比例法解行程题
- 格式:docx
- 大小:2.47 MB
- 文档页数:13
比例法解行程题比例法【例1】(第8届迎春杯决赛试题)小明和小刚进行200米短跑比赛(假定二人的速度均保持不变)。
当小刚跑了180米时,小明距离终点还有50米,那么,当小刚到达终点时,小明距离终点还有多少米?【解】当小刚跑了180米时,小明跑了200-50=150米,二人的路程之比为180: 150=6: 5,小刚到达终点时,由于速度不变,二人的路程比依然为6: 5O若设小刚路程200米为6份的话,小明的行程应为5份,则其离终点还有1份距离二200 6 331 米。
【练习】小刚与小勇进行50米赛跑,结果:当小刚到达终点时,小勇还落后小刚10米;第二次赛跑,小刚的起跑线退后10 米,两人仍按第一次的速度跑,比赛结果将是解:小刚到达终点时,二人的路程分别为50米和40 米,路程之比为5:40若小刚退后10米,当到达终点时其路程为60米,由于速度不变,从而路程之比也不变,此刻乙跑了60-5X 4=48米,还差2米才到终点,因此还是小刚胜出。
【点评】在赛跑问题中,多数时候隐含了时间相等的条件,从而路程之比二速度之比的正比例关系式会得到大量应用。
【例2】一辆车从甲地开往乙地•如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶240千米后,再将速度提高25%,则可提前40分钟到达•那么甲、乙两地相距多少千米【分析】这是一道“隐性”比例行程题,但其标志很明显一一百分数,一般说来凡题目中出现百分比应立即想到将其转化为比例进行研究。
例如本题中,车速提高20%意味着原速度与现速度之比为5:6,车速提高25%意即原速度与现速度之比是4:5。
【解】按照题中的形成的两部分分别进行分析:车速提高20%,从而速度之比为5: 6,则时间之比为6: 5, 已知提速前后所用时间差为1小时,可见原速度走完全程需要6 小时,提速后需要5小时。
而在原速行驶240千米后,剩余部分路程提速25%,即速度之比为4:5,则所用时间之比为5: 4,而已知提速前后所用时间之差为40分钟,从而不难求剩余路程若按原速度行驶需要时间40X5=200分钟二2八小时,从而前240千米用时6 21 3彳小时,则原速度为240 3彳90千3 3 3米/小时。
1.一辆汽车从甲地开往乙地,每小时行50千米,返回时每小时行60千米,已知去时用了6小时,那么返回时用了几小时?2.甲、乙两车分别从A,B两地同时出发相向而行,甲车每小时行50千米,乙车的速度是甲车的4/5.当甲车行至全程的2/5时,乙车距中点还有36千米。
A,B两地相距多少千米?3.甲、乙两车同时分别从A,B两地同时出发相向而行,当甲车行了全程的1/4时,乙车行了全程的1/3,当乙车行完全程时,甲车距终点还有20千米。
A,B两地相距多少千米?4.甲、乙两车的速度分别是50千米/时、40千米/时,乙车先从B站开往A站,当到离B站72千米的D地时,甲车从A站开往B站,在C地与乙车相遇,如下图。
如果甲、乙两车相遇地C地离A,B两站的路程比是3:4,那么A,B两站之间的路程是多少千米?5.小红骑自行车从甲地到乙地,前一段是上坡路,后一段是下坡路,已知小红上坡每小时行8千米,下坡每小时行22千米,来回一趟共用了3小时。
甲、乙两地相距多少千米?6.一辆汽车从甲地到乙地先上坡后下坡,上坡和下坡的路程比是5:4,汽车上坡和下坡所用时间比是7:3.求这辆汽车上坡和下坡的速度之比。
7.一辆汽车从甲地到乙地,去时每小时行48千米,返回时每小时行60千米,返回时比去时少用了48分钟。
甲、乙两地相距多少千米?8.一辆汽车从甲地到乙地,去时每小时行60千米,返回时速度减少了1/5,这样返回就比去时多用了1小时。
甲、乙两地相距多少千米?9.甲、乙两车分别从A,B两地同时出发,相向而行,甲车每小时行48千米,乙车每小时行42千米。
当乙车行至全程的7/20时,甲车距中点还有24千米,A,B两地相距多少千米?10.甲、乙两车分别从A,B两地同时出发相向而行,甲车每小时行50千米,乙车每小时行60千米,两车相遇时,甲车比乙车少行了50千米.A,B两地相距多少千米?11.甲/乙两车同时分别从A,B两地出发相向而行,当甲车行了全程的3/5时,乙车行了全程的3/4,当乙车行完全程时,甲车距终点还有30千米.A,B两地相距多少千米?12.A,B两地相距380千米,甲、乙两车同时分别从A、B两地出发相向而行,当甲车行了全程的2/3时,乙车行了全程的3/5.那么甲、乙两车相遇时,各行了多少千米?13.甲、乙两车分别从A,B两地同时出发相向而行,甲车每小时行48千米,乙车每小时行60千米,当甲车到达B地时,乙车已超过A地20千米。
比例法解决行程问题例题1:甲、乙二人分别从 A 、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达 B 地和乙到达 A 地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点 30千米,则 A 、 B 两地相距多少千米?【解析】 两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为 4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了 3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以 A 、 B 两地相距2301057÷= (千米). 例题2: 甲、乙两人分别从A 、B 两地出发,相向而行,出发时他们的速度比是3:2。
他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%。
这样,当几B 地时,乙离A 地还有14千米。
那么A 、B 两地间的距离是多少千米?把A 、B 两地的路程平均分成5份,第一次相遇,甲走了3份的路程,乙走了2份的路程,当他们第一次相遇后,甲、乙的速度比为[3×(1+20%)]:[2×(1+30%)]=18:13。
甲到达B 点还需行2份的路程,这时乙行了2÷18×13=149份路程,从图35-3可以看出14千米对应(5—2—149)份 [3×(1+20%)]:[2×(1+30%)]=18:132÷18×13=149(份) 5—(2+149 )=159(份) 14÷159×5=45(千米) 答:A 、B 两地间的距离是45千米。
图35——3B19份例题3:甲、乙两班学生到离校24千米的飞机场参观,一辆汽车一次只能坐一个班的学生。
为了尽快到达机场,两个班商定,由甲班先坐车,乙班步行,同时出发。
甲班学生在中途下车步行去机场,汽车立即返回接途中步行的乙班同学。
行程问题-例题答案模块一、时间相同速度比等于路程比【例 1】甲、乙二人分别从A、B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达 B 地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、 B 两地相距多少千米?【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为 4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了3个全程,三个全程中甲走了45⨯=个全程,与第一次相遇地点的距离为3177542--=个全程.所以A、B两地相距(1)7772÷=(千米).301057【例 2】B地在A,C两地之间.甲从B地到A地去送信,甲出发10分后,乙从B地出发到C地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B 地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B 地至少要用多少时间。
【解析】 根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:10分钟C BA因为丙的速度是甲、乙的3倍,分步讨论如下:(1) 若丙先去追及乙,因时间相同丙的速度是乙的3倍,比乙多走两倍乙走需要10分钟,所以丙用时间为:10÷(3-1)=5(分钟)此时拿上乙拿错的信 5分钟5分钟10分钟C BA当丙再回到B 点用5分钟,此时甲已经距B 地有10+10+5+5=30(分钟),同理丙追及时间为30÷(3-1)=15(分钟),此时给甲应该送的信,换回乙应该送的信在给乙送信,此时乙已经距B地:10+5+5+15+15=50(分钟),此时追及乙需要:50÷(3-1)=25(分钟),返回B地需要25分钟所以共需要时间为5+5+15+15+25+25=90(分钟)(2)同理先追及甲需要时间为120分钟【例 3】 (“圆明杯”数学邀请赛) 甲、乙两人同时从A、B两点出发,甲每分钟行80米,乙每分钟行60米,出发一段时间后,两人在距中点的C处相遇;如果甲出发后在途中某地停留了7分钟,两人将在距中点的D处相遇,且中点距C、D距离相等,问A、B两点相距多少米?【分析】甲、乙两人速度比为80:604:3=,相遇的时候时间相等,路程比等于速度之比,相遇时甲走了全程的47,乙走了全程的37.第二次甲停留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程的47,甲行了全程的37.由于甲、乙速度比为4:3,根据时间一定,路程比等于速度之比,所以甲行走期间乙走了3374⨯,所以甲停留期间乙行了43317744-⨯=,所以A 、B 两点的距离为1607=16804⨯÷(米).【例 4】 甲、乙两车分别从 A 、 B 两地同时出发,相向而行.出发时,甲、乙的速度之比是 5 : 4,相遇后甲的速度减少 20%,乙的速度增加 20%.这样当甲到达 B 地时,乙离 A 地还有 10 千米.那么 A 、B 两地相距多少千米?【解析】 两车相遇时甲走了全程的59,乙走了全程的49,之后甲的速度减少 20%,乙的速度增加 20%,此时甲、乙的速度比为5(120%):4(120%)5:6⨯-⨯+= ,所以甲到达 B 地时,乙又走了4689515⨯=,距离 A 地58191545-=,所以 A 、 B 两地的距离为11045045÷= (千米).【例 5】 早晨,小张骑车从甲地出发去乙地.下午 1点,小王开车也从甲地出发,前往乙地.下午 2 点时两人之间的距离是 15 千米.下午 3 点时,两人之间的距离还是 l5 千米.下午 4 点时小王到达乙地,晚上7 点小张到达乙地.小张是早晨几点出发?【解析】从题中可以看出小王的速度比小张块.下午2 点时两人之间的距离是l5 千米.下午3点时,两人之间的距离还是l5 千米,所以下午 2 点时小王距小张15 千米,下午 3点时小王超过小张15千米,可知两人的速度差是每小时30 千米.由下午 3 点开始计算,小王再有 1 小时就可走完全程,在这 1 小时当中,小王比小张多走30 千米,那小张 3 小时走了15 30 45=+千米,故小张的速度是45 ÷3 =15千米/时,小王的速度是15 +30 =45千米/时.全程是45 ×3=135千米,小张走完全程用了135 +15= 9小时,所以他是上午10 点出发的。
比例法行程问题【南京考题】甲乙两车分别从A、B两地同时相向而行,甲车每小时行82千米,乙车每小时行72千米,两车在距离中点30千米处相遇。
A、B两地相距多少千米?【黄冈考题】甲骑车从A地出发0.5小时后,乙发现甲忘了带书,立即从A地骑车追甲。
在乙出发的同时,丙骑车也从A地出发,行的道路与乙相同。
乙追上甲交书后,立即原路返回,行了15千米与丙相遇。
甲每小时行18千米,乙速是丙速的2倍。
求乙的速度。
【武汉考题】甲、乙两车从相距200千米的两地同时相向开出,不停地往返两地之间行驶,如果甲车每小时行65千米,乙车每小时行70千米,当两车第一次同时回到各自的出发地时,甲车行了多少千米?【南昌考题】甲、乙两车同时从A、B两地相向而行,第一次相遇在距A地65千米处,相遇后,两车继续前进,分别到达目的地后立刻返回。
第二次相遇在距A地35千米处,求A、B两地相距多远?【郑州考题】汽车以一定的速度从甲地到乙地,如果汽车每小时比原来多行15千米,那么所用的时间只是原来的5/6;如果汽车每小时比原来少行15千米,那么所用的时间要比原来多用1.5小时。
求甲乙两地间的距离。
小升初之数学必考——裂项数学是什么?数学就是“逻辑+计算”,光有计算,没有逻辑,学不好数学;光有逻辑没有计算,更学不好数学。
每次数学考试,计算是必考的内容,不可能说哪次考试没有计算,除非考试语文吧。
每位小学生,都要面临小升初,一些名校的择校考试及分班考试,在数学计算中有一类型题目是每次都会出现,并难倒很多学生,这个就是裂项计算。
最简单的裂项算式是形如,其原理是分数合并同类项的逆运算。
写成字母的形式即为裂项的好处是什么呢?通过下面一个例题,你就会明白了。
通过例1,我们发现裂项的作用是使前后两个相同的分数可以抵消掉,这样方便了计算,并且计算,那么能用裂项解的题目有什么特点呢?1.分数加法或减法2.不宜通分3.分母是有规律的乘法或乘积形式。
我们对例1稍作变形,你还能搞定吗?【例1.1】计算:像例1.1才是考试的时候可能会出现的形式,考官不会直接给你一个分母是连续自然数乘积,分子是1的算式让你计算,而例1.1的“伪装”,你一定要细心的分别出来。
1、甲、乙两车分别从A、B两地同时出发。
(1)甲车的速度是40千米/时,乙车的速度时20千米/时。
2小时各自走完全程,两车行驶的路程之比是()。
(2)如果两地距离未知,甲车的速度是50千米/时,乙车的速度是30千米/时。
各自走完全程,两车行驶的时间之比是()。
2、(1)同样的时间内,小良走了5份路,小崔走了4份路,则小良、小崔的速度比为()。
(2)一段路程小良4小时走完,小崔3小时走完,小良和小崔的速度比是()。
3、(1)小钟、小鑫两人的速度比为4:5,两人同时出发,行走的时间比为3:7,则小钟、小鑫走的路程比为()。
(2)小钟、小鑫两人要走的路程比为3:2,小钟、小鑫的速度比为4:3,则小钟、小鑫的时间比为()。
(3)小钟、小鑫两人的路程比为7:8,两人用的时间比为6:5,小钟的速度为70千米/时,则小鑫的速度为()。
4、小叶、小黄两人的速度比为3:5,两人同时出发,行走的时间比为7:4.若小叶最终走了42千米,则小黄走了()千米。
5、一艘轮船从甲地顺水航行10小时到乙港,返回时逆水航行用了12小时,逆水航行的速度比顺水航行的速度慢()%。
6、小乐和小唐两人同时从A地出发前往B地,小唐骑车的速度时15米/秒,小乐步行的速度是5米/秒。
如果小唐到达B地后立刻返回,那么两人在哪里相遇?7、小奕、小迪两人同时从A地出发前往B地,小奕骑车的速度时16米/秒,小迪步行的速度是72千米/时。
如果小迪到达B地后立刻返回,那么两人在哪里相遇?8、一艘轮船从甲地顺水航行4小时到乙港,返回时逆水航行用了5小时,逆水航行的速度比顺水航行的速度慢()%。
9、一个圆的半径是10米,当这个圆的半径增加20%后,周长增加了()%,面积增加了()%。
10、甲乙两车分别从A、B两地同时出发。
甲车的速度是50千米/时,乙车的速度是40千米/时。
相遇时甲乙的路程之比是()。
11、(1)丁丁、牛牛两人同时出发,速度比为2:3,行走的时间比为3:5,则丁丁、牛牛走的路程比为()。
路程相同的情况下:速度比等于时间的反比速度相同的情况下:路程比等于时间的正比时间相同的情况下:路程比等于速度的正比实践出真知例1. 甲、乙两车的速度之比是5:3,两车分别从A、B两地同时出发并匀速行驶。
如果两车相向而行,则经过0.5小时相遇;如果两车同向而行,甲车追上乙车需要几小时?[分析与解]因为甲、乙两车的速度之比是5:3,所以可把A、B 两地之间的路程平均分为8小段,则当甲、乙两车相向而行相遇时,甲车行了5小段路程,乙车行了3小段路程,即0.5小时内甲车比乙车多行了2小段路程。
当甲、乙两车同向而行甲车追上乙车时,甲车要比乙车多行8小段路程,结合前面的分析,用比例法可求得甲多行这8小段路程需要(小时),即甲车追上乙车需要2小时。
例2. 一队伍以8千米/时的速度前进,队尾的一名战士有事要报告给队首的队长,当他以10千米/时的速度向前追上队长后,立即以同样的速度返回队尾,共用去10分,求队伍有多长?[分析与解]分析题意,可知队尾这名战士追及的路程和他返回队尾所行的路程都等于队伍的长。
这样,根据“追及问题”和“相遇问题”的计算关系式:追及路程=速度差×追及时间、相遇路程=速度和×相遇时间,可得:速度差×追及时间=速度和×相遇时间,进而根据比例知识可得:相遇时间:追及时间=速度差:速度和=(10-8):(10+8)=1:9。
根据题意可知,相遇时间与追及时间的总和是10分,故可求得相遇时间是(分),追及时间是(分)。
所以,这个队伍长(千米)。
甲、乙,丙三个机器人参加跑步比赛,当甲跑到终点时,已离终点还有20千米,丙离终点还有40千米;当乙跑到终点时,丙离终点还有24千米。
问题:这次比赛要跑多少千米?问题:这次比赛要跑多少千米?看题后知道:乙跑到终点时,丙离终点还有40千米,而乙跑到终点时,丙离终点还有24千米,那么乙跑20千米的时间丙只跑了16千米,由此可知它们的速度比是5:4,时间比是4:5。
比例解行程问题1、甲、乙两车的速度比是4:7,两车同时从两地相对出发,在距中点15千米处相遇,两地相距多少千米?2、甲、乙两车同时从AB两地相对而行,甲、乙两车速度比7:5,相遇时距中点12千米,AB两地相距多少千米?3、两列火车同时从两个城市相对开出,6.5小时相遇。
相遇时甲车比乙车多行52千米,乙车的速度是甲车的23。
求两城之间的距离。
4、甲、乙两车分别从AB两地同时相向而行,3小时相遇。
已知甲车行1小时距B地340千米,乙车行1小时距A地360千米。
AB两地相距多少千米?(420)5、客车由甲城到乙城需行10小时,货车从乙城到甲城需行15小时,两车同时相向开出,相遇时客车距离乙城还有192千米,求两城间的距离。
6、甲、乙两车同时从AB两地相对而行,5小时相遇,已知甲、乙两车速度的比是2:3,甲车行完全程需多少小时?7、甲、乙两车同时从AB两地相对而行,4小时相遇,已知甲、乙两车速度的比是3:5,乙车行完全程需多少小时?8、客车和货车同时从AB两地相对开出,客车每小时行60千米,货车每小时行全程的115,相遇时客车和货车所行路程的比是5:4。
AB两地相距多少千米?9、客车和货车同时从甲、乙两地相对开出,客车每小时行全程的15,货车每小时行50千米。
相遇时客车和货车所行的路程的比是3:2。
甲、乙两地相距多少千米?10、甲、乙两个城市相距若干千米,一列客车与一列货车同时从两个城市相对开出,3小时后相遇,相遇时客车比货车多行60千米,货车与客车速度比是9:11。
货车平均每小时行多少千米?11、甲、乙两车同时相对而行,甲车行全长需8小时,乙车每小时56千米,相遇时,甲、乙两车所行路程的比是3:4,这时乙车行了多少千米?12、甲、乙两车同时从AB两地相向而行,4小时后相遇,相遇后甲又行了3小时到达B地,这时乙车离A地70千米,AB两地相距多少千米?13、小强和小军分别从AB两地同时相对而行,8分钟相遇,相遇后又行6分钟小军到达A地,这时小强离B地160米,AB两地相距多少米?14、甲、乙两车同时从AB两地相向而行,当甲到达B地时,乙车距A地30千米,当乙车到达A地时,甲车超过B地40千米,AB两地相距多少千米?15、快车从A地,慢车从B地同时出发相向而行,经过4小时相遇,相遇后两车仍按原速度继续前进,又经过5小时慢车到达A地,这时快车已超过B地90千米。
用比例解决行程问题1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米 ?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7那么4小时就是行全程的4/7所以乙行一周用的时间=4/(4/7)=7小时4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?解:甲走完1/4后余下1-1/4=3/4那么余下的5/6是3/4×5/6=5/8此时甲一共走了1/4+5/8=7/8那么甲乙的路程比=7/8:7/10=5:4所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5那么AB距离=640/(1-1/5)=800米5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米?解:一种情况:此时甲乙还没有相遇乙车3小时行全程的3/7甲3小时行75×3=225千米AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米一种情况:甲乙已经相遇(225-15)/(1-3/7)=210/(4/7)=367.5千米6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?解:甲相当于比乙晚出发3+3+3=9分钟将全部路程看作单位1那么甲的速度=1/30乙的速度=1/20甲拿完东西出发时,乙已经走了1/20×9=9/20那么甲乙合走的距离1-9/20=11/20甲乙的速度和=1/20+1/30=1/12那么再有(11/20)/(1/12)=6.6分钟相遇7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?解:路程差=36×2=72千米速度差=48-36=12千米/小时乙车需要72/12=6小时追上甲8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度? 解:甲在相遇时实际走了36×1/2+1×2=20千米乙走了36×1/2=18千米那么甲比乙多走20-18=2千米那么相遇时用的时间=2/0.5=4小时所以甲的速度=20/4=5千米/小时乙的速度=5-0.5=4.5千米/小时9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?解:速度和=60+40=100千米/小时分两种情况,没有相遇那么需要时间=(400-100)/100=3小时已经相遇那么需要时间=(400+100)/100=5小时10、甲每小时行驶9千米,乙每小时行驶7千米。
行程问题 - 例题答案模块一、时间相同速度比等于路程比【例 1】甲、乙二人分别从 A 、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进, 甲到达 B 地和乙到达A 地后都立即沿原路返回,二人第二次相遇的地点距第一次相遇的地点 30 千米,那么 A 、 B 两地相距多少千米?【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比, 即两个人相遇时所走过的路程比为 4 : 3 .第一次相遇时甲走了全程的 4/7;第二次相遇时甲、乙两个人共走了 3 个全程,三个全程中甲走了43 1 5 个全程,与第一次相遇地点的距离为775 (1 4) 2 个全程.所以A 、B 两地相距77 7302105 (千米 ).7【例 2】B 地在 A ,C 两地之间.甲从 B 地到 A 地去送信,甲出发 10 分后,乙从 B 地出发到 C 地去送另一封信,乙出发后 10 分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B 地出发骑车去追赶甲和乙,以便把信调过来.甲、乙的速度相等,丙的速度是甲、乙速度的 3 倍,丙从出发到把信调过来后返回 B 地至少要用多少时间。
【解析】根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:A 10 分钟10 分钟B C10 分钟因为丙的速度是甲、乙的 3 倍,分步讨论如下:(1〕假设丙先去追及乙,因时间相同丙的速度是乙的 3 倍,比乙多走两倍乙走需要 10 分钟,所以丙用时间为: 10÷〔3-1〕=5〔分钟〕此时拿上乙拿错的信A 10 分钟10 分钟B C5分钟10 分钟5分钟当丙再回到 B 点用 5 分钟,此时甲已经距B 地有 10+10+5+5=30〔分钟〕,同理丙追及时间为30÷〔3-1〕=15〔分钟〕,此时给甲应该送的信,换回乙应该送的信在给乙送信,此时乙已经距B 地: 10+ 5+5+15+15=50〔分钟〕,此时追及乙需要: 50÷〔3-1〕=25〔分钟〕,返回 B 地需要 25 分钟所以共需要时间为5+5+15+15+25+ 25=90〔分钟〕〔2〕 同理先追及甲需要时间为120 分钟【例 3】( “圆明杯〞数学邀请赛 ) 甲、乙两人同时从 A 、 B 两点出发,甲每分钟行80 米,乙每分钟行 60 米,出发一段时间后, 两人在距中点的 C 处相遇;如果甲出发后在途中某地停留了 7 分钟,两人将在距中点的 D 处相遇,且中点距 C 、 D 距离相等,问 A 、 B 两点相距多少米?【分析】甲、乙两人速度比为 80:60 4:3 ,相遇的时候时 间相等,路程比等于速度之比, 相遇时甲走了全程的 4 ,乙走了全程的 3 .第二次甲停77留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程的 4,甲7行了全程的 3 .由于甲、乙速度比为 4 : 3 ,根7据时间一定, 路程比等于速度之比, 所以甲行走期间乙走了 37 34 ,所以甲停留期间乙行了 4 3 3 1 ,所以 A 、 B 两点的距离为7 7 4 4607=1680 (米).41【例 4】甲、乙两车分别从A、B两地同时出发,相向而行.出发时,甲、乙的速度之比是5 :4,相遇后甲的速度减少20% ,乙的速度增加 20% .这样当甲到达 B 地时,乙离 A 地还有 10 千米.那么 A、B 两地相距多少千米?【解析】两车相遇时甲走了全程的5 ,乙走了全程的94,之后甲的速度减少 20% ,乙的速度增9加20% ,此时甲、乙的速度比为5 (1 20%) : 4 (1 20%) 5: 6,所以甲到达 B 地时,乙又走了 46 8,距离 A 地 581 ,所以9 5 15 9 15 451450 (千米 ).A 、B 两地的距离为1045【例 5】早晨,小张骑车从甲地出发去乙地.下午1点,小王开车也从甲地出发,前往乙地.下午 2 点时两人之间的距离是 15 千米.下午 3 点时,两人之间的距离还是l5 千米.下午 4 点时小王到达乙地,晚上 7 点小张到达乙地.小张是早晨几点出发?【解析】从题中可以看出小王的速度比小张块.下午2 点时两人之间的距离是l5 千米.下午 3点时,两人之间的距离还是l5 千米,所以下午 2 点时小王距小张 15 千米,下午 3点时小王超过小张15 千米,可知两人的速度差是每小时30 千米.由下午 3 点开始计算,小王再有 1 小时就可走完全程,在这 1 小时当中,小王比小张多走30 千米,那小张 3 小时走了 15 30 45 千米,故小张的速度是45 ÷3 =15 千米 /时,小王的速度是 15 +30 =45 千米 /时.全程是 45 ×3=135 千米,小张走完全程用了135 +15= 9小时,所以他是上午 10 点出发的。
一般行程问题、比和比例解决行程问题比例做行程问题速度、时间、距离,这三个量的关系:(1)时间相同,速度比=距离比 当甲乙行驶时间相同时,如果V 甲:V 乙=3:4那么S 甲:S 乙=3:4;(2)速度相同,时间比=距离比 当甲乙速度相同时,如果T 甲:T 乙=3:4 那么S 甲:S 乙=3:4(3)距离相同,速度比=时间的反比 当甲乙行驶距离相同时,如果T 甲:T 乙=3:4 那么V 甲:V 乙=4:3。
例:甲乙二车同时从AB 两地同时出发,相向而行,甲车每小时行56千米,乙车每小时行48千米。
两车在距离中点32千米处相遇。
求AB 两地相距多少千米?分析:这道题给了两车的速度,我们很容易得到两车的速度比。
这时我们可以用比例来做这道题。
大家要抓住三个要点:一、时间相同,速度比=距离比。
二、两车第一次迎面相遇时合走一个全程。
三、两车在距离中点处相遇,即:两车相遇时,甲比乙多走32×2=64。
解:由题意然V 甲:V 乙=56:48=7:6即:相同时间内,甲走7份乙走6份。
两车第一次迎面相遇时合走一个全程。
我们可以把AB 之间的路程分为(7+6)=13份。
两车相遇时,甲比乙多走1份是32×2=。
AB 之间的路程为13份,AB 之间的路程为13×64=。
这时这道题就变得很简单了。
如果不用比例做这道题,还有别的做法吗?下面我们看以下几种做法:方法二:两车相遇时,甲比乙多走32×2=。
出现距离差属于追及问题,而这道题是相遇问题,我们可以把相遇问题转化成追及问题。
每小时甲比乙多走56-48=。
距离差÷速度差=追击时间。
64÷8=8小时。
即相遇时间为8小时。
所以相遇时间×速度和=距离和(56+48)×8=方法三:在行程问题中常用到列方程解应用题,大家要注意培养自己列方程解应用题的能力,这对你今后中学的学习很有帮助。
那么这道题我们就用列方程解一下。
比例法解行程问题
行程问题是指涉及速度、时间、距离等量的问题,通常可以通过比例法来解决。
假设两个物体在同一方向上行驶,速度分别为v1和v2,它们的距离为d。
我们可以利用以下公式来计算它们的行程时间t1和t2:
t1 = d/v1
t2 = d/v2
如果我们知道其中一个物体的速度和行程时间,可以通过代入公式中的变量来计算另一个物体的速度或行程时间。
例如,如果我们知道物体A的速度为v1,行程时间为t1,而物体B的速度为v2,我们可以通过以下步骤计算它们之间的距离d:
1. d = v1 × t1(物体A的行程距离)
2. d = v2 × t2(物体B的行程距离)
将步骤1和2中的d相等得到:v1 × t1 = v2 × t2
通过移项,我们可以得到以下比例关系:v1 : v2 = t2 : t1
利用这个比例关系,我们可以通过已知的速度和时间来计算未知的速度或时间。
比例法解行程题比例法【例 1】 (第8届迎春杯决赛试题)小明和小刚进行200米短跑比赛(假定二人的速度均保持不变)。
当小刚跑了180米时,小明距离终点还有50米,那么,当小刚到达终点时,小明距离终点还有多少米?【解】当小刚跑了180米时,小明跑了200-50=150米,二人的路程之比为180:150=6:5,小刚到达终点时,由于速度不变,二人的路程比依然为6:5。
若设小刚路程200米为6份的话,小明的行程应为5份,则其离终点还有1份距离=31336200=÷米。
【练习】小刚与小勇进行50米赛跑,结果:当小刚到达终点时,小勇还落后小刚10米;第二次赛跑,小刚的起跑线退后10米,两人仍按第一次的速度跑,比赛结果将是____解:小刚到达终点时,二人的路程分别为50米和40米,路程之比为5:4。
若小刚退后10米,当到达终点时其路程为60米,由于速度不变,从而路程之比也不变,此刻乙跑了60÷5×4=48米,还差2米才到终点,因此还是小刚胜出。
【点评】在赛跑问题中,多数时候隐含了时间相等的条前240千米用时3233126=-小时,则原速度为90323240=÷千米/小时。
从而甲乙两地距离应为540690=⨯千米。
【点评】本题虽难度不大,但作为比例解行程的方法十分典型,有必要熟练掌握题目中涉及到的几个模型。
这些模型与几何中五大模型的作用类似,会在行程问题中反复出现,且标志明显。
模型1:百分比到比例的转化。
模型2:提速—少时,由提速或降速所造成的时间差,只产生在提速和降速的路程中。
模型3:比差问题,类似和差、和倍、差倍,已知比和差分别求大小数的方法应熟练掌握。
【练习】一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达,如果按原速度行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全程的几分之几?解:车速提高20%,即速度之比为5:6,从而时间比为6:5,已知时间差为1小时,则原用时为6小时。
原速行驶一段距离后,再将速度提高30%,仍然提前1小时到达,这个时间差只能发生在提速部分,这段速度之比为10:13,从而时间之比为13:10,不难求原速度行驶用时1÷3×13=133小时,从而先行驶的部分用时6-133=53小时,其占比为53÷6=518【例 2】甲、乙两人分别从A、B两地同时出发,相向而行,在途中C点相遇。
如甲的速度增加10%,乙每小时多走300米,还在C相遇;如果甲早出发1小时,乙每小时多走1000米,则仍在C相遇。
那么两人相遇时距B多少千米?【分析】此题有个明显的特征,即三种方式最终相遇地点一样,这实际明确告知我们三种方式之下路程之比相同!而题目要求两人相遇时距B多少千米,实际是求乙的路程,若能求得乙的速度和时间则问题可解。
【解】按照题中的“;”形成的两部分进行来研究:在甲提速10%,乙提速300米后甲乙相遇地点不变,路程之比没变,可见提速前后两人的速度之比也保持不变。
从而若甲提速10%的话,乙提速300米也应为10%,从而不难求得乙的原速度为3千米/小时。
甲提前出发1小时,乙提速1000米后,两人依然在C 点相遇。
换句话说其实就是:乙在提速1000米后比平时少用1个小时到达C点。
而乙在提速1千米后,前后速度之比为3:4,则所用时间之比应为4:3,少用的1小时为1份,则乙原用时应为4小时。
如此乙的速度和时间都已求得,则其路程为3×4=12千米。
即两人相遇时距B 12千米。
【点评】在本题中,双双提速后速度之比保持不变的关系式是不难发现的。
比较难理解的是甲提前1小时出发的意义:由于甲速度未变,从而其到达C点所需的时间是不变的,由此发现乙到达C点实际上是比提速前少用了1小时。
此处又是比差模型的典型应用。
发现“时间差”其实是个不错的标志物。
【例 3】甲、乙两人同时A地出发,在A、B两地之间匀速往返行走,甲的速度大于乙的速度,甲每次到达A地、B地或遇到乙都会调头往回走,除此以外,两人在AB之间行走方向不会改变,已知两人第一次相遇的地点距离B地1800米,第三次的相遇点距离B地800米,那么第二次相遇的地点距离B地。
E D C B A 800米1800米【分析】研究甲乙二人的行为轨迹后容易发现,走路比较快的甲实际是在乙和B 地之间做折返跑往复运动。
到达B 则折返,遇到乙再折返。
需要注意的是,在“折返运动模型”中,二人的“路程和”是个令人舒服的量——两个全程。
另外本题中乙的方向从未改变,只是从一个相遇点直线到下一个相遇点。
其路程也是比较容易得到的量。
如图中所示C 、D 、E 依次为第一次、第二次、第三次的相遇点。
【解】设第二次相遇的地点与B 的距离DB 为x 。
不难发现:第一次相遇到第二次相遇甲乙二人的路程和为1800×2=3600米(其中乙的路程CD=1800-x );第二次相遇到第三次相遇甲乙二人的路程和为2x (其中乙的路程为DE=x -800);由于甲乙的速度从未改变,则乙的路程占甲乙路程和的比例应该是一定的,从而有:x x x 280036001800-=-。
解得x =1200米,即第二次相遇时两人距B 地1200米。
【铺垫】甲乙二人以均匀的速度分别从A 、B 两地同时出发,相向而行,他们第一次相遇地点离A 地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B 地3千米处第二次相遇,求两次相遇地点之间的距离。
解:作为多次相遇问题,有必要研究每次相遇时的路程和。
第一次相遇时,两人的路程和为1个全程,其中甲走了4千米。
第二次相遇时,两人的路程和为3个全程,其中甲走了1个全程+3千米。
由于甲乙速度固定不变,第二次相遇时路程和是第一次相遇时路程和的3倍,则甲两次的路程也为3倍关系,从而1个全程=3×4-3=9千米。
去掉两头距离,两次相遇点距离9-(3+4)=2千米。
【点评】本题主要应用行程中另一个常见模型:折返运动模型。
折返运动是多次相遇的一种类型,由于隐含了甲乙速度不变的条件,则任意时间段内,不论是甲乙的路程之比,还是甲与全程之比或者乙与全程之比均保持不变。
甲乙二人的路程和时常为“2个全程”。
这是一个经常需要讨论的量。
折返跑模型应熟练掌握。
【例 4】A、B、C三辆汽车以相同的速度同时从甲市开往乙市,开车后1小时A车出了事故,B和C车照常前进.A车停车修理半小时后以原速度的4继续前进,5B、C两车行至距离甲市300千米处B车出了事故,继C车照常前进.B车停了半小时后也以原速度的45续前进.结果到达乙市的时间C车比B车早1小时,B车比A车早1小时,求甲、乙两市的距离为多少千米?【分析】此题为典型的多人行程问题,且过程较为复杂,对此有必要对每个人各自的行程轨迹进行单独独立分析。
进而对相关人进行两两分析。
例如本题中,需要首先分析A,B,C各自的过程。
4,若设原速度【解】由于故障后的速度统一为原速的5为5份,则故障速度为4份。
过程分析如下:C:以5份的速度行驶完全程,第一个到达终点。
A:以5份的速度行驶1小时后,停车0.5小时,再以4份的速度行驶完全程,最后一个到达终点。
B:以5份的速度行驶300千米后,停车0.5小时,再以4份的速度行驶完全程,第二个到终点。
另已知C比B早到1小时,B比C早到1小时。
仅分析A、C二人的过程:A、C共同行驶1小时后,A 停车0.5小时,后减速行驶,最终比C多用2小时到达。
除去停车的0.5小时,A在减速路段上的行驶时间实际比C多用1.5小时,而这段路上A、C速度之比为4:5,则所用时间之比为5:4,不难求这段路A用时7.5小时,C用时6小时。
而对于C来说,全程用时6+1=7小时,则B全程用时7+1=8小时。
再分析B、C二人的过程:B、C共同行驶300千米后,B停车0.5小时,后减速行驶,最终比C多用1小时到达,除去停车的0.5小时,B在减速的路段上的行驶时间实际比C多用0.5小时,而在这段路上B、C速度之比也是4:5,从而时间之比为5:4,不难求B用时2.5小时,C用时2小时。
可见,B在前300公里用时8-0.5-2.5=5小时,则A、B、C共同的原速度=300÷5=60千米/小时。
由C的行驶过程可求得全程=60×7=420千米。
【点评】此题首先是一道多人行程问题,多人行程问题最基本的分析方法就是对每个人的行程轨迹进行单独分析,将全过程进行分解,缕清思路。
另一方面,本题是“提速-少时”模型以及“比差”模型的反复的应用。
若能熟练掌握这两个模型,则有可能较快的解决问题。
【例 5】甲、乙两车分别从相距180千米的A、B两地同时出发相向而行,两车在距离A地80千米处相遇,若出发半小时后甲车突然提速50%,那么两车恰好在AB的中点相遇,如果出发后20分钟甲车把速度变为原来的一半,那么相遇地点将距A地_____千米;【分析】当两车在距A地80千米处相遇时,甲路程=80千米,乙路程=100千米,则甲乙的速度之比=4:5,若甲速度为4份,则乙速度为5份。
【解】甲出发半小时后提速50%就能与乙车在中点相遇,这说明甲的平均速度应等于乙的速度,而甲原速为4份,提速50%达到6份,从而整个过程可描述为甲用4份的速度行驶0.5小时后再用6份的速度行驶了x小时,最终平均速度为5份,从而路程=)=⨯⨯,不难求得x=0.5小时,可见相x++5.05.0(4x56遇时甲乙均用时0.5+0.5=1小时,由于行驶路程均为180÷2=90千米,显见乙的速度=90÷1=90千米/小时,则甲的速度应为90÷5×4=72千米/小时。
在甲乙速度均已求得的情况下来再来分析另一个相遇过程,甲在以72千米/小时的速度行驶20分钟后,把速度降低到一半,其实就是36千米/小时,最终与乙相遇,不难求20分钟即31小时后的剩余路程=12631)9072(180=⨯+-千米,进而求得相遇所需的额外时间=1)9036(126=+÷小时,可见整个相遇过程共用时311小时,其中乙的路程=12031190=⨯千米,即相遇地点距A 地180-120=60千米。
【点评】对“平均速度”的分析是解决本题的钥匙。
【例 6】 A 、B 两地相距600千米,甲坐车从A 地到B 地,2小时后,乙和丙也同时从A 地出发前往B 地,又过了3个小时,乙追上了甲并继续向前走,到达B 地后迅速返回,途中与甲再次相遇时,正好丙也追上了甲.已知丙的速度比甲的速度快19,那么甲的速度是每小时多少千米?【分析】作为三人行程问题,有必要对各人的行踪进行单独分析,进而两两关联分析。
1,即两人速【解】题目最后提到丙的速度比甲快9度比为10:9。