常见电动机控制电路图
- 格式:doc
- 大小:10.02 MB
- 文档页数:17
三相异步电动机的控制电路1.直接启动控制电路直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说,电动机的容量不大于直接供电变压器容量的20%—30%时,都可以直接启动。
1).点动控制合上开关S,三相电源被引入控制电路,但电动机还不能起动。
按下按钮SB,接触器KM开主触点接通,电动机定子接入三相电源起动运转。
松开按钮SB,接触器KM线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。
2).直接起动控制KM线圈通电,与SB1并联的KM的辅助常开触点闭合,以保证松开按钮SB1后KM串联在电动机回路中的KM的主触点持续闭合,电动机连续运转,从而实现连续运转控制。
接触器KM线圈断电,与SB1并联的KM的辅助常开触点断开,以保证松开按钮SB2后KM线圈持续失电,串联在电动机回路中的KM的主触点持续断开,电动机停转。
与SB1并联的KM的辅助常开触点的这种作用称为自锁。
图示控制电路还可实现短路保护、过载保护和零压保护。
a)起短路保护的是串接在主电路中的熔断器FU。
一旦电路发生短路故障,熔体立即熔断,电动机立即停转。
b)起过载保护的是热继电器FR。
当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM线圈断电,串联在电动机回路中的KM的主触点断开,电动机停转。
同时KM辅助触点也断开,解除自锁。
故障排除后若要重新起动,需按下FR的复位按钮,使FR的常闭触点复位(闭合)即可。
c)起零压(或欠压)保护的是接触器KM本身。
当电源暂时断电或电压严重下降时,接触器KM线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。
2.正反转控制 1).简单的正反转控制(1)正向起动过程。
按下起动按钮SB 1,接触器KM 1线圈通电,与SB 1并联的KM 1的辅助常开触点闭合,以保证KM 1线圈持续通电,串联在电动机回路中的KM 1的主触点持续闭合,电动机连续正向运转。
(2)停止过程。
常用电气控制电路1.控制柜内电路的一般排列和标注规律为便于检查三相动力线布置的对错,三相电源L1、L2、L3 在柜内按上中下、左中右或后中前的规律布置。
L1、L2、L3三相对应的色标分别为黄、绿、红,在制作电气控制柜时要尽量按规范布线。
二次控制电路的线号,一般的标注规律是:用电装置(如交流接触器)的右端接双数排序,左端按单数排序。
二次控制电路的线号编排如图1所示。
动力线与弱点信号线要尽量远离,如传感器、PLC、DCS 集散控制系统、PID控制器等信号线,如果不能做到远离,要尽量垂直交叉。
弱电线缆最好单独放入一个金属桥架内,所有弱电信号的接地端都在同一点接地,且与强电的接地分离。
常用电气控制电路图1 二次控制电路的线号编排2. 电动机起停控制电路该电路可以实现对电动机的起停控制,并对电动机的过载和短路故障进行保护,电动机起停控制电路如图2所示。
图2 电动机起停控制电路在图2中,L1、L2、13是三相电源,信号灯HL1用于指示L2和L3两相电源的有无,电压表V指示L1和L3相之间的线电压,熔断器FU1用于保护控制电路(二次电路)避免电路短路时发生火灾或损失扩大。
合上断路器QF1,三次电路得电,按下起动按钮(绿色)SB2,交流接触器KM1的线圈通电,交流接触器的主触点KM1的辅助触头KM1-1闭合,电动机M1通电运转。
由于KM1-1 触头已闭合,即使起动按钮582抬起,KM1的线圈也将一直有电。
KM1-1的作用是自锁功能,即使SB2抬起也不会导致电动机的停止,电动机起动运行。
按下停止按钮581, KM1的线圈断电,KM1-1 和KM1触头放开,电动机停止,由于KM1-1已经断开,即使停止按钮581抬起,KM1的线圈也仍将处于断电状态,电动机M1正常停止。
当电动机内部或主电路发生短路故障时,由于出现瞬间几倍于额定电流的大电流而使断路器QF1迅速跳闸,使电动机主电路和二次电路断电,电动机保护停止。
当电动机发生过载时,电动机电流超出正常额定电流一定的百分比,热继电器FR1发热,一定时间后,FR1的常闭触头FR1T断开,KM1线圈断电,KM1T和KM1主触头断开,电动机保护停止。
电动机控制线路图1手动正转控制利用铁壳开关或胶盖瓷底刀开关的控制线路如图1所示。
在一般工厂中使用的三相电风扇及砂轮机等设备常采用这种控制线路。
图中QS-FU表示铁壳开关(或胶盖瓷底刀开关)。
当合上铁壳开关,电动机就能转动,从而带动生产机械旋转。
拉闸后,熔断器就脱离电源,以保证安全。
2.采用转换开关的控制转换开关控制线路如图2所示。
图中QS为转换开关,也叫组合开关。
它的作用是引入电源或控制小容量电动机的启动和停止。
图2采用转换开关的控制机床电气控制中常用的转换开关有HZ10系列。
这种转换开关有3副静触片,每一触片的一端固定在绝缘垫板上,另一端伸出盒外,并附有接线柱,以便和电源、用电设备相接。
3个动触片装至绝缘垫板上,垫板套在附有手柄的绝缘杆上。
手柄能向任一方向每次转动90°,并带动3个动触片分别与3副静触片同时通断。
3.用倒顺开关的正反转控制常用的倒顺开关有HZ3-132型和QX1-13M/4.5型,其控制线路如图3所示。
图3用倒顺开关的正反转控制倒顺开关有6个接线柱,L1、L2和L3分别接三相电源,D1、D2和D3分别接电动机。
倒顺开关的手柄有3个位置:当手柄处于停止位置时,开关的两组动触片都不与静触片接触,所以电路不通,电动机不转;当手柄拨到正转位置时,A、B、C、F触点闭合,电动机接通电源正向运转;当电动机需向反方向运转时,可把倒顺开关手柄拨到反转位置上,这时A、B、D、E触片接通,电动机换相反转。
在使用过程中电动机处于正转状态时欲使它反转,必须先把手柄拨至停转位置,使它停转,然后再把手柄拨至反转位置,使它反转。
倒顺开关一般适用于4.5kW以下的电动机控制线路。
4.具有自锁的正转控制具有自锁的正转控制线路如图4所示。
当启动电动机时合上电源开关QS,按下启动按钮SB1,接触器KM线圈获电,KM主触点闭合,使电动机M运转;松开SB1,由于接触器KM常开辅助触点闭合自锁,控制电路仍保持接通,电动机M继续运转。
三相电机正反转控制电路是通过改变电机电源的相序来实现的。
下面是一个简单的三相电机正反转控制电路的示例:
1. 电路图:
* 主电路电源进断路器QS,然后到KM1,到热继电器FR到电机。
* KM2主电路改变其中两项的相序从而改变电机转向。
2. 实物图配合电路图:
* 合上电源电源导入KM1----KM2主触点,同时到停止常闭,到启动按钮常开。
* 正转:按下启动按钮SB2接触器得电吸合,接触器主触点闭合,辅助触点闭合接触器自锁,电机正转运行。
同时接触器KM1常闭断开,此时即便按下启动按钮SB3也无法启动KM2。
* 停止:按下停止按钮SB1整个电路失电。
* 反转:按下启动按钮SB3接触器KM2得电吸合,接触器KM2主触点辅助触点闭合,同时常闭断开形成了对KM1互锁。
电机反转运行,停止按线停止按钮,接触器失电。
整个电路失电。
3. 工作原理:
* 主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。
当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。
当接触器KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。
* 为确保两个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。
在线路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源。
这两
正向启动过程对辅助常闭触头就叫联锁或互锁触头。
以上示例仅供参考,实际电路可能会因具体需求而有所不同。
建议咨询专业电工以获取更准确的信息。
电动机的单向运转控制电路图
电动机的手动单向运转控制是通过低压开关来控制电动机的起动和停止,适用于小容量电动机的起动及对控制条件要求不高的场合。
在工厂中常被用来控制三相风扇、小型台钻、小型砂轮机、机床的冷却泵电动机等。
用负荷开关、组合开关和低压断路器控制的电动机手动单向运转控制电路如图1~图3所示。
图1 用开启式负荷开关控制的手动单向运转控制电路图
图 2 用组合开关控制的手动单向运转控制电路图
图 3 用低压断路器控制的手动单向运转控制电路图。
共享知识分享快乐三相异步电动机的控制电路1.直接启动控制电路直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说,电动机的容量不大于直接供电变压器容量的20%—30%时,都可以直接启动。
1).点动控制合上开关S,三相电源被引入控制电路,但电动机还不能起动。
SBKM,接触器按下按钮线圈通电,衔铁吸合,常SBS SFUFU开主触点接通,电动机定SB子接入三相电源起动运KMKMKMSB转。
松开按钮,M M3~~3KM线圈断电,衔接触器(a) 接线示意图(b) 电气原理图铁松开,常开主触点断开,电动机因断电而停转。
2).直接起动控制SB接触器按下起动按钮,1()起动过程。
1S KMSBKM的辅助常开触点并联的线圈通电,与FR1FU KMSB线圈持续通电,闭合,以保证松开按钮后SB11SBKMKMKM2KM的主触点持续闭合,串联在电动机回路中的FR 电动机连续运转,从而实现连续运转控制。
M~3.共享知识分享快乐SB,(2)停止过程。
按下停止按钮2S KMKMSB的接触器并联的线圈断电,与FRFU SB辅助常开触点断开,以保证松开按S1SKKK2KM串联在电动机回路中线圈持续失电,FR KM的主触点持续断开,电动机停转。
3KMSB的辅助常开触点的这种作并联的与1用称为自锁。
图示控制电路还可实现短路保护、过载保护和零压保护。
FU。
一旦电路发生a)起短路保护的是串接在主电路中的熔断器短路故障,熔体立即熔断,电动机立即停转。
FR。
当过载时,热继电器的发热元起过载保护的是热继电器b)KM线圈断电,串联在件发热,将其常闭触点断开,使接触器KMKM辅助的主触点断开,电动机停转。
同时电动机回路中的触点也断开,解除自锁。
故障排除后若要重新起动,需按下FRFR的复位按钮,使的常闭触点复位(闭合)即可。
KM本身。
当电源暂时断电c)起零压(或欠压)保护的是接触器KM线圈的电磁吸力不足,衔铁自或电压严重下降时,接触器行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。
电机启动常见方法1、定时自动循环控制电路说明:(技师一)1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。
2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。
3、简述电路工作原理。
注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。
定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。
按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。
同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。
当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。
KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。
这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。
因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。
与按钮SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。
热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。
2、顺序控制电路(范例)顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。
按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。
电机启动常见方法1、定时自动循环控制电路说明:(技师一)1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。
2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。
3、简述电路工作原理。
注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。
定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。
按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。
同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。
当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。
KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。
这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。
因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。
与按钮SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。
热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。
2、顺序控制电路(范例)顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。
按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。
电动机控制电路图全集一.双速电动机用三个接触器的变速控制电路图二.三相电动机制动装置· [图文] 汽车热限制器的烙铁 Auto Heat Limiter for Soldering Iron · [图文] 简单的直流电机PWM调速电路 Simple DC motor PWM speed control · 步进电机和交流伺服电机性能比较· [图文] 直流电动机可逆电路--DC Motor Reversing Circuit· [图文] 直流电动机控制电路-DC Motor Control Circuit· [组图] 单极性步进电机控制器电路--Unipolar Stepper Motor Controller · [图文] 直流无刷电动机工作原理与控制方法· [图文] 电动机缺相保护器电路原理· [组图] 微型电机驱动电路原理分析及实验· [图文] 双向调速直流电机驱动电路设计方案· [组图] 直流电机无级调速电路的制作原理· [图文] 电动自行车控制器电路原理分析· [组图] 音频功率放大器· 起动机的工作原理· 自控电机起动方式原理分析· [图文] 起动电机电阻控制原理图· [图文] 串级型直流电源的结构电路图· [图文] 用晶体管做成的H电桥电路图· [图文] 实际的控制电路图· [图文] 设计的电动机控制电路图· [图文] 电动机正转逆转驱动电路图· [图文] 电动机正反转控制电路· [图文] 转轴转动状况检测电路· [图文] 压电泵驱动电路· [图文] 伺服电机转速控制电路· [图文] LM324的直流电动机调速器· [图文] 三相交流电焊机空载自停控制电路· [图文] 三相电动机制动装置· [图文] 交流电焊机的节电线路· [图文] 交流电动机的简易能耗制动· [图文] 电动机过热保护电路· [图文] 电动机断相自动保护装置· [图文] 双速电机控制电路图· [组图] 双速电机控制原理图· [图文] 自动夜光灯电路图· [图文] 与50kHz调频发射机配用的接收机电路图· [图文] 利用中断光束的脉冲发生器电路图· [图文] 可调光检测开关电路图· [图文] 精密光二极管比较器电路图· [图文] 精密光电二极管光强检测器电路图· [图文] 交流电源控制用光电池记忆开关电路图· [图文] 光线中断检测器电路图· [图文] 光通信系统电路图· [图文] 光束控制的通-断继电器电路图· [图文] 光施密特触发器电路图· [图文] 光亮度敏感器电路图· [图文] 光接收器电路图· [图文] 光隔离的固体功率继电器电路图· [图文] 光发射机电路图· [图文] 对数特性光敏感器电路图· [图文] 调频光发送器电路图· [图文] 4象限光导检测放大器电路图· [图文] 4位马达开关电路图· [图文] 两只单相电压互感器组成的V-V形接线图· [图文] 三只单相电压互感器组成星形接线图· [图文] 钻床主轴电动机和液压电动机的联锁控制电路图 · [图文] 自动循环控制电路· [图文] 直流电动机正反转控制电路图· [图文] 直流电动机使用变阻器起动控制电路图· [图文] 由三个接触器组成的正反转控制电路图· [图文] 用电流继电器控制机械扳手· [图文] 用电弧联锁继电器延长转换时间的正反控制 · [图文] 用倒顺开关的正反转控制· [图文] 用刀开关直接变换电动机星形三角形接线方式 · [图文] 用八档按钮操作的行车控制电路图· [图文] 用按钮点动控制电动机起停电路图· [图文] JZT电磁调速控制器电路图· [图文] 一种JZT电磁调速控制器· [图文] 一台电动机停止运行后另一台才能停止的控制 · [图文] 双速电动机自动加速控制电路图· [图文] 双速电动机用三个接触器的变速控制电路图 · [图文] 双速电动机的控制电路图· [图文] 双路保险起动自投控制电路图· [图文] 电动机手动正转控制电路图· [图文] 绕线式异步电动机转子串电阻起动电路图· [图文] 能发出开车信号的起停控制电路图· [图文] 另一种防止相间短路的正反转控制电路图· [图文] 两台电动机联锁控制原理图· [图文] 两台电动机联锁控制电路图· [图文] 利用转换开关预选的正反转起停控制· [图文] 利用转换开关改变运行方式· [图文] 可逆点动起动混合控制电路图· [图文] 可逆点动控制电路图· [图文] 具有自锁的正转控制电路图-原理图· [图文] 具有过载保护的正转控制电路图· [图文] 接触器联锁的电动机正反转控制· [图文] 既能点动又能长期工作的电动机控制电路· [图文] 防止相间短路的正反转控制电路图· [图文] 多台电动机同时起动控制电路图· [图文] 电动机自动快速再起动电路图· [图文] 电动机限位控制电路图-原理图· [图文] 电动机间歇运行控制电路图· [图文] 低速脉冲控制电路图· [图文] 单线远程正反转控制电路图· [图文] 单线远程起停控制电路图· [图文] 单按钮控制电动机起停电路图· [图文] 串激直流电动机刀开关可逆控制电路图· [图文] 采用转换开关的控制· [图文] 按直流原则控制直流电动机起动线路图· [图文] 按速度原则控制直流电动机起动原理图· [图文] 按时间原则控制直流电动机起动电路图· [图文] 按钮联锁正反转控制原理图· [图文] 按钮接触器复合联锁的电动机正反转控制电路图 · [图文] 建筑钟步进电机驱动电路· [图文] 双光源驱动电路· [图文] 智能型电动机节能控制电路· [图文] 直流能耗制动电路· [图文] 直流电机速度控制电路· [图文] 直流电动机的PWM方式斩波控制电路· [图文] 用LM1875驱动精密直流伺服电机电路· [图文] 异步电动机的轻载节电器· [图文] 星形接法的电动机断相保护电路· [图文] 小型单相交流电机调速电路· [图文] 零序电压电动机断相保护电路· [图文] 空气压缩机电动机保护电路· [图文] 精密直流电机速度控制电路· [图文] 节电式三相异步电动机断相保护电路· [组图] 柴油机的配气机构· [组图] 连杆曲轴机构· [组图] 20 V 956 TB 33 型柴油机油底壳结构图 · [图文] 20 V 956 TB 33 型柴油机汽缸盖结构图 · [图文] 汽缸套的结构· [图文] 20 V 956 TB 33 型柴油机的汽缸体结构图 · [图文] 节电式电机缺相保护电路· [图文] 电机转速控制电路· [图文] 汽车油箱液位侧量电路· [图文] 汽车发动机测速电路· [图文] 机动车信号灯故障自动监测电路· [图文] 机动车电路检测器· [图文] 电控燃油喷射器测试电路· [图文] 电动车速表电路· [图文] 齿轮疲劳微机测量电路· [图文] 车用转速表电路· [图文] 车速控制装置电路· [图文] 手电筒控制模型电动机电路· [图文] 皮带运输机失速保护电路· [图文] 多台电动机逐一星形三角形起动电路· [图文] 电动机自动再起动电路· [图文] 电动机自动切换起动电路· [图文] 电动机故障指示电路· [图文] 简单的水轮发电机制动电路· [图文] 物体振动位移检测电路· [图文] 五相步进电机驱动电路· [图文] 直流能耗制动电路· [图文] 直流电动机的速度控制电路· [图文] 压力测量电路· [图文] 微振动信号测量电路· [图文] 锁相伺服系统的一种失锁报警电路· [图文] 伺服回路用旋转编码器电路· [图文] 可控逆变器电路· [图文] 测量冲击和倾斜角的电路· [图文] 采用交流转速表传感器的电动机速度控制电路 · [图文] 采用霍尔器件作限位器的电路· [图文] 采用SSR控制单相感应电动机的正反转电路 · [图文] 采用MSM5816的PLL电动机控制电路· [图文] 采用M5172L的PLL电路· [图文] 采用BA802的PLL电动机控制电路· [图文] 步进电机驱动电路· [图文] 步进电动机的微机控制电路· [图文] 90度相位差基准电路· [图文] 90度相位差基准电路· [图文] 50A 150V PWM直流驱动电路· [图文] 电机速度光电控制电路· 电动车维修经验总结· [图文] 无刷电瓶车单片机控制器原理与检修· [图文] 电动自行车充电器的原理与检修· [组图] 电动车充电电路图· [图文] 电动车开关充电电源原理图· [图文] 电动车开关充电电源电路图· 电动自行车电气系统的组成和特点· [图文] 小口径高炮高精度伺服系统框图· [图文] 采样系统典型结构图· [图文] 炉温采样控制系统原理图· [图文] 熊猫牌PE-2617型音响遥控发射器电路原理图 · [图文] 上海牌无线遥控坦克模型接收电路原理图 · [图文] 上海牌无线遥控坦克模型发射电路原理图 · [图文] YSTS II型比例遥控调速器电路原理图· [图文] YD系列牙钻车调速器电路原理图· [图文] SR63彩灯控制器电路原理图· [图文] HD-1型中周侥线机控制电路原理图。
1.基本的直接启动控制线路
按下启动按钮,KM线圈得电,KM常开辅助触点自锁,绿灯亮,电机运行;按下停止按钮,KM线圈失点,辅助触点复位,红灯亮,电机停止。
2 直接启动,延时停止
通过时间继电器作用,延时使回路断开。
3 控制电机正反转
使用双重互锁,采用复合按钮和2个接触器。
将2个接触器的常闭辅助触点相互串联在对方回路中,安全方便,避免了短路的发生~
4 顺停、逆停循环
5 电机轮流循环启动
6 三台电机轮流循环
7 单按钮控制电机启动停止
8 时间继电器控制双速电机
9 定子串电阻降压启动
这个不太常用!
10 延边三角形降压启动
这个知道就行!!!
11 星三角降压启动
照片名称:星三角降压启动实物接线图
照片名称:星三角
照片名称:星三角启动控制线路图
照片名称:星三角
(这个很重要,也和简单,也很实用的降压启动,一般电机大于7.5千瓦,为了保护电压网就应
该采取降压的方式。
)
12 自耦降压
这也是很使用的降压启动控制线路。
一般大于40千瓦的电机使用。
本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。
4个电机控制电路图,搞定所有电机控制设计!点动控制点动控制又称为寸动控制,顾名思义就是按动按钮开关,电动机得电启动运转;当松开按钮开关后,电动机失电停止运转。
点动控制是电路中最基基础的控制电路,广泛应用在电路中。
原理图点动实物接线工作原理:当按下按钮SB,交流接触器工作线圈得电吸合,其主触点瞬间闭合,接通三相电源,电动机得电启动运行;当松开按钮SB,交流接触器工作线圈失电断开,主触点瞬间断开,断开三相电源,电动机失电停止运转。
自锁控制自锁控制就是依靠接触器或者继电器自身的常开辅助触点,而使其工作线圈保持通电的现象。
它与点动控制最大区别是,点动控制是接通接触器线圈电源后,松开启动按钮后接触器线圈立马断电,电机停止;而自锁控制,当接触器线圈得电后,松开启动按钮,接触器线圈依然保持通电。
自锁控制在控制电路中可以起到很好的失压和欠压保护作用,当电路电源由于某种原因,导致电压下降,电压低于85%时,接触器的电磁系统所产生的电磁力克服不了弹簧的反作用力,因而释放,主触点打开,自动切断主电路,达到欠压保护。
当电路断电时,接触器工作线圈失电释放,自锁触点断开,当再次来电时,电机不会立刻启动,必须重新按动启动按钮SB,电机才能再次工作,起到失压保护。
自锁控制原理图自锁实物接线图工作原理:启动时,按动启动按钮SB2,接触器工作线圈得电吸合,主触点闭合,三相电源接通,电机得电运行。
在交流接触器工作线圈得电吸合同时,接触器并联在启动按钮SB2上的辅助触点闭合自锁,在启动按钮SB2松开后,电流经辅助触点保持接触器工作线圈通电吸合,所以主触点不会断开,电机保持正常工作。
互锁控制互锁控制简单理解就是两者相互制约。
比如有一台电机可以左右运行,如果没有相互制约,同时启动势必造成电源短路,因此约定左边运行时右边不能运行,右边运行时左边不能运行,这样的相互制约就是互锁。
互锁一般通过软件编程、接触器或继电器常闭触点、按钮的动断触点来实现。
电机启动常见方法1、定时自动循环控制电路说明:(技师一)1、题图中的三相异步电动机容量为,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。
2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。
3、简述电路工作原理。
注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。
定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。
按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。
同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。
当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。
KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。
这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。
因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。
与按钮SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。
热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。
2、顺序控制电路(范例)顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。
按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。
停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。
本电路只有满足M1电动机先起动的条件,才能起动M2电动机。
图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。
KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。
停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。
本电路只有满足M1电动机先起动的条件,才能起动M2电动机。
3、电动机顺序控制电路说明:(技师二)1、本电路起动顺序是先M1电动机,后M2电动机;停止顺序则相反。
2、PLC(三菱FX0N、FX1N),编程器连接及通电操作。
3、清零操作;程序写入操作;根据梯形图写出指令表。
4、主机上用导线连接电动机顺序控制。
电动机顺序控制电路工作原理:合上电源开关QS,按下起动按钮SB1,接触器KM1得电吸合并自保,M1电动机起动运转。
KM1的另一动合触点闭合,为接触器KM2得电作准备。
按下起动按钮SB2,接触器KM2得电吸合并自保,M2电动机起动运转。
起动顺序是先KM1吸合,M1电动机起动运转;后KM2吸合,M2电动机起动运转。
停车顺序是:只有先按下按钮SB4,使接触器KM2断电释放,KM2的动合触点断开,M2电动机停转后再按SB3,M1电动机才能停止运转。
热继电器FR1、FR2常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。
4、异步电动机可逆控制电路(范例)可逆控制电路(范例)电路工作原理:(图A)按下SB2,KM1得电吸合,电动机起动正转。
按下SB1,KM1断电释放,电动机停转。
按下SB3,KM2得电吸合,电动机起动反转。
按下SB1,KM2断电释放,电动机停转。
缺点:不能同时按下SB2 、SB3按钮,否则电源将短路,电动机无法工作。
原因:主电路接触器KM1、KM2连接到电动机M的是两种相序的电源,若同时吸合,在接触器连接点上电源被短路。
(图B)原理同图A。
在KM1线圈电路中串接了KM2的一个动断触点:同样,在KM2线圈电路中串接了KM1的一个动断触点。
这两个动断触点称互锁触点,这种互锁称电气互锁。
保证了任何时候只有一只接触器吸合,避免了电源短路。
缺点:必须先按停止按钮SB1,电动机停转后,才能起动电动机的另一旋转方向。
(图C)在上图基础上增加了由起动按钮的动断触点构成的机械互锁。
如:按下SB2,串接在KM2线圈电路中SB2动断触点断开了KM2线路。
保证了两个接触器不能同时吸合,又能不按停止按钮直接起动电动机另一旋转方向。
5、双重连锁可逆控制电路说明:(高级)1、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。
2、简述电路工作原理双重连锁可逆控制电路工作原理:按起动按钮SB2,KM1吸合并自保,电动机正转。
与按钮SB2常触开点并联的KM1触点为自保触点。
按起动按钮SB3,KM1断电释放,KM2吸合并自保,电动机反转。
SB1为停止按钮。
电路由按钮SB2、SB3的动断触点实现了机械联锁,串联在交流接触器线圈KM1、KM2中的KM2、KM1辅助动断触点实现了电气联锁。
串联在控制电路中的FR动断触点,是在电动机过负载或缺相过热时热继电器将控制电路自动断开,保护了电动机。
6、限位开关控制自动往复电路(1)限位开关控制自动往复电路(1)工作原理:按起动按钮SB2,KM1吸合并自保,电动机正转,带动机械设备左移。
当撞块碰压行程开关SQ2时,KM1断电,KM2得电吸合并自保,电动机反转,机械设备右移。
当撞块碰压行程开关SQ1时,KM2断电,KM1得电,电动机又正转左移。
SB1为停止按钮。
电路由按钮SB2、SB3及行程开关SQ1、 SQ2的动断触点实现了机械联锁,串联在交流接触器线圈KM1、KM2中的KM2、KM1辅助触点实现了电气联锁。
串联在控制电路中的FR常闭触点,是在电动机过负载或缺相过热时热继电器将控制电路自动断开,保护了电动机。
7、限位开关控制自动往复电路(2)限位开关控制自动往复电路(2)电路工作原理:按起动按钮SB2,KM1吸合并自保,电动机正转,带动机械设备左移。
当撞块碰压行程开关SQ2时,KM1断电,KM2得电吸合并自保,电动机反转,机械设备右移。
当撞块碰压行程开关SQ1时,KM2断电,KM1得电,电动机又正转左移。
SB1为停止按钮。
电路由按钮SB2、SB3及行程开关SQ1、 SQ2的动断触点实现了机械联锁,串联在交流接触器线圈KM1、KM2中的KM2、KM1辅助触点实现了电气联锁。
串联在控制电路中的FR常闭触点,是在电动机过负载或缺相过热时热继电器将控制电路自动断开,保护了电动机。
SQ3、SQ4S是左移和右移的终端位置行程开关。
8、星形—三角形起动控制电路星形—三角形起动控制电路工作原理:按起动按钮SB2,接触器KM1、KM3和时间继电器KT线圈得电吸合并自保,电动机星形(Y)接法起动。
当KT预定延时时间结束时,KM3线圈电路中的通电延时断开的动断触点断开,KM3断电释放,电动机星接(Y)起动结束。
此时,KM2线圈电路中的通电延时闭合的动合触点闭合。
KM2线圈得电吸合,电动机改为三角形(△)接法运转。
串联在接触器线圈KM3、KM2电路中的KM2、KM3辅助动合触点实现了电气联锁。
串联在控制电路中的FR动断触点,是在电动机过负载或缺相过热时热继电器将控制电路自动断开,保护了电动机。
星形—三角形起动控制电路(2)星形—三角形起动控制电路(3)星形—三角形起动控制电路(3)工作原理:按起动按钮SB2,接触器KM3、KM1和时间继电器KT线圈得电吸合并自保,电动机星形(Y)接法起动。
当KT预定延时时间结束时,KM3线圈电路中的通电延时断开的动断触点断开,KM3断电释放,电动机星接(Y)起动结束,KM2线圈得电吸合,电动机改为三角形(△)接法运转。
串联在控制电路中的FR动断触点,是在电动机过负载或缺相过热时热继电器将控制电路自动断开,保护了电动机。
9、自耦变压器减压起动起动控制电路自耦变压器减压起动控制电路工作原理:合上电源开关,按起动按钮SB2,接触器KM1线圈得电吸合并自保,将自耦变压器T接入,电动机定子绕组经自耦变压器供电减压起动;同时,KT线圈得电吸合,计时开始。
当KT整定延时时间结束时,其通电延时闭合的动合触点闭合,使中间继电器KA的线圈得电吸合并自保,KM1断电释放,其主触点断开; KM2线圈得电吸合,其主触点闭合,自耦变压器被切除,电动机全压运行。
自耦变压器减压起动起动控制电路(2)10、时间原则能耗制动控制电路时间原则能耗制动控制电路工作原理:合上电源开关,按起动按钮SB2,接触器KM1线圈得电吸合并自保,电动机起动运转。
当按停止按钮SB1时,KM1线圈断电释放,其主触点断开,定子绕组断电;同时,KM2、KT线圈得电吸合并,KM2主触点闭合,电动机二相定子绕组接入直流电源进行能耗制动。
使电动机转速迅速下降,当机转接近零时,时间继电器KT延时时间到。
其通电延时断开的动断触点断开,使KM2、KT线圈相继断电释放,制动过程结束。
RP为调节制动力大小的限流电阻。
时间原则能耗制动控制电路(2)11、电动机电容制动制动控制电路12、4/2极双速电动机起动电路4/2极双速电动机起动控制电路工作原理:图中KM1为三角形接法(△)接触器,KM2、 KM3为双星形接法(YY)接触器。
合上电源开关,按起动按钮SB2,接触器KM1、KT线圈相继得电吸合并自保,电动机定子绕组接成三角形接法(△)4极起动;经一定时间延时后,KT的通电延时断开的动断触点断开,KM1断电释放,KT的通电延时闭合的动合触点闭合,KM2、 KM3线圈得电吸合并自保,电动机定子绕组接成双星形接法(YY)2极运转。
由于双速电动机定子绕组的接线原因,换极的同时应改变电源的相序。
13、4/2极双速电动机起动电路(2)4/2极双速电动机起动控制电路工作原理:图中KM1为三角形接法(△)接触器,KM2、 KM3为双星形接法(YY)接触器。
合上电源开关,按起动按钮SB2,接触器KM1、KT线圈相继得电吸合并自保,电动机定子绕组接成三角形接法(△)4极起动;经一定时间延时后,KT的通电延时断开的动断触点断开,KM1断电释放,KT的通电延时闭合的动合触点闭合,KM2、 KM3线圈得电吸合并自保,电动机定子绕组接成双星形接法(YY)2极运转。
由于双速电动机定子绕组的接线原因,换极的同时应改变电源的相序。
串联在控制电路中的FR动断触点,是在电动机过负载或缺相过热时热继电器将控制电路自动断开,保护了电动机。
14、CW6140普通车床控制电路CW6140普通车床控制线路分析与故障处理:一、线路分析1、主电路分析主电路有两台电动机,M1为主电动机,M2为冷却泵电动机,QS为电源开关。