电缆传至地面接收仪器内并自动记录下来,绘制成套管径向变化曲线。
由于仪器的磁性定位器的作用,某一点的深度同时也被记录下来。
测井后,将记录的曲线加以测量、分析、计算,即可得到套管某一深度位置截面上多点坐标,对这一图形测量,即可得到套管的径向尺寸变化。
1.2测井解释某井用八臂井径仪测井,套管尺寸为φ139.7mm(51/2in),井史记录油层部位内径φ124mm。
测得920m处4条8点互成45°的坐标点分别为A—A’120,B—B’128,C—C’124,D—D’124,见图1所示。
图1八臂井径仪测井解释示意图图1中,将8点连线,直观反映为一椭圆。
A—A’轴线段直径为120mm,B—B’轴线段为128mm,明显的A<B,为微变形状况。
八臂井径仪测井得到4条互成45°线的8个坐标点,四十臂井径则可测到20条互成18°的20个坐标点,更容易在某一截面上得到更加准确的图形。
如果不用作图法,可以用直尺直接在记录纸上测得相对应的直径尺寸,同样也可以分析判断出套管的径向变化。
井径测井一般在压井状态下进行。
可供选择的测井仪有八臂井径仪、三十六臂井径仪、四十臂井径仪、x-y井径仪、十臂过油管井径仪、磁测井仪、蛇螺方位井径仪等。
目前较常用的,配合印模检测的效果较理想的测井仪仍是八臂、四十臂过油管井径仪。
2井温与连续流量测井—套管漏失检测油水井在长期的生产过程中由于各种因素的影响套管会逐渐损坏,常见的套管损坏有套管穿孔、破裂等,造成油、气、水外溢外漏,严重的可使井眼坪塌、污染环境、影响产能。
测井工程方案一、前言测井是石油工程领域中非常重要的一项技术,通过测井可以获取井眼信息、地层参数等数据,为石油开发提供了重要的参考依据。
本次测井工程方案将主要针对在油田勘探和开发中的测井工程进行论述和规划。
二、测井工程概述测井是通过测量地下井眼周围的物性参数来获得地下岩层性质的一种技术。
测井技术主要包括地层测井、岩石物性测井、岩性测井等。
通过测井,可以确定地层中的含油气层、水层、地层的性质等信息,为勘探和开发提供重要的参数。
三、测井工程方案1. 测井工程前期准备在进行测井工程之前,需要做好充分的准备工作。
首先需要对井眼进行清洗和修复,保证井眼的畅通和完整性。
其次,要对测井仪器和设备进行检测和校准,确保测量精度和可靠性。
同时要有充足的安全措施和应急预案,确保工程安全进行。
2. 测井工程实施测井工程实施时,需要根据勘探和开发的需求,选择合适的测井方法和仪器。
地层测井可以采用测井仪、测井钻头等进行测量;岩石物性测井可以通过声波测井、电阻率测井、核磁共振测井等方法进行测量;岩性测井可以通过核子测井、伽马射线测井等方法进行测量。
在实施过程中,需根据地层情况,合理选择测井方法和参数,并进行实时监测和数据记录。
3. 测井数据分析与处理测井数据采集完成后,需要进行数据分析和处理。
首先需要对采集到的原始数据进行质量控制,剔除异常数据和非法数据。
然后需要对数据进行解释和处理,提取出地层参数、岩石物性参数等信息。
最后还需要对数据进行校正和修正,确保数据的准确性和可靠性。
4. 测井报告编制与总结最后需要根据测井数据和分析结果,编制测井报告,总结分析出的地层信息、岩石物性信息等,为勘探和开发提供参考。
测井报告应包括测井实施情况、数据采集情况、数据处理结果、地层参数分析等内容,并结合地质勘探和开发需求,提出建议和意见。
同时还需要对本次测井工程进行总结和评估,为后续的工作提供经验和参考。
四、测井工程的应用与前景通过测井工程可以获取大量的地下信息和岩石参数,为石油勘探和开发提供了重要的依据和支撑。
测井原理与综合解释测井原理是指利用地球物理仪器和技术,对地下岩石层进行实时监测和测量的过程。
通过测井原理,可以获得有关地下岩石层中所含矿物、岩性、含水性、温度、压力等参数的信息,从而帮助地质学家和工程师进行油气勘探和开发。
测井原理主要依赖于以下几种物理现象和原理:1. 电性测井原理:利用地层中的电性差异,通过测量电阻率、电导率等指标来判断地层的性质。
例如,导电层岩石通常具有良好的含油性能。
2. 密度测井原理:根据地下岩石的密度差异,通过测量岩石的密度来判断地层的性质。
例如,含有矿物质量高的岩石通常具有较高的密度。
3. 声波测井原理:利用地层中声波的传播速度来判断地层的性质。
不同类型的岩石对声波的传播速度有不同的影响。
4. 核磁共振测井原理:利用地层中核磁共振现象,通过测量核磁共振信号来判断地层的性质。
不同类型的岩石对核磁共振信号有不同的响应。
综合解释是指通过将不同类型的测井数据进行综合分析和解释,得出地下岩石层的具体性质和分布。
综合解释的过程包括以下几个步骤:1. 数据校正和质量评估:初步检查测井数据的准确性和有效性,排除可能的误差和异常点。
2. 数据融合:将来自不同类型测井仪器的数据进行融合,形成一个统一的数据集。
3. 数据解释:根据测井原理和地质知识,对数据进行解释,得出地层的特征和性质。
可以使用图表、剖面图等方式展示解释结果。
4. 建模和预测:根据解释结果,建立地下岩石层的模型,并利用模型进行预测和评估。
这可以帮助决策者进行油气资源勘探和开发的决策。
综合解释需要综合考虑不同类型的测井数据,以及地质知识和经验。
准确地解释地下岩石层的性质和分布,对于油气勘探和开发具有重要意义。
测井技术用途
测井技术是石油勘探与开采中的重要技术手段,它主要用于获取井内地层岩石和地下水的各种参数,包括地层构造、物性参数、地层流体性质等信息。
测井技术通过识别和分析地层中的矿产资源和流体分布情况,提供了地质勘探、油气储层评价、地震解释、水文地质、工程地质等领域的基础数据,对于石油勘探与开采具有重要的意义。
首先,测井技术在石油勘探中的应用非常广泛。
石油勘探主要是通过测井数据,研究地下岩石的物理性质、结构构造、裂缝情况等,从而确定地下矿层的分布规律和运移规律。
通过测井技术获取的地层参数数据,可以帮助工程师准确判断油气的储层条件,有效指导钻井施工,提高勘探的成功率和钻井的效率。
其次,测井技术在油气储层评价中也起到了至关重要的作用。
通过测井技术获取储层物性参数的同时,也能够获取地层流体的性质、运移状况等信息,从而综合评价储层的产能、油气的含量和分布,为油气开发提供科学依据。
另外,测井技术还可以用于评价储层的渗流能力、孔隙结构、油气饱和度等参数,有效指导油气的开采和生产。
除此之外,测井技术也在地震解释和水文地质等领域有着广泛的应用。
地震测井技术可以通过地层的声波和电磁特性,进行地震波速度和电性频谱分析,辅助地震解释,提高地震勘探的准确性;水文地质中的测井技术可以通过测井数据,获得地下水文地质构造、水文地质参数,辅助水资源勘探与开发。
总的来说,测井技术是石油勘探与开采中的一项重要技术手段,对于提高资源勘探与开采的效率、降低勘探风险、节约勘探成本都具有重要意义。
随着油气勘探开发的深入,测井技术的研究和应用将进一步得到加强和完善,为石油工业的可持续发展做出更大的贡献。
裸眼井常规测井技术简介与应用分析1自然电位测井技术及应用分析1.1井内自然电位产生的机理井内自然电位的产生原因相对复杂,在研究与分析过程中,可以从以下两个方面进行把握:一方面,对于油井而言,地层水含盐浓度以及钻井液含盐浓度的表现在一定程度上可能会对离子的扩散以及岩石颗粒对离子的吸附作用产生至关重要的影响。
另一方面,当地层压力与钻井液柱压力表现不同时,地层孔隙中会产生过滤功能。
其中,功能的作用程度往往与岩石成分以及地层水、钻井液理化性质相关。
客观角度上来看,油井的自然电位主要是由扩散作用产生的。
也就是说,当钻井液柱与地层间所存在的压力差过大时,其所呈现出的过滤作用将会带动井内自然电位产生。
1.2自然电位测井技术应用在应用自然电位测井技术过程中,现场作业人员需要在地面设置参考电极,并在井下设置测量电极,根据二者间的电位差表现实现对裸眼井的勘测分析过程。
一般来说,在应用自然电位测井技术的过程中,作业人员应该对钻井液电阻率以及密度表现情况进行重点把握。
究其原因,主要是因为上述因素往往会对自然电位测井技术应用效率产生一定影响。
除此之外,作业人员还需要根据地层厚度以及地层电阻率表现情况,确立科学合理的自然电位测井技术应用方案。
结合当前应用情况来看,自然电位测井技术可适用于壁层水电阻率判断、储层泥质含量估计等裸眼井勘测工作当中。
2电阻率测井技术及应用分析2.1测量原理分析利用电阻率测井技术的过程中,现场作业人员应该明确电阻率测井技术的测量原理。
根据测量原理的具体表现,对电阻率测井技术方案进行统筹规划与合理部署。
结合以往的经验来看,在进行电阻率测井的过程中,现场作业人员需要在井下设置电极向地层供电,同时需要设置测量电极,目的在于检测电流以及电压变化情况。
根据电流以及电压变化情况获得电阻,并按照相关计算原则乘以某一系数转化为电阻率,根据电阻率数值表现,判别油气水层以及计算地层径向含水饱和度。
2.2应用分析在应用电阻率测井技术的过程中,作业人员可根据裸眼井测井需求的不同,将该项技术细化分为高分辨率阵列感应测井、电阻率成像测井以及三分量感应测井三种技术类型。
工程测井解释技术在测井处现有的套管监测测井仪器中,主要有以下几种测量方法:井下电视、脉冲回声仪(PET)、磁测井、多臂井径(MAC)、井温以及水泥胶结评介测井仪(CBL)。
以下将简单地介绍这几种方法的测量原理及解释方法。
资料解释1 .井下电视资料解释:变形:套管变形,发射波回不到换能器,则在照片上呈现黑影,黑影的大小反映变形的部位和形状。
图纸上呈现4条黑影的图像可以解释为套管椭圆变形。
孔洞:孔洞部分套管缺失,往往伴随着外漏,图纸上呈现小黑斑。
破裂:套管在固井水泥返高以上形成垂直裂缝内径变大的特征,在固井段呈不规则裂缝,在图纸上呈条形黑影。
错断:错断套管主要集中在射孔井段,断开点在接箍处尤多,断开区呈现黑色,黑影长度为断距。
腐蚀:套管内壁由于腐蚀产生深浅不等的锈斑,在图纸上显示为鱼鳞状黑斑。
综上所述。
超声电视法通过图纸上的黑影特征来判定套管的损伤类型,但是破洞、变形、套管壁上的附着水泥块等因素都显示为黑影。
因此,当黑影特征不明显时则产生多解性,只有通过多种方法综合解释才能得出正确结论。
2.多臂井径资料解释:整圆腐蚀:最大、最小井径均增大,剩余壁厚减小;半圆腐蚀:最大井径增大,最小井径基本不变,剩余壁厚减小;套管缩径:最大、最小井径均减小,剩余壁厚增大;套管椭圆:最大井径增大,最小井径减小,剩余壁厚减小;套管破裂:最大、最小井径均增大(有明显异常,一般数值大于130mm,或参考射孔段对比),剩余壁厚减小;孔洞或大砂眼:最大井径增大(有明显异常,一般数值大于130mm,最小井径基本不变或参考射孔段对比),剩余壁厚减小。
3.磁测井资料解释:一般情况下,由于我们将套管的磁导率电导率作为常数,但实际上每两根钢级相同,规格相同的套管磁导率、电导率均不相同,故资料解释上将每一根套管作为独立单位来处理。
腐蚀:壁厚变小〈相对于同一根套管的壁厚最大值〉。
外腐蚀的判断为:壁厚变小,井径基本不变;内腐蚀的判断为:壁厚变小,井径变大;穿孔的判断一般情况下,与射孔段处壁厚、井径测量值比较判断。
测井工程技术服务方案及技术措施
介绍
测井是石油勘探开发中的重要环节。
本文旨在提供测井工程技术服务方案及技术措施,以期提高测井作业效率和质量。
服务方案
前期准备
在作业前,需要做好以下准备工作:
- 熟悉井型、井深、井状等基本信息
- 做好作业计划,确定测井流程
- 检查测井仪器和设备的状态,确保设备良好
实施测井作业
在实施测井作业时,需要注意以下事项:
- 采集良好的录井曲线数据,确保数据质量
- 根据作业要求进行纵向和横向校正
- 根据井口环境和现场情况进行及时调整,保证措施的实施
测井数据处理
在测井数据处理方面,我们需要做到:
- 对采集到的数据进行合理处理与分析
- 确保所提供的测井数据准确无误
技术措施
联合作业
在测井作业过程中,多个作业方之间大多需要互相协调、配合。
联合作业能够实现协作,提高作业效率,提高数据的准确性。
技术更新
随着技术的不断发展,测井作业的工具也会不断地更新,我们
需要不断了解、研究和掌握最新技术,保证设备的先进性。
现场管理
在测井作业现场中,需要做好现场管理,如:
- 保证作业安全,避免事故发生
- 确保测井作业数据的准确性与保密性
- 确保设备能够正常运行
结论
以上就是本文的测井工程技术服务方案及技术措施,通过以上的技术服务方案和技术措施的实施可以有效地提高测井作业的效率和质量。
测井基础知识概述1. 引言测井是指在钻井过程中利用各种测量方法和设备来获取地层信息的技术手段。
通过测井可以获取地层中的物理、化学和工程性质的参数,对地层进行评价和分析,从而为油气勘探和开发提供重要的参考依据。
本文将概述测井的基础知识,包括测井的意义、测井方法和设备、测井参数解释等内容。
2. 测井的意义测井作为一种获取地层信息的重要手段,具有以下几个方面的意义:2.1. 地层评价通过测井可以获取地层中的物理、化学和工程性质的参数,如孔隙度、渗透率、饱和度等,从而评价地层的含油气能力、储层性质等。
这对于油气勘探和开发来说至关重要,可以指导油气田的选址和开发方案的制定。
2.2. 钻井工艺控制在钻井过程中,测井可以提供有关井眼稳定性、岩石力学性质、井壁质量等信息,指导钻井工艺的控制和井壁的完整性保护,减少钻井事故的发生。
2.3. 油藏管理测井还可以为油气田的开发和管理提供重要的数据支持,如油藏压力分布、水驱效果、油藏动态变化等。
这些数据可以帮助油田管理人员了解油田的生产状况,做出相应的调整和决策。
3. 测井方法和设备测井方法是指测井的具体操作方法,而测井设备是指用于测量的仪器和工具。
常用的测井方法和设备包括:3.1. 电测井电测井是利用测井仪器在井中测量电性参数来获得地层信息的方法。
常用的电测井设备包括电阻率测井、自然电位测井和电导率测井等。
3.2. 孔隙度测井孔隙度测井是利用测井仪器测量地层中的孔隙体积的方法。
常用的孔隙度测井设备包括密度测井和中子测井等。
3.3. 岩性测井岩性测井是通过测井仪器来测量地层岩石的物理性质和组成,从而判断岩石的类型和性质的方法。
常用的岩性测井设备包括声波测井和伽马射线测井等。
3.4. 流体识别测井流体识别测井是用于判断油气层位和识别流体类型的方法。
常用的流体识别测井设备包括声波测井、密度测井和中子测井等。
4. 测井参数解释测井仪器测得的数据需要经过解释和分析,才能得到有意义的地层信息。
第二章主要测井方法、技术指标及其作用第一节常规测井方法一、电法测井1.自然电位测井自然电位测井是在裸眼井中测量井轴上自然产生的电位变化,以研究井剖面地层性质的一种测井方法。
它是世界上最早使用的测井方法之一,是一种简便而实用意义很大的测井方法,至今仍然是砂泥岩剖面必测的工程之一,是识别岩性、研究储层性质和其它地质应用中不可缺少的根本测井方法之一。
有时一些特殊岩性,如某些碳酸盐岩〔阳5井〕也有较强的储层划分能力。
其曲线的主要作用为:①划分储层;②判断岩性;③判断油气水层;④进行地层比照和沉积相研究;⑤估算泥质含量;⑥确定地层水电阻率〔矿化度〕;⑦判断水淹层。
在自然电位曲线采集过程中,主要受储层岩性、厚度、含油性和电阻率、侵入带直径、泥浆电阻率、井温、井眼扩径、岩性剖面缺少泥岩等影响,易产生多解性,在测井资料综合解释时应予以考虑。
2.普通电阻率测井普通电阻率测井是指各种尺寸的梯度电极系和电位电极系组成的测井方法,它采用不同的电极排列方式和不同的电极距,通过测量人工电场电位梯度或电位的变化来确定地层电阻率的变化。
利用具有不同径向探测深度的横向测井技术,可以识别岩性、划分储层、确定地层有效厚度、进行地层剖面比照、确定地层真电阻率及定性判断油气水层等。
目前还保存了2.5m、4m梯度视电阻率测井,0.5m、0.4m电位视电阻率测井以及微电极〔微电位和微梯度组合〕等普通电阻率测井方法。
〔1〕梯度视电阻率测井目前在用的有2.5m梯度视电阻率测井和4m梯度视电阻率测井。
其主要作用为:①地层比照和地质制图〔标准测井曲线之一〕;②粗略判断油气水层;特别是长电极〔如4m梯度〕,可较好地判识侵入较深地层的油气层;③划分岩性和确定地层界面;④近似估计地层电阻率。
进行该类资料分析时,应注意高电阻邻层屏蔽、电极距、围岩-层厚、井眼条件及地层或井眼倾斜的影响等。
〔2〕电位视电阻率测井目前在用的有0.5m、0.4m电位电极系。
该类测井电极距短,但有中等探测深度且不必考虑高阻邻层的屏蔽影响,因而是一种获取地层视电阻率的简单易行的方法。
2.4 测井作业的现场实施在作业开始前一天向测井作业工程师下达测井作业任务通知书,通知书格式见测井指令表。
其中井位坐标和升船数据要按钻井日志上实际就位的数据填写,完钻井深和套管下深的数据按钻井日报填写。
要求泥浆工程师在电测前的通井循环结束时,取一桶泥浆返出口处取得的泥浆样,并做一个泥饼和大于十毫升的泥浆滤液样品,泥饼取出时不得冲洗,与泥浆调整结束后做的泥浆性能数据(包括PH值,粘度,比重,失水和氯根)一起交给测井工程师。
作业前检查坡道上是否有妨碍测井作业的杂物;如果有应与钻井监督协商移走杂物,从大钩吊起天滑轮开始,计算测井时间(RIG UP TIME)。
测井作业第一系列应为电阻率声波系列,第二个系列应为中子密度系列,这个系列既带放射源又贴井壁要注意安全,井壁取心是裸眼测井的最后一个系列。
每口井的第一次测井,第一测井系列现场监督的首要任务是校准深度。
首先要在井口对零,并确认绞车深度面板与测井深度面板相同。
在下至表层套管鞋处,上提测量并将深度校至钻井报表上的套管鞋深度。
出套管后,上提连续听两个电缆记号,并记录下电缆记号的深度。
下放至接近井底时,上提听两个电缆记号,记下深度并与应当读到的电缆记号深度相对比,差值即为电缆伸长数。
如出套管后听到的电缆记号为515米,井深2000米,电缆记号每25米一个,应在1965或1990米听到电缆记号,而实际在1968米听到记号,电缆伸长值为3米。
把误差消除后,下到井底测量。
在第二次测井时,校深的方法为下过套管鞋后上提测量,以第一次测井时的自然伽玛为准,重复测量至少50米。
对这样校深后测量到的套管鞋深度与钻井报表上的记录深度的误差不予考虑,但当此误差超过3米时应查对原因。
校准深度后方可进行测井,这个深度的校准必须由测井总监确认,测量后深度如有错误,由测井总监负责。
测井深度与钻井深度的误差为1米/1000米,可以用校好的电缆深度与气全量曲线和钻时曲线对比,以钻时曲线为基础,参考气全量曲线。
测井方法原理应用分类总结测井是油气勘探开发中的一项重要技术和手段,通过测井可以获取井内地层的地质、物理与工程参数,为油气田开发提供了实时准确的地层信息。
测井方法广泛应用于油气勘探开发、井下作业、油井管理与监测等领域。
测井方法按照测量物理量的不同可以分为电测井、声测井、渗透率测井、核子测井等。
电测井方法是利用电性质测井工具测量地层电性质参数的方法。
主要包括电阻率测井、自然电位测井、正反应测井等。
电阻率测井是利用电极流过地层产生的电阻测量电阻率。
自然电位测井是通过测量井内的自然电位差来获得地层参数的方法。
正反应测井是通过产生探测电场,测量地层电流形成的电荷与原电场之差,来计算地层参数的方法。
声测井方法是利用声波在地层中传播特性的差异测量地层声波参数的方法。
主要包括声波传播时间测井、声波幅度测井、剪切波测井等。
声波传播时间测井是通过测定声波传播经过几米以上地层花费的时间来推算地层速度的方法。
声波幅度测井是研究声波在地层中衰减程度、判断地层流体性质及最大气差的方法。
剪切波测井是利用剪切波在地层中传播特性的差异来推算地层剪切波速度和剪切模量的方法。
渗透率测井方法是利用测井资料间的关联关系推算地层流体渗透性的方法。
主要包括射孔压力测试、产能测井、注水试验等。
射孔压力测试是通过在地层中射入流体并观测流体压力变化来计算地层渗透率的方法。
产能测井是通过测量地层流体在井筒中的流动速度和压力来计算地层渗透率的方法。
注水试验是通过外加压力,注入一定量的水,并观测井底流量来计算地层渗透率的方法。
核子测井方法是利用射线经过地层后的吸收、散射等特性来获得地层参数的方法。
主要包括伽马射线测井、中子测井等。
伽马射线测井是利用测量地层伽马射线强度来判断地层岩性和含矿性的方法。
中子测井是利用测量地层中子流量的变化来推算地层含水量和含油气量的方法。
测井的应用范围广泛,常用于勘探开发、油井管理与监测等领域。
在勘探开发中,测井可以提供地层参数数据,帮助评估油气资源量、优化井位选择、判断油气藏类型等。