航空发动机原理[1]
- 格式:doc
- 大小:722.00 KB
- 文档页数:20
飞机的发动机的原理飞机的发动机是飞机能够实现飞行的关键部件。
它的作用是将燃料燃烧产生的能量转化为动力,推动飞机前进。
飞机的发动机原理可以简单归纳为以下几个方面:1. 燃料供应:发动机需要燃料来进行燃烧。
常见的飞机燃料包括煤油、喷气燃料和航空汽油。
燃料经过管道输送到燃烧室。
2. 压缩空气:发动机内部的压缩机将大量空气压缩成高压空气。
这样可以提高燃料的燃烧效率,增加推力。
3. 燃烧过程:在燃烧室中,将燃料喷入高压空气中,经过点火点燃。
燃烧产生的高温高压气体会向外膨胀,推动涡轮旋转。
4. 涡轮驱动:燃烧室后面连接着一个涡轮。
燃烧产生的高温高压气体会使涡轮旋转,而涡轮上的叶片则通过轴向转动带动轴上的压缩机和风扇。
5. 喷气推力:涡轮旋转带动压缩机,使得前方的空气被压缩。
压缩后的空气一部分通过喷管喷出,产生向后的喷气推力,推动飞机向前飞行。
经过上述步骤,飞机的发动机将燃料的化学能转化为机械能,从而推动飞机前进。
在现代民航飞机中,常见的发动机类型有螺旋桨发动机、涡轮螺旋桨发动机、涡轮喷气发动机和涡扇发动机等。
螺旋桨发动机是最早的一种飞机发动机,它通过螺旋桨叶片的旋转产生推力。
它的优势是在低速和短距离起降的飞行任务中表现出色。
涡轮螺旋桨发动机是在螺旋桨发动机基础上增加了涡轮增压器,提高了高空飞行时的性能。
涡轮喷气发动机通过喷气推力进行飞行,通过涡轮驱动压缩机生成高压空气,然后将燃料注入燃烧室进行燃烧。
燃烧产生的高温高压气体通过喷管喷出,产生向后的喷气推力。
涡扇发动机是目前最常见的飞机发动机类型。
它结合了螺旋桨发动机和喷气发动机的特点。
涡扇发动机在外部有一个大型的风扇,大部分空气通过风扇进行压缩和排气,同时还有一小部分空气经过压缩机和燃烧室进行喷气推力产生。
总结起来,飞机的发动机原理是将燃料燃烧产生的能量转化为动力,推动飞机前进。
不同类型的发动机具有各自的优势和适用范围,在航空工业的发展过程中,不断有新的发动机技术涌现,提高了飞机的性能和效率,推动了航空事业的发展。
航空发动机工作原理
航空发动机采用内燃机原理进行工作。
它通过燃烧燃料来产生高温高压气体,并利用该气体的推力推动飞机前进。
以下是航空发动机的工作原理:
1. 压缩:当飞机发动机启动后,压气机会将大量空气吸入,并将其压缩。
压缩使空气分子更加接近,并增加了空气的能量密度。
2. 混合燃烧:压缩后的空气与燃料混合,在燃烧室中点火燃烧。
燃料的燃烧释放出巨大的能量,产生高温高压气体。
3. 推力产生:高温高压气体通过喷嘴排出,产生向后的推力。
根据牛顿第三定律,每个动作都会有相等大小但方向相反的反作用力,推动飞机向前。
4. 排气:排出的高温高压气体通过喷气口排入大气中。
在喷气过程中,也会产生较低温度和较高速度的气流,形成发动机尾流。
航空发动机通过循环以上的工作原理,持续地产生推力,推动飞机飞行。
发动机的性能和效率取决于燃料的燃烧质量、压气机的效果以及排气喷流的速度和方向。
不断改进和创新发动机技术,提高推力和燃油效率是航空工业的目标之一。
航空发动机原理(一)航空发动机原理——涡轮喷气发动机涡轮喷气发动机的诞生二战以前,活塞发动机与螺旋桨的组合已经取得了极大的成就,使得人类获得了挑战天空的能力。
但到了三十年代末,航空技术的发展使得这一组合达到了极限。
螺旋桨在飞行速度达到800千米/小时的时候,桨尖部分实际上已接近了音速,跨音速流场使得螺旋桨的效率急剧下降,推力不增反减。
螺旋桨的迎风面积大,阻力也大,极大阻碍了飞行速度的提高。
同时随着飞行高度提高,大气稀薄,活塞式发动机的功率也会减小。
这促生了全新的喷气发动机推进体系。
喷气发动机吸入大量的空气,燃烧后高速喷出,对发动机产生反作用力,推动飞机向前飞行。
早在1913年,法国工程师雷恩?洛兰就提出了冲压喷气发动机的设计,并获得专利。
但当时没有相应的助推手段和相应材料,喷气推进只是一个空想。
1930年,英国人弗兰克?惠特尔获得了燃气涡轮发动机专利,这是第一个具有实用性的喷气发动机设计。
11年后他设计的发动机首次飞行,从而成为了涡轮喷气发动机的鼻祖。
涡轮喷气发动机的原理涡轮喷气发动机简称涡喷发动机,通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。
部分军用发动机的涡轮和尾喷管间还有加力燃烧室。
涡喷发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。
工作时,发动机首先从进气道吸入空气。
这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。
压气机顾名思义,用于提高吸入的空气的的压力。
压气机主要为扇叶形式,叶片转动对气流做功,使气流的压力、温度升高。
随后高压气流进入燃烧室。
燃烧室的燃油喷嘴射出油料,与空气混合后点火,产生高温高压燃气,向后排出。
高温高压燃气向后流过高温涡轮,部分内能在涡轮中膨胀转化为机械能,驱动涡轮旋转。
由于高温涡轮同压气机装在同一条轴上,因此也驱动压气机旋转,从而反复的压缩吸入的空气。
从高温涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速从尾部喷口向后排出。
飞机发动机启动原理
飞机发动机启动的原理是通过燃料和空气的混合燃烧产生高温高压气体,推动涡轮来带动飞机的运动。
具体来说,飞机发动机启动包括以下几个步骤:
1. 燃油供给:首先,燃料从燃油供给系统进入燃烧室,与空气混合。
通常情况下,燃料是由油箱通过燃油泵送至燃油喷嘴。
2. 压气机运转:一部分空气会通过压气机进行压缩,增加进入燃烧室的气体密度和温度。
压气机通常由多个级别的叶片组成,通过转子和定子的相对运动来完成空气的压缩。
3. 着火点燃:压缩后的空气和燃料混合物进入燃烧室,燃料在此处被点燃。
着火可通过高能电火花、点火器等方式实现,使燃料起燃烧反应。
燃料的燃烧将产生高温高压气体。
4. 涡轮运转:在燃料燃烧的同时,高温高压气体将在涡轮上施加压力,从而带动涡轮运转。
涡轮一般由压气机和涡轮组成,燃烧室的高温高压气体会推动涡轮高速旋转。
5. 排气:涡轮的旋转带动涡轮风扇或者压气机供给足够的气流,将燃烧后的气体排出飞机,形成推力。
同时,涡轮也会带动燃料泵或发电机等飞机其他系统的正常运转。
总结起来,飞机发动机启动的原理主要涉及燃油供给、压气机压缩、燃烧室燃烧和涡轮运转等过程。
通过这些步骤,飞机发动机能够产生足够的推力,推动飞机起飞、飞行和降落。
航空发动机原理1. 简介航空发动机是飞行器的动力装置,能够将燃料和空气进行燃烧和推进,产生推力以驱动飞机。
航空发动机的原理是利用燃料的燃烧所释放出的能量来推动空气,并产生推力。
本文将介绍航空发动机的工作原理、分类、组成部分和关键技术。
2. 工作原理航空发动机的工作原理主要包括气压式(喷气式)发动机和涡轮式发动机两种。
下面将分别介绍这两种发动机的工作原理。
2.1 气压式(喷气式)发动机气压式发动机,也称为喷气式发动机,是目前常见的航空发动机类型之一。
其工作原理主要包括压缩、燃烧和喷射三个过程。
在压缩过程中,发动机通过旋转的压气机将大量空气压缩成高压气体。
这些压缩后的气体将进一步参与燃烧过程。
在燃烧过程中,喷气式发动机会向燃烧室喷入燃料,并通过点火产生火焰。
燃料的燃烧释放的能量将加热高压气体,使其膨胀。
在喷射过程中,膨胀的高压气体通过喷嘴喷出,产生后向推力,推动飞机向前飞行。
2.2 涡轮式发动机涡轮式发动机是另一种常见的航空发动机类型。
其工作原理主要包括压缩、燃烧和推力生成三个过程。
在压缩过程中,发动机通过旋转的涡轮将空气压缩成高压气体。
与喷气式发动机不同的是,涡轮式发动机使用高速旋转的涡轮来驱动压缩机,而不是压气机。
在燃烧过程中,涡轮式发动机也是向燃烧室喷入燃料并点火产生火焰。
燃料的燃烧释放的能量将加热高压气体,使其膨胀。
在推力生成过程中,膨胀的高压气体通过涡轮再次驱动涡轮,并将剩余能量转化为推力来推动飞机。
3. 分类航空发动机可以根据不同的分类标准进行分类,常见的分类包括以下几种。
3.1 气缸式发动机气缸式发动机又称为活塞式发动机,是一种较早期的发动机类型。
其工作原理是通过活塞的上下运动来实现气体的压缩和膨胀过程。
气缸式发动机分为单缸、多缸和星型发动机等多个子类型。
这些发动机在航空领域使用较少,主要用于小型飞机和无人机。
3.2 喷气式发动机喷气式发动机是现代航空领域中最常见的发动机类型。
其工作原理已在前文中介绍。
航空发动机的原理与性能分析一、航空发动机简介航空发动机是现代民用和军用飞机的核心动力装置,它的性能直接关系到飞机的飞行效率和安全性。
基本的航空发动机结构由压气机、燃烧室、涡轮和喷气管等组成。
航空发动机性能分析的核心是确定其推力、燃油效率和维护成本等指标。
下面将分别从发动机工作原理和性能特点两个方面对航空发动机进行分析。
二、航空发动机工作原理航空发动机的工作原理是将喷口高速喷出的空气与燃料混合后,点火燃烧,产生高温的燃气,通过涡轮马达驱动压气机进一步压缩空气,形成高速、高温喷出的喷气流,推动飞机前进。
具体来说,航空发动机的工作流程可以分为以下几个阶段:1.压气机阶段:将空气由压气机压缩多次,增加其密度,提高进入燃烧室的空气温度和压力。
2.燃烧室阶段:在燃烧室内喷入燃油,燃烧后的高温高压燃气膨胀推动喷气流发生器转动,并在转轮上输出动力。
3.涡轮阶段:利用涡轮将燃气高速喷出,进一步驱动压气机,形成闭合的运转过程。
4.喷气流阶段:燃烧后的高速、高温燃气通过喷气管,在喷管一端形成高速、高温的喷气流,从而推动飞机进行飞行。
以上流程是航空发动机原理的基本过程,通过不断的循环完成对飞机的驱动推进。
三、航空发动机性能特点在了解了航空发动机工作原理的基础上,下面进一步来分析其性能特点。
1.推力:指发动机输出的推力大小,即使得飞机向前推进的力量。
影响因素包括发动机旋转速度、进气口面积、涡轮尺寸等。
在飞机设计和选型期间,需要根据飞行任务和飞机结构分析,选择推力最适合的发动机。
2.燃油效率:指发动机单位时间内消耗的燃油量所提供的推力比例。
高效的航空发动机可以使飞机的续航时间更长,减少航空燃料消耗,降低空气污染。
3.维护成本:因为航空发动机是复杂的机械装置,一旦发生故障的修理维护成本将十分高昂。
航空发动机的可靠性、寿命和维护成本是工程设计的重要内容之一。
4.噪音和振动:航空发动机的噪音和振动对于飞机驾驶员和乘客的健康和安全也有很较大的影响。
航空发动机原理航空发动机是飞机的心脏,是飞机能够飞行的动力来源。
它的工作原理涉及到燃烧、推进和空气动力学等多个领域,是航空工程中的重要组成部分。
本文将从航空发动机的工作原理、结构组成和发展历程等方面进行介绍。
首先,我们来了解一下航空发动机的工作原理。
航空发动机的工作原理主要是利用燃料的燃烧产生高温高压气体,通过喷射和膨胀来产生推力,从而推动飞机飞行。
而这一过程涉及到燃烧室、涡轮、喷嘴等多个部件的协同作用。
通过这种方式,航空发动机能够将燃料的化学能转化为机械能,推动飞机前进。
其次,航空发动机的结构组成也是非常复杂的。
一般来说,航空发动机包括压气机、燃烧室、涡轮和喷管等部件。
其中,压气机负责将空气压缩,提高空气的密度;燃烧室则是将燃料和空气混合并燃烧,产生高温高压气体;涡轮则是利用高温高压气体驱动,带动压气机和飞机的其他部件;喷管则是将高速高温气体喷出,产生推力。
这些部件相互协调,共同完成了航空发动机的工作。
最后,我们来看一下航空发动机的发展历程。
航空发动机的发展经历了蒸汽喷气机、涡轮喷气机、涡扇发动机等多个阶段。
随着科技的进步和工程技术的发展,航空发动机的性能不断提升,燃油效率不断提高,噪音和排放也得到了有效控制。
同时,航空发动机的结构也越来越复杂,材料和制造工艺也得到了极大的改进。
可以说,航空发动机的发展历程是航空工程领域的一部分历史,也是人类科技进步的重要标志之一。
总的来说,航空发动机是现代航空工程中的重要组成部分,它的工作原理、结构组成和发展历程都是非常值得深入研究的课题。
通过对航空发动机的深入了解,可以更好地把握航空工程的发展方向,推动航空技术的不断进步。
希望本文能够为读者对航空发动机有更清晰的认识,激发大家对航空工程的兴趣和热情。
航空发动机原理航空发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。
自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,航空发动机已经形成了一个种类繁多,用途各不相同的大家族。
航空发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。
按发动机是否须空气参加工作,航空发动机可分为两类1、吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。
一般所说的航空发动机即指这类发动机。
如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。
2、火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。
它也可用作航空器的助推动力。
按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。
按产生推进动力的原理不同,飞行器的发动机又可分为1、直接反作用力发动机直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。
直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。
2、间接反作用力发动机两类。
间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。
这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。
而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。
附图:活塞式发动机航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。
飞机的发动机工作原理
飞机的发动机是实现飞行动力的关键部件,它的工作原理可以大致分为以下几个步骤。
1. 空气进气:飞机发动机通过进气道从大气中吸入空气。
进气道通常位于飞机机身前部,确保空气能够顺畅地进入发动机内部。
2. 压缩空气:进入发动机后,空气会被压缩。
通常使用多级压气机来将空气压缩成较高压力的气体,提高燃烧效率。
3. 燃烧燃料:将液体燃料(通常为航空煤油)喷入燃烧室内,然后与高压空气混合。
在燃烧室内,燃料与空气发生化学反应,产生高温高压的燃气。
4. 燃气膨胀:高温高压的燃气通过涡轮机,使其旋转并从发动机尾部排出。
在此过程中,燃气的能量被转化为机械能,推动涡轮机的旋转。
5. 推力产生:由于涡轮机与压缩空气产生连动,推动同一轴上的风扇。
风扇将大量空气从后方吸入,再从发动机喷出,产生巨大的推力。
这种推力可以推动飞机前进并克服阻力,从而实现飞行。
这就是飞机发动机的工作原理,通过压缩和燃烧空气,将燃料的能量转化为机械能,最终推动飞机飞行。
不同类型的飞机发动机可能在细节上有所不同,但基本原理相似。
航空发动机的工作原理
航空发动机是飞机的动力装置,它的工作原理可以大致分为以下几个部分:
1. 压缩空气:航空发动机通过高速旋转的压气机将外部空气吸入并压缩,增加空气的密度和压力。
2. 燃烧燃料:在压缩空气中注入适量的燃料,形成可燃混合物。
这个过程由燃烧室中的喷嘴和点火系统来完成。
3. 燃烧并膨胀:点燃可燃混合物后,燃料燃烧产生高温高压的燃气,使燃气在燃烧室内膨胀。
这一过程释放出大量的热能,推动航空发动机的转子运转。
4. 排放废气:燃料燃烧后产生的废气通过喷嘴排出。
这些废气中含有大量的热能,可以通过喷口喷出,产生推力。
5. 引擎运转稳定:航空发动机通过一系列复杂的系统来调节燃料供应、进气量等参数,保证发动机能够稳定运转,并根据需要提供足够的推力。
总的来说,航空发动机的工作原理主要是通过压缩空气、燃烧燃料、膨胀释能以及排放废气这一连续循环过程来不断产生推力,驱动飞机进行运动。
它的设计和运行技术高度复杂,需要精准的控制和维护,以确保飞机的安全和稳定性。
制作简单航空发动机原理导言:航空发动机是飞机的核心动力装置。
它将燃油转化成气体动能,推动飞机的运行。
本文将详细介绍航空发动机的工作原理及其组成部分。
一、航空发动机的工作原理1.空气吸入:航空发动机通过进气口吸入空气。
进气口前通常装有空气滤清器,以防止杂质进入发动机内部。
2.燃烧过程:发动机内部有一个燃烧室,燃油和空气在这里进行混合并燃烧。
通过燃烧过程产生的高温高压气体推动涡轮旋转。
3.涡轮产生动力:航空发动机内部有一个涡轮,其由高温高压气体推动旋转。
涡轮叶片上具有相对位置可调的导向叶片,可控制气体流向以增加涡轮转速。
4.推力输出:通过涡轮的旋转,将动力传输至机身后方的喷气口。
高速喷出的气流产生反作用力,从而推动飞机向前飞行。
二、航空发动机的组成部分1.进气系统:进气系统主要由进气口、空气滤清器、进气管道等组成。
它的主要作用是将空气引入发动机内部。
2.压气机:压气机是发动机的核心部件之一、它通过旋转的涡轮叶片将气体压缩,增加气体的密度和压力。
3.燃烧室:燃烧室是将燃料和空气混合并点燃的地方。
它通常位于压气机和涡轮之间,用于转换燃料的化学能为气体动能。
4.涡轮:涡轮是发动机的另一个核心部件。
它由一组固定和可转动的叶片组成,通过气体的冲击和压力推动涡轮旋转。
5.推力装置:推力装置包括喷管和尾喷口等组件。
它通过高压气体在喷管内膨胀产生高速气流,进而产生推力。
三、航空发动机的分类1.喷气发动机:喷气发动机通过喷射高速气流产生推力,常见的有涡轮风扇发动机和涡轮喷气发动机。
2.螺旋桨发动机:螺旋桨发动机通过螺旋桨带动空气产生推力,常见的有活塞式发动机和涡轮螺旋桨发动机。
结论:简单航空发动机的工作原理是通过压缩空气,与燃烧室内的燃料混合后点燃并推动涡轮旋转,进而通过喷出高速气流产生推力。
航空发动机的组成部分包括进气系统、压气机、燃烧室、涡轮和推力装置等。
不同类型的航空发动机根据其工作原理和推力方式进行分类。
这些发动机的设计和改进对于提高飞机的性能和效率具有重要意义。
航空发动机原理简介航空发动机是飞机的核心部件之一,它的工作原理决定了飞机的飞行性能。
航空发动机的主要任务是将燃料的化学能转化为动力,推动飞机前进。
本文将介绍航空发动机的工作原理和主要组成部分。
工作原理航空发动机的工作原理基于热力学循环原理,它通过燃烧产生的高温高压气体推动涡轮转动,进而驱动飞机飞行。
一般来说,航空发动机根据工作原理可以分为喷气式发动机和涡轮螺旋桨发动机。
喷气式发动机原理喷气式发动机是目前大多数商用飞机所采用的发动机类型。
它的工作原理基于Joule-Brayton循环原理。
主要的组成部件包括压气机、燃烧室和涡轮。
1.压气机:压气机负责压缩进入发动机的空气,提高其压力和温度。
压缩空气被分为高压和低压两个级别,分别通过不同的压气机级实现压缩。
2.燃烧室:燃烧室是将燃料与压缩空气混合燃烧的地方。
燃料在燃烧室中燃烧产生高温高压气体,驱动涡轮旋转。
3.涡轮:涡轮由高温高压气体驱动,并通过轴将动力传递给压气机和其他系统。
涡轮旋转产生的动力推动了发动机的工作。
涡轮螺旋桨发动机原理涡轮螺旋桨发动机主要应用在小型飞机和直升机上。
它的工作原理基于Brayton循环原理。
主要的组成部件包括涡轮、燃烧室和螺旋桨。
1.涡轮:涡轮由燃烧室中的燃料燃烧产生的高温高压气体驱动。
涡轮旋转产生的动力推动飞机前进。
2.燃烧室:燃烧室是将燃料与压缩空气混合燃烧的地方。
燃料在燃烧室中燃烧产生高温高压气体,驱动涡轮旋转,进而推动飞机前进。
3.螺旋桨:涡轮螺旋桨发动机通过螺旋桨来提供推力。
螺旋桨通过轴与发动机的涡轮相连,涡轮驱动螺旋桨旋转,产生推力。
主要组成部分不论是喷气式发动机还是涡轮螺旋桨发动机,它们都包括以下几个主要的组成部分:1.压气机:负责压缩进入发动机的空气,提高其压力和温度。
2.燃烧室:将燃料与压缩空气混合燃烧,产生高温高压气体。
3.涡轮:由高温高压气体驱动,并通过轴将动力传递给压气机和其他系统。
4.出口喷管:将高温高压气体排出,产生推力。
航空发动机用的是什么原理航空发动机是一种将燃料燃烧产生的能量转化为推力的装置。
它是飞机的动力来源,使得飞机能够在空中飞行。
航空发动机的工作原理可以分为内燃机和外燃机两种类型。
内燃机是航空发动机的主要类型,它利用燃料的燃烧产生高温高压气体,通过喷射出来的气流产生推力。
内燃机又可分为喷气式发动机和涡轮螺旋桨发动机两种。
喷气式发动机是最常见的航空发动机类型之一。
它的工作原理基于牛顿第三定律,即每个作用力都有一个相等大小但方向相反的反作用力。
喷气式发动机通过将燃料燃烧产生的高温高压气体喷射出来,产生一个向后的推力,从而推动飞机向前飞行。
喷气式发动机的核心部分是燃烧室和喷嘴。
燃烧室中的燃料与空气混合并燃烧,产生高温高压气体。
然后,这些气体通过喷嘴喷射出来,产生一个向后的喷气流,从而产生推力。
喷气式发动机的推力大小取决于喷气流的速度和质量流量。
涡轮螺旋桨发动机是另一种常见的内燃机类型。
它的工作原理基于涡轮增压和螺旋桨推力的结合。
涡轮螺旋桨发动机包括一个涡轮和一个螺旋桨。
燃料燃烧产生的高温高压气体通过涡轮驱动涡轮叶片旋转,从而产生压缩空气。
然后,这些压缩空气通过喷嘴喷射到螺旋桨上,使螺旋桨旋转并产生推力。
涡轮螺旋桨发动机的推力大小取决于喷射出来的气流速度和螺旋桨的旋转速度。
外燃机是航空发动机的另一种类型,它利用燃料的燃烧产生的高温高压气体直接推动飞机。
外燃机的工作原理类似于内燃机,但燃烧室和喷嘴之间没有涡轮。
外燃机的推力大小取决于燃烧室中燃料的燃烧速度和燃烧产生的气体压力。
总的来说,航空发动机的工作原理是通过燃料的燃烧产生高温高压气体,然后利用喷射出来的气流或直接推动飞机,从而产生推力。
这种推力使得飞机能够克服空气阻力,实现飞行。
不同类型的航空发动机在工作原理上有所不同,但都是基于能量转化为推力的原理。
航空发动机发电机工作原理
航空发动机发电机的工作原理可以简单概括为以下几个步骤:
1. 转子旋转:航空发动机发电机的转子由发动机的转轴传动,通常是通过转轴和附件齿轮传动或直接连接。
2. 磁场产生:转子上有一个电磁铁,通常是由一个绕组和一个铁芯组成。
当转子旋转时,磁场就会发生变化,这个变化的磁场就会导致产生电流。
3. 交流电产生:磁场的变化导致转子上的绕组中的电流发生变化。
这种变化的电流是交流电,其频率取决于转子旋转的速度。
4. 整流:为了将交流电转换为直流电,发电机通常会使用一个整流装置,如整流子或整流桥。
整流装置将交流电转换为直流电,以供飞机上的电气系统使用。
5. 输出电流:直流电经过整流后,利用航空发动机发电机的输出端连接到飞机的电气系统中,为飞机的电子设备提供稳定的电源。
需要注意的是,航空发动机发电机的工作原理与普通的汽车发电机等非航空用途的发动机发电机可能有所不同,因为航空发动机发电机需要更高的可靠性和稳定性,以适应飞行环境的要求。
民航发动机原理
民航发动机是航空运输中不可或缺的关键设备。
它的工作原理如下:
1. 空气压缩: 民航发动机通常采用喷气式发动机,它通过增压
器将大量空气压缩,提高空气密度和压力。
这样可以为燃烧提供更多氧气,增加燃烧效率。
2. 燃料燃烧: 在发动机燃烧室内,将燃油喷射进入高压空气中,然后引燃。
燃料和空气的混合物在高温和高压下燃烧,释放出大量能量。
3. 高速喷气: 燃烧产生的高温高压燃气通过喷嘴喷射出来,形
成高速喷气。
根据牛顿第三定律,喷出的气体会产生反作用力,推动飞机向前运动,实现推力。
4. 推进力调节: 为了使飞机保持平稳的速度和姿态,发动机的
推力需要进行实时调节。
这通常通过改变喷气口直径或者调整空气进入量来实现。
5. 冷却系统: 发动机工作过程中会产生大量热量,需要通过冷
却系统进行散热。
冷却系统通常采用冷却液或者外部空气进行散热,以保证发动机的正常运行。
6. 辅助系统: 为了使发动机正常工作,还需要一些辅助系统的
支持,如起动系统、供油系统、点火系统等。
综上所述,民航发动机的工作原理包括空气压缩、燃料燃烧、高速喷气、推进力调节、冷却系统和辅助系统的协同作用。
这些原理的有效运用,使得飞机得以以高效、可靠的方式进行航空运输。
航空发动机原理航空发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。
自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,航空发动机已经形成了一个种类繁多,用途各不相同的大家族。
航空发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。
按发动机是否须空气参加工作,航空发动机可分为两类1、吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。
一般所说的航空发动机即指这类发动机。
如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。
2、火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。
它也可用作航空器的助推动力。
按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。
按产生推进动力的原理不同,飞行器的发动机又可分为1、直接反作用力发动机直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。
直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。
2、间接反作用力发动机两类。
间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。
这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。
而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。
附图:活塞式发动机航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。
活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。
所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。
为航空器提供飞行动力的往复式内燃机。
发动机带动空气螺旋桨等推进器旋转产生推进力。
从1903年第一架飞机升空到第二次世界大战末期,所有飞机都用活塞式航空发动机作为动力装置。
40年代中期在军用飞机和大型民用机上燃气涡轮发动机逐步取代了活塞式航空发动机,但小功率活塞式航空发动机比燃气涡轮发动机经济,在轻型低速飞机上仍得到应用。
主要部件主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。
气缸是混合气进行燃烧的地方。
气缸内容纳活塞作往复运动。
气缸头上装有点燃混合气的电火花塞,以及进、排气门。
发动机工作时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。
气缸在发动机壳体上的排列形式多为星形或V形。
常见的星形发动机有5个、7个、9个、14个、18个或24个气缸不等。
在单缸容积相同的情况下,气缸数目越多发动机功率越大。
活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。
连杆用来连接活塞和曲轴。
曲轴是发动机输出功率的部件。
曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。
除此而外,曲轴还要带动一些附件。
气门机构用来控制进气门、排气门定时打开和关闭。
工作原理:活塞顶部在曲轴旋转中心最远的位置叫上死点、最近的位置叫下死点、从上死点到下死点的距离叫活塞冲程。
活塞式航空发动机大多是四冲程发动机,即一个气缸完成一个工作循环,活塞在气缸内要经过四个冲程,依次是进气冲程、压缩冲程、膨胀冲程和排气冲程。
发动机开始工作时,首先进入“进气冲程”,气缸头上的进气门打开,排气门关闭,活塞从上死点向下滑动到下死点为止,气缸内的容积逐渐增大,气压降低——低于外面的大气压。
于是新鲜的汽油和空气的混合气体,通过打开的进气门被吸入气缸内。
混合气体中汽油和空气的比例,一般是 1比 15即燃烧一公斤的汽油需要15公斤的空气。
进气冲程完毕后,开始了第二冲程,即“压缩冲程”。
这时曲轴靠惯性作用继续旋转,把活塞由下死点向上推动。
这时进气门也同排气门一样严密关闭。
气缸内容积逐渐减少,混合气体受到活塞的强烈压缩。
当活塞运动到上死点时,混合气体被压缩在上死点和气缸头之间的小空间内。
这个小空间叫作“燃烧室”。
这时混合气体的压强加到十个大气压。
温度也增加到摄氏4OO度左右。
压缩是为了更好地利用汽油燃烧时产生的热量,使限制在燃烧室这个小小空间里的混合气体的压强大大提高,以便增加它燃烧后的做功能力。
当活塞处于下死点时,气缸内的容积最大,在上死点时容积最小(后者也是燃烧室的容积)。
混合气体被压缩的程度,可以用这两个容积的比值来衡量。
这个比值叫“压缩比”。
活塞航空发动机的压缩比大约是5到8,压缩比越大,气体被压缩得越厉害,发动机产生的功率也就越大。
压缩冲程之后是“工作冲程”,也是第三个冲程。
在压缩冲程快结束,活塞接近上死点时,气缸头上的火花塞通过高压电产生了电火花,将混合气体点燃,燃烧时间很短,大约0.015秒;但是速度很快,大约达到每秒30米。
气体猛烈膨胀,压强急剧增高,可达6O到75个大气压,燃烧气体的温度到摄氏2000到 250O度。
燃烧时,局部温度可能达到三、四千度,燃气加到活塞上的冲击力可达15吨。
活塞在燃气的强大压力作用下,向下死点迅速运动,推动连杆也门下跑,连杆便带动曲轴转起来了。
这个冲程是使发动机能够工作而获得动力的唯一冲程。
其余三个冲程都是为这个冲程作准备的。
第四个冲程是“排气冲程”。
工作冲程结束后,由于惯性,曲轴继续旋转,使活塞由下死点向上运动。
这时进气门仍旧关闭,而排气门大开,燃烧后的废气便通过排气门向外排出。
当活塞到达上死点时,绝大部分的废气已被排出。
然后排气门关闭,进气门打开,活塞又由上死点下行,开始了新的一次循环。
从进气冲程吸入新鲜混合气体起,到排气冲程排出废气止,汽油的热能通过燃烧转化为推动活塞运动的机械能,带动螺旋桨旋转而作功,这一总的过程叫做一个“循环”。
这是一种周而复始的运动。
由于其中包含着热能到机械能的转化,所以又叫做“热循环”。
活塞航空发动机要完成四冲程工作,除了上述气缸、活塞、联杆、曲轴等构件外,还需要一些其他必要的装置和构件。
辅助工作系统发动机除主要部件外,还须有若干辅助系统与之配合才能工作。
主要有进气系统(为了改善高空性能,在进气系统内常装有增压器,其功用是增大进气压力)、燃油系统、点火系统(主要包括高电压磁电机、输电线、火花塞)、起动系统(一般为电动起动机)、散热系统和润滑系统等。
分类按汽缸的冷却方式发动机分为液冷式和气冷式两种。
早期飞机的飞行速度很低,多采用液冷式发动机。
随着飞行速度的提高,可以利用高速气流直接冷却汽缸,气冷式发动机遂得到广泛应用。
发动机按汽缸排列形式又分为星型和直列型。
星型发动机汽缸以曲轴为中心沿机匣向外呈辐射状均匀排列,有单排和双排等形式。
直列式发动机汽缸沿机匣前后成行排列,有对缸、工字型、V型等排列形式,以星型和V型用得较多。
有时按供油方式不同又将发动机分为汽化器式和直接注油式两种,其中直接注油式应用较广泛。
性能活塞式航空发动机的性能通常用转速特性、螺旋桨特性和高度特性表示。
油门全开或进气压力维持不变时,发动机的功率和耗油率随转速的变化关系称为转速特性,又称外部特性。
在发动机上安装定距螺旋桨时,发动机功率和耗油率随转速的变化关系称螺旋桨特性。
这时转速的改变是靠控制油门杆实现的。
发动机转速不变时,功率和耗油率随飞行高度的变化关系称为高度特性。
由图2 看出,由于有增压器对吸入空气增压,在某一高度以下可保持进气压力恒定,而大气温度又随高度增加而下降,所以在此高度以下发动机的功率仍随高度增加而略有增加。
这个高度称额定高度。
在额定高度以上发动机功率随高度增加而下降。
附图:涡轮喷气发动机涡轮喷气发动机的诞生二战以前,活塞发动机与螺旋桨的组合已经取得了极大的成就,使得人类获得了挑战天空的能力。
但到了三十年代末,航空技术的发展使得这一组合达到了极限。
螺旋桨在飞行速度达到800千米/小时的时候,桨尖部分实际上已接近了音速,跨音速流场使得螺旋桨的效率急剧下降,推力不增反减。
螺旋桨的迎风面积大,阻力也大,极大阻碍了飞行速度的提高。
同时随着飞行高度提高,大气稀薄,活塞式发动机的功率也会减小。
这促生了全新的喷气发动机推进体系。
喷气发动机吸入大量的空气,燃烧后高速喷出,对发动机产生反作用力,推动飞机向前飞行。
早在1913年,法国工程师雷恩·洛兰就提出了冲压喷气发动机的设计,并获得专利。
但当时没有相应的助推手段和相应材料,喷气推进只是一个空想。
1930年,英国人弗兰克·惠特尔获得了燃气涡轮发动机专利,这是第一个具有实用性的喷气发动机设计。
11年后他设计的发动机首次飞行,从而成为了涡轮喷气发动机的鼻祖。
涡轮喷气发动机的原理涡轮喷气发动机简称涡喷发动机,通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。
部分军用发动机的涡轮和尾喷管间还有加力燃烧室。
涡喷发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。
工作时,发动机首先从进气道吸入空气。
这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。
压气机顾名思义,用于提高吸入的空气的的压力。
压气机主要为扇叶形式,叶片转动对气流做功,使气流的压力、温度升高。
随后高压气流进入燃烧室。
燃烧室的燃油喷嘴射出油料,与空气混合后点火,产生高温高压燃气,向后排出。
高温高压燃气向后流过高温涡轮,部分内能在涡轮中膨胀转化为机械能,驱动涡轮旋转。
由于高温涡轮同压气机装在同一条轴上,因此也驱动压气机旋转,从而反复的压缩吸入的空气。
从高温涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速从尾部喷口向后排出。
这一速度比气流进入发动机的速度大得多,从而产生了对发动机的反作用推力,驱使飞机向前飞行。
附图:涡轮喷气发动机有加速快、设计简便等优点,是较早实用化的喷气发动机类型。
但如果要让涡喷发动机提高推力,则必须增加燃气在涡轮前的温度和增压比,这将会使排气速度增加而损失更多动能,于是产生了提高推力和降低油耗的矛盾。
因此涡喷发动机油耗大,对于商业民航机来说是个致命弱点。
附图:涡轮风扇喷气发动机涡扇发动机全称为涡轮风扇发动机(Turbofan)是飞机发动机的一种,由涡轮喷气发动机(Turbojet)发展而成。
与涡轮喷射比较,主要特点是首级压缩机的面积大很多,同时被用作为空气螺旋桨(扇),将部分吸入的空气通过喷射引擎的外围向後推。