三次样条插值算法详解
- 格式:ppt
- 大小:1.10 MB
- 文档页数:50
平滑算法:三次样条插值(CubicSplineInterpolation)感谢强⼤的google翻译。
我从中认识到了航位推算dead reckoning,⽴⽅体样条Cubic Splines 算法。
我单独查找了 Cubic Splines ,⾥⾯的原理简单说明:Cubic Splines 认为在 x 在[a, b]区间中,y对应是⼀条平滑的曲线,所以 y = f(x); 的⼀阶导函数和⼆阶导函数是平滑连续可导的。
拟定⽤三次⽅程,所以得出了⼀般的三次⽅程和⼀阶导数⽅程和⼆阶导数⽅程。
然后求各个分部的解。
这是三次样条的基本原理。
但⽂中最开始的链接中所得出的x = At3 + Bt2 + Ct + Dy = Et3 + Ft3 + Gt + Ht是percent(0~1)区间值,如果还有三维向量,我理解是同样的展开。
然后通过四个位置点来求出 A B C D … 各分部参数的值A = x3 – 3x2 +3x1 – x0B = 3x2 – 6x1 + 3x0C = 3x1 – 3x0D = x0E = y3 – 3y2 +3y1 – y0F = 3y2 – 6y1 + 3y0G = 3y1 – 3y0H = y0…相同分量展开。
(如果有Z 分量的话)学艺不精,⽆法从现有姿势推出这个分量求解过程。
实时运动游戏是通过预测其他玩家的位置来表现的,当服务器有新的输⼊的时候,本地玩家会发现其他玩家位置或状态发⽣⼀次跳变(瞬移)。
有两种思路,⼀、预测未来1. 通过当前位置和速度,通过预测未来精度(1s或者0.5s)推测出未来位置.2. 得出公式参数,通过dt来平滑当前运动轨迹。
⼆、延迟渲染1. 通过延迟渲染参数(延迟1s,0.5s来)来获得其他玩家的过去状态位置。
2. 得出公式参数,通过dt来平滑运动轨迹。
上述两种⽅案1. 如果参数⼀致,速度不改,则运动轨迹跟预测⼀致,如果玩家输⼊多变,则永远不会是真实的位置。
2. 看到的玩家的过去位置,移动轨迹跟⽬标玩家运动轨迹基本保持⼀致。
三次样条插值C++数值算法(第二版)3.3 三次样条插值给定一个列表显示的函数yi=y(xi),i=0,1,2,...,N-1。
特别注意在xj和xj+1之间的一个特殊的区间。
该区间的线性插值公式为(3.3.1)式和(3.3.2)式是拉格朗日插值公式(3.1.1)的特殊情况。
因为它是(分段)线性的,(3.3.1)式在每一区间内的二阶导数为零,在横坐标为xj处的二阶导数不定义或无限。
三次样条插值的目的就是要得到一个内插公式,不论在区间内亦或其边界上,其一阶导数平滑,二阶导数连续。
做一个与事实相反的个假设,除yi的列表值之外,我们还有函数二阶导数y"的列表值,即一系列的yi"值,则在每个区间内,可以在(3.3.1)式的右边加上一个三次多项式,其二阶导数从左边的yj"值线性变化到右边的yj+1"值,这么做便得到了所需的连续二阶导数。
如果还将三次多项式构造在xj和xj+1处为零,则不会破坏在终点xj和xj+1处与列表函数值yj和yj+1的一致性。
进行一些辅助计算便可知,仅有一种办法才能进行这种构造,即用注意,(3.3.3)式和(3.3.4)式对自变量x的依赖,是完全通过A和B对x的线性依赖,以及C和D(通过A和B)对x的三次依赖而实现。
可以很容易地验证,y"事实上是该插值多项式的二阶导数。
使用ABCD的定义对x求(3.3.3)式的导数,计算dA/dx dB/dx dC/dx dD/dx,结果为一阶导数因为x=xj是A=1,x=x(i+1)时A=0,而B正相反,则(3.3.6)式表明y"恰为列表函数的二阶导数。
而且该二阶导数在两个区间(xj-1, xj)和(xj, xj+1)上是连续的。
现在唯一的问题是,假设yj"是已知的。
而实际上并不知道。
然而,仍不要求从(3.3.5)式算出的一阶导数在两个区间的边界处是连续的。
三次样条的关键思想就在于要求这种连续性,并用它求得等式的二阶导数yi"。
三次样条曲面插值原理
三次样条曲面插值是一种用于构造二维曲面的插值方法。
其基本原理是通过已知的曲面上的若干点,计算出该曲面上的三次多项式函数,从而实现曲面的插值。
具体来说,三次样条曲面插值的原理如下:
1. 确定曲面上的插值节点:根据给定的曲面上的点的坐标,确定曲面上的插值节点。
2. 构造曲面的参数方程:利用插值节点,构造出曲面的参数方程。
三次样条曲面插值通常使用双变量的三次多项式作为参数方程。
参数方程的形式可以是Bézier曲面、B样条曲面等。
3. 确定曲面上的插值条件:根据已知的曲面上的点的坐标和曲面方程,确定曲面上的插值条件。
通常使用平滑条件(曲面上的点的正切方向相等)和代数条件(曲面上的点的坐标满足给定的条件)来确定插值条件。
4. 求解参数方程的系数:根据插值条件,求解参数方程中的系数。
可以使用线性代数的方法求解系数矩阵,得到曲面的参数化表达式。
5. 计算曲面上的点的坐标:利用参数方程和求解得到的系数,计算曲面上的点的坐标。
可以通过插值节点上的参数值,使用参数方程计算得到。
通过以上步骤,就可以构造出满足给定插值条件的三次样条曲面,从而实现曲面的插值。
计算方法分段线性_三次样条插值分段线性和三次样条插值是两种常用的插值方法,在数值分析和插值问题中广泛使用。
1.分段线性插值分段线性插值是一种简单直观的插值方法,将插值区间划分为若干个子区间,在每个子区间上用线性函数进行插值。
假设给定的插值节点有n+1 个,节点为 (x0, y0), (x1, y1), ..., (xn, yn),并且满足 x0 <x1 < ... < xn。
则对于任意 xx 使得 x 在 [xi, xi+1] 之间,可以通过线性插值得到其函数值 yy,即:yy = yi + (xx - xi) * (yi+1 - yi) / (xi+1 - xi)分段线性插值方法简单易懂,适用于一些较简单的插值问题。
但是由于插值函数在节点之间是线性的,可能不能准确地反映出数据的特征,因此不适用于一些需要高精度的插值问题。
三次样条插值是一种更复杂、更精确的插值方法,将插值区间划分为若干个子区间,在每个子区间上用三次多项式进行插值。
三次样条插值方法的基本思想是找到一组三次多项式,满足在每个子区间内插值点的函数值和一阶导数值相等,并且两个相邻多项式在节点处的二阶导数值也相等。
具体的求解步骤如下:(1) 假设有 n+1 个插值节点 (x0, y0), (x1, y1), ..., (xn, yn),构造 n 个三次多项式,即每个多项式在 [xi, xi+1] 之间插值。
(2) 对每个子区间内的多项式进行插值,设第 i 个子区间的多项式为 Si(x) = ai + bi(x-xi) + ci(x-xi)^2 + di(x-xi)^3、将插值节点的函数值和一阶导数值代入多项式中,可以得到 n 个线性方程,利用这 n 个线性方程可以求解出 n 个子区间的系数。
(3)由于n个子区间的多项式必须在节点处一阶导数值相等,因此再设立n-1个方程,利用这些方程可以求解出n-1个子区间的二阶导数值。
(4)将求解得到的系数和二阶导数值代入每个子区间的多项式中,得到完整的三次样条插值函数。