背光源的设计入门
- 格式:ppt
- 大小:1.54 MB
- 文档页数:18
led背光源设计标准LED背光源是一种高效、环保的照明技术,广泛应用于电视、显示屏、广告牌等各种场合。
设计一个高质量的LED背光源需要考虑以下几个方面的标准。
首先是光效。
LED的光效是指其发光效率,即单位功率下产生的可见光的亮度。
较高的光效意味着更高的能源利用率和更低的能源消耗。
因此,在设计LED背光源时,应选择具有高光效的LED芯片,以确保照明效果的同时减少能源浪费。
其次是均匀度。
均匀度是指背光源的光照均匀分布程度。
高质量的LED背光源应该能够提供均匀的光照,避免出现亮度不一致或明暗区域的问题。
为达到均匀的光照效果,可采用分区调光、背光板设计优化等方法。
此外,色温和色彩还原性也是设计标准。
色温是指光源所呈现出的色调,常用的有冷光、自然光和暖光等。
色彩还原性是指光源对物体颜色真实还原的能力。
高质量的LED背光源应具有精确的色温和良好的色彩还原性,以呈现出准确、真实的颜色。
安全性也是设计LED背光源的重要标准。
由于LED背光源大多数是直流供电,可以通过做好绝缘措施、热管理和隔离开关等来确保使用安全。
此外,还应遵循相关的电气安全标准,如国际电工委员会(IEC)制定的IEC 62368-1标准,以确保背光源的长期稳定和安全性。
最后是可靠性。
高质量的LED背光源应具有较长的使用寿命和稳定的性能。
设计时应考虑良好的散热设计,避免过高的温度对LED芯片的影响。
同时,还应控制好LED的电流和电压,以延长其使用寿命。
总之,设计高质量的LED背光源需要考虑光效、均匀度、色温、色彩还原性、安全性和可靠性等多个因素。
通过充分考虑这些因素,并遵循相关的标准和规范,可以设计出满足要求的LED背光源,为各种应用场合提供高质量的照明效果。
背光源基础知识讲解所谓背光源(BackLight)应该是位于液晶显示器(LCD)背后的一种光源,它的发光效果将直接影响到液晶显示模块(LCM)视觉效果。
液晶显示器本身并不发光,它显示图形或字符是它对光线调制的结果。
一、用于背光源的光源:在背光源的设计中,所用光源的选用是很重要的。
所用的光源决定了背光源的功耗、亮度、颜色等光电参数,也决定了其使用条件和使用寿命等特性。
如下为可用于液晶显示器背光源的光源及其特点简单对比介绍:光源形状光源种类颜色功耗(W) 寿命(h) 特点点状光源Lamp(灯泡) 2800K左右 1.0以上2,000 简单、小型、价低,体积大、发热严重LED (发光二极管)蓝~红430~700nm 0.038以上100,000 寿命长、低发热,亮度稍低线状光源CCFL(冷阴极荧光管)红绿蓝及混合色1~10 25,000 亮度高、寿命长,逆变器驱动电压高HCFL(热阴极荧光管) 4.0~220 5~7,000 发热严重面状光源VFD(扁平荧光灯)200mW/cm2以下5,000 亮度高、均匀性好,双电源驱动EL(电致发光片)20mW/cm2以下5,000 薄、均匀性好,寿命短、亮度低OEL(有机电致发光片)1,000以上薄、均匀性好、亮度高,寿命短FED(平板场发射)10,000以上亮度高,开发中二、光源模组的技术:光源模组中最核心技术为导光板的光学技术,目前主要有印刷形和射出成型形二种导光板形式,其它如射出成型加印刷,激光打点,腐蚀等占很少比例,不适合批量生产原则。
印刷形因为其成本低在过去较长时间内成为主流技术,但合格品不高一直是其主要缺点,而目前LCD产品要求更精密的导光板结构,射出成型形导光板必然成为背光源发展主流,但相应的模具技术难题只有少数大厂能够克服。
三、背光源的分类:背光源目前按光源类型主要有EL、CCFL及LED三种背光源类型,依光源分布位置不同则分为侧光式和直下式(底背光式)。
LED背光源的设计与调光技术LED(Light Emitting Diode)是一种半导体光源,具有节能高效、寿命长、体积小等优势,在各个行业得到了广泛应用。
而LED背光源则是将LED灯用于液晶显示器的背光照明系统中,能够提供均匀亮度和高对比度的照明效果。
本文将详细探讨LED背光源的设计原则和调光技术。
LED背光源设计的原则主要包括:1. 选择合适的LED类型和数量:根据显示器的尺寸和要求,选择合适的LED 类型(如白光LED)和数量,确保背光亮度和颜色的一致性。
2. 合理布置LED灯珠:背光源应布置在整个显示面板的背后,以实现均匀的光照。
采用等间距布置LED灯珠并合理设计散热系统,可以提高显示器对比度和降低能耗。
3. 选择合适的反射材料:使用合适的反射材料,如镀膜玻璃或镀膜聚碳酸酯,以增加LED背光源的反射效果,提高发光效率和均匀性。
4. 优化光学设计:通过采用光学模拟软件对光学系统进行仿真和优化,选择最佳的光学结构和光学材料,提高LED背光源的效果。
5. 考虑电路设计:合理设计驱动电路,提高驱动效率和稳定性,同时避免因电路问题导致的颜色偏差和亮度不均匀等问题。
LED背光源的调光技术主要包括以下几种:1. PWM调光:PWM(Pulse Width Modulation)调光是通过改变电源给LED灯的占空比来控制LED的亮度。
通过不断交替地开关电源电压来实现灯光的闪烁,闪烁频率越高,亮度越高。
这种调光技术具有调节范围广、亮度可调性好等优点。
2. 线性调光:线性调光是通过改变LED驱动电压或电流来实现亮度的调节。
通过改变电流或电压大小来改变LED的亮度,从而实现调光的效果。
线性调光技术操作简单,可靠性较高。
3. 自适应调光:自适应调光是根据环境光的亮度,通过传感器自动调整背光源的亮度。
通过感知环境光的强度,自动调整LED背光源的亮度,既能够节约能源,又能够提供良好的视觉效果。
4. 色温调光:色温调光是通过改变LED灯的色温来实现亮度的调节。
背光源畫法
背光源绘画是绘画中常用的一种技法,用于创造物体在背光条件下的光影效果。
下面是一种常用的背光源绘画步骤:
1. 确定主体物体:首先确定绘画中的主体物体,可以是人物、动物或其他物体。
2. 确定背光源位置:确定物体背后的光源位置,这会影响到光线的照射方向和物体的明暗分界线。
3. 确定光照角度:根据背光源的位置,确定光线的照射角度。
一般来说,背光源会使物体的正面处于阴影中,而背面则会有明亮的光线照耀。
4. 绘制阴影:根据光源的位置和角度,在物体的正面绘制阴影。
阴影应该更加暗淡,并逐渐减弱,直到达到物体的明亮部分。
5. 表现明亮部分:根据光线的照射方向,在物体的背面和边缘处表现出亮度较高的部分。
可以使用明亮的色彩和高亮度的色调来表示光线的照射效果。
6. 调整细节:根据需要,可以对阴影和明亮部分进行调整,使得光影效果更加准确和逼真。
7. 进行修饰:在完成物体的光影绘制后,可以进行一些修饰,如添加细节、调整色调等,以增强绘画的艺术效果。
背光源绘画是一种较为复杂的技法,需要对光线和阴影有一定的理解和掌握。
通过多次实践和观察现实生活中的光影效果,艺术家可以更好地运用背光源绘画技法来创作。
tft背光源制作工艺流程
TFT(薄膜晶体管)背光源制作工艺流程通常包括以下几个步骤:
1. 选择合适的背光源类型:根据应用需求和TFT显示器的要求,选择合适的背光源类型,常见的包括LED(发光二极管)、EL(电致发光)等。
2. 涂布透明导电材料:在透明导电材料(如氧化锌、氧化铟锡等)的基板上进行涂布处理,形成电极层,用于提供电流给背光源,以激发光源的发光效果。
3. 制作电介质层:在电极层上涂布一层电介质材料(例如聚氨酯、聚醚酯等),用于隔离电极层和发光层,并保护电极层不受化学物质的侵蚀。
4. 制作背光源发光层:在电介质层上涂布发光材料(例如EL 材料、LED颗粒等),形成发光层,用于发出背光。
5. 制作反射层:为了提高背光源的效率,通常在发光层上涂布一层反射层(如铝薄膜、二氧化钛等),用于反射没有被吸收的光,增强发光效果。
6. 封装背光源:将背光源放置在适当的封装结构中,以保护其免受环境物质和机械冲击的影响,并提供合适的接口以连接到TFT显示器。
7. 连接电源和控制电路:将背光源连接到适当的电源和控制电路,以供电和控制光源的亮度和颜色。
8. 测试和调整:对制作好的背光源进行测试和调整,确保其亮度、均匀性和稳定性等性能指标符合要求。
9. 安装到TFT显示器中:将制作好的背光源安装到TFT显示器背后的适当位置,并与液晶显示模组进行组装。
以上是通常的TFT背光源制作工艺流程,不同类型的背光源和具体应用可能会有所不同。
这个流程只是提供了一个大致的参考。
背光源行业培训资料背光源行业培训资料1. 背光源的概述背光源是指用于照亮显示屏幕背后的光源。
在液晶显示技术中,背光源扮演着非常重要的角色,它能够提供给显示屏幕足够的亮度,使得图像能够清晰、鲜明地显示出来。
背光源行业在近年来取得了巨大的发展,不仅应用于电视、电脑显示器等消费电子产品,还广泛用于医疗设备、汽车显示屏、航空航天等领域。
2. 背光源的分类2.1. 传统背光源传统背光源主要包括CCFL(冷阴极荧光灯)和EEFL(外部电场发射灯)两种类型。
CCFL是目前较为常见的背光源之一,它具有长寿命、低成本等优点,但是功耗较高,对环境也有一定的污染。
EEFL则是一种新型的背光源,它在能效和亮度方面优于CCFL,但成本相对较高。
2.2. LED背光源LED(Light Emitting Diode)背光源是目前主流的背光源技术。
LED光源具有亮度高、寿命长、能耗低等优势,逐渐取代了传统的背光源技术。
LED背光源分为直下式和边缘式两种,直下式LED背光源在整个显示屏幕背后均布置了LED,而边缘式则是将LED布置在显示屏幕的边缘。
3. 背光源行业的发展趋势3.1. 趋向超薄化随着显示技术的发展,人们对显示屏幕的要求越来越高,其中之一就是要求显示屏越来越薄。
背光源作为显示屏的重要组成部分,也需要提供足够的亮度和均匀度,并同时实现超薄化的设计。
3.2. 趋向高亮度和高对比度亮度和对比度是衡量显示屏质量的重要指标,背光源的性能直接影响到显示屏的亮度和对比度。
未来背光源行业将继续提高亮度和对比度,以便更好地满足用户对画质的要求。
3.3. 趋向节能和环保节能和环保已经成为各行各业发展的重要关注点,背光源行业也不例外。
传统的背光源技术相对较为耗能,对环境也有一定的污染,而LED背光源具有节能和环保的特点,未来背光源行业将更加注重研发和推广LED背光源技术。
4. 背光源行业培训的重要性背光源是显示技术的核心之一,掌握背光源技术对于从事相关行业的人员来说是非常重要的。
背光设计思路参考以下是以RGB的LED背光源为例来设计的,我们仅考虑白光LED背光源,设计起来比这个要简单一些,下面的内容作参考。
光源发出的光经过光学腔(腔壁采用高效漫反射片)混合后,再经过各种必要的光学膜片后,得到屏前(FOS)要求亮度。
光学膜片一般包括扩散板(diffuser)、集光片(BEF)、增亮片(DBEF)、TFT屏和减反层等,如图1所示。
图1直下式LED背光示意图1光学设计显示模组的基本光学性质为屏前的白光色度、最高亮度及均匀性等。
在背光系统里面,增亮片、集光片、扩散板、底反射片及LED(R、G、B)均称为光学元件,具有各自的光学性质,这些性质是光学设计时的重要参数。
LED光源发出的光经过各层膜片及TFT时都发生了一定的变化。
知道了这些参数后,就可以根据需求亮度和产品基本尺寸,按式(1)估算(lambertian型LED)背光所需的总光通量。
ΦLED=L FOS/ηLCD*A*2π*(1-cosφ1/2)/∏Ti(1)式(1)中ΦLED为光通量,L FOS为屏前亮度,ηLCD为TFT透过率,A为TFT有效显示面积,φ1/2为(BEF与diffuser之间)亮度峰值的50%时的偏轴视角;∏Ti为各背光膜片亮度增益乘积。
以6.4英寸显示模组为例,要求亮度为1000nit时,所需光通量总计约750lm。
接下来,必须把计算的总光通量分别分配到R、G、B三基色LED中,设计分配方案时,需要考虑的参数为产品白光色度要求(需根据经验考虑光学组件的色度偏移),及三基色色坐标(CIE1931),并按式(2)进行估算。
(2)式(2)中ΦR、ΦG、ΦB为所需三基色LED的光通量,xR、yR、xG、yG、xB、yB、xW、yw为三基色LED和要求白光的CIE1931色坐标(三基色LED色度选取时,应先参考与彩膜(CF)的透射光谱匹配,再经视觉函数校正),分别取主波长625nm、530nm、470nm,经估算后取ΦR145lm、ΦG500lm、ΦB105lm。
LED背光源基础黄驹深圳帝晶实业有限公司主要内容v白光背光源色度区分v CIE色度坐标图v主要结构v主要物料介绍v设计参考v LED背光源生产流程v检验标准白光背光源色度区分0.3390.3600.3050.2950.3180.3390.2950.276y 0.330.3300.2830.2870.3300.3300.2830.296x 暖白色区冷白色区坐标CIE色度坐标图LED背光源主要结构扩散片v1、扩散片扩散片的作用除了修正光行进的角度外,对于破坏全反射面的光学结构也具有覆盖作用,扩散片的主要光学参数有透过率和舞面程度,耐UV性能,抗刮、耐磨性,耐侯性,增光效果。
扩散片主要是将一些微小的扩散粒子涂布在高透光性的膜片(PET,PC)上,其光学行为是利用光通过扩散粒子产生光扩散效果扩散片的结构扩散片扩散片扩散片v扩散片除了扩散颗粒涂布分式,还有利用压印的微小结构来打散图象造成模糊效果。
v下扩散片的主要作用将导光板折射出来的光线打模糊,以避免某些位置光线强,某些位置光线弱的问题v上扩散片的主要作用是消除上下增光膜造成的光衍射现象(牛顿环现象)和保护增光膜以避免表面划伤牛顿环现象增光膜v利用材料和结构物理特性改变光的行进方向,而使在某一角度范围内的光线得以聚集。
以达到增亮效果。
是由特殊材料和镀膜技术以及成型技术作成的薄膜,一般厚度50-100微米。
v目前增光膜类型主要有BEFⅡ,BEFⅢ,BEFⅡv在PET基材上COATING锯齿或波浪型的PMMA结构v作用是改变光的行进方向以达到聚集效果,因而提高亮度,一张BEF单一方向增量是60%,两张垂直方向重叠可增亮120%,但同时会牺牲部分视角的亮度BEFⅡBEFⅢv BEFⅢ与BEFⅡ不同之处在Randon pattern 可避免MOIREv集光效果:单一方向增亮59%,两张垂直方向可增亮111%v将BEFⅢ-T外贴一层matte的扩散层,避免静电以及干涉想象BEFⅢDBEFv3M的专利,具有偏光的特性,结构有多层可反射的偏极光的薄膜贴付而成,可改善光的极化方向,经由反射后再加以利用,避免BEFⅡ直角结构在组装上因外力而破坏Prism而设计出圆弧形结构v DBEF-M 主要是将DBEF表面外加Coating一层Matte,防止因静电而产生Moire的现象v DBEF-D 为防止DBEF易浮曲变形而再加厚且增加上下两层扩散层增光膜v上下BEF裁切角度除了一般常见0°90°还有其他角度,但上下BEF角度差异都是90°。