保险精算知识点
- 格式:docx
- 大小:11.36 KB
- 文档页数:2
保险精算学-笔记-涵盖(利息,⽣命表,寿险精算及实务,⾮寿险,风险理论,内容丰富)第⼀章:利息理论基础第⼀节:利息的度量⼀、利息的定义利息产⽣在资⾦的所有者和使⽤者不统⼀的场合,它的实质是资⾦的使⽤者付给资⾦所有者的租⾦,⽤以补偿所有者在资⾦租借期内不能⽀配该笔资⾦⽽蒙受的损失。
⼆、利息的度量利息可以按照不同的标准来度量,主要的度量⽅式有1、按照计息时刻划分:期末计息:利率期初计息:贴现率2、按照积累⽅式划分:(1)线性积累:单利计息单贴现计息(2)指数积累:复利计息复贴现计息(3)单复利/贴现计息之间的相关关系单利的实质利率逐期递减,复利的实质利率保持恒定。
单贴现的实质利率逐期递增,复贴现的实质利率保持恒定。
时,相同单复利场合,复利计息⽐单利计息产⽣更⼤的积累值。
所以长期业务⼀般复利计息。
时,相同单复利场合,单利计息⽐复利计息产⽣更⼤的积累值。
所以短期业务⼀般单利计息。
3、按照利息转换频率划分:(1)⼀年转换⼀次:实质利率(实质贴现率)(2)⼀年转换次:名义利率(名义贴现率)(3)连续计息(⼀年转换⽆穷次):利息效⼒特别,恒定利息效⼒场合有三、变利息1、什么是变利息2、常见的变利息情况(1)连续变化场合(2)离散变化场合第⼆节:利息问题求解原则⼀、利息问题求解四要素1、原始投资本⾦2、投资时期的长度3、利率及计息⽅式4、本⾦在投资期末的积累值⼆、利息问题求解的原则1、本质任何⼀个有关利息问题的求解本质都是对四要素知三求⼀的问题。
2、⼯具现⾦流图:⼀维坐标图,记录资⾦按时间顺序投⼊或抽出的⽰意图。
3、⽅法建⽴现⾦流分析⽅程(求值⽅程)4、原则在任意时间参照点,求值⽅程等号两边现时值相等。
第三节:年⾦⼀、年⾦的定义与分类1、年⾦的定义:按⼀定的时间间隔⽀付的⼀系列付款称为年⾦。
原始含义是限于⼀年⽀付⼀次的付款,现已推⼴到任意间隔长度的系列付款。
2、年⾦的分类:(1)基本年⾦约束条件:等时间间隔付款付款频率与利息转换频率⼀致每次付款⾦额恒定(2)⼀般年⾦不满⾜基本年⾦三个约束条件的年⾦即为⼀般年⾦。
保险精算知识点总结大全保险精算是保险行业中的一个重要领域,它涉及到对风险的评估、定价和资金管理等方面。
保险精算师需要具备较强的数学、统计、金融和经济学知识,以及对保险业务和法规的深入了解。
以下是保险精算的一些重要知识点总结:一、基本概念1. 保险精算的定义:保险精算是通过对各种风险进行合理的评估和定价,以确保保险公司能够按时履行赔偿责任,并实现盈利的一种数学方法。
2. 保险精算师的职责:保险精算师负责评估保险风险、确定保险费率、设计保险产品,以及监督保险资金的投资和运营。
3. 保险精算的原理:保险精算基于概率统计和金融理论,通过对风险和不确定性的分析,为保险公司提供合理的决策依据。
4. 保险精算的目的:保险精算的目标是确保保险公司能够在长期内实现风险和资金的良好平衡,从而保障保险人的利益。
二、精算模型1. 保费定价模型:保费定价是保险精算中的一个核心问题,它需要考虑到风险的大小、概率和时间价值等因素,以确定合理的保险费率。
2. 赔偿准备金模型:赔偿准备金是保险公司为未来赔付而准备的资金,其计算需要考虑到赔付概率、赔付额度和投资收益等因素。
3. 风险评估模型:风险评估模型是保险精算师用来评估各种风险的工具,包括概率统计模型、经济资本模型和风险管理模型等。
4. 投资收益模型:保险资金的投资收益对于保险公司的经营至关重要,保险精算师需要设计合理的投资组合和资产配置策略。
5. 资本充足模型:资本充足是保险公司稳健经营的基础,保险精算师需要评估公司的资本充足状况,并提出合理的资本管理建议。
三、精算实践1. 产品设计与开发:保险精算师需要根据市场需求和公司战略,设计和开发新的保险产品,并确定相应的保费和赔付准备金。
2. 保险费率调整:保险精算师需要根据市场变化和风险情况,及时调整保险费率,并对旧产品进行风险评估和定价修正。
3. 精算报告与分析:保险精算师需要编制精算报告,对保险业务进行经营分析和风险评估,并及时向管理层提出建议。
保险精算知识点总结一、保险精算的基本原理保险精算的基本原理主要包括风险评估、定价和赔付计算。
风险评估是指对被保险风险的分析和评估,包括风险的特点、概率、影响程度等,并通过数理统计和概率分析等方法来对风险进行量化和评估。
定价是指根据风险评估的结果来确定保险产品的定价,即保险费率的确定。
赔付计算是指根据保险条款和赔付原则,对保险事故的赔付进行计算和处理。
二、保险精算的技术方法1. 数理统计数理统计是保险精算中最基本的技术方法之一,它涉及到对大量的数据进行分析和处理,通过统计学的方法来评估风险的概率和程度,为保险产品的定价和赔付计算提供依据。
2. 概率分析概率分析是指利用概率论的知识来对风险进行定量的评估和分析,包括风险的概率分布、期望值、方差等。
通过概率分析,可以对不确定性的风险进行量化和评估,为保险精算提供科学的依据。
3. 统计建模统计建模是指将数理统计和概率分析的方法运用到保险精算中,通过建立数学模型来对风险进行评估和定价。
统计建模可以通过回归分析、时间序列分析、生存分析等方法来对不同类型的风险进行建模和预测。
4. 风险管理风险管理是保险精算中非常重要的一个环节,它涉及到对风险的识别、评估、控制和管理。
通过风险管理,可以有效地降低保险公司的风险暴露和损失,提高其经营的安全性和稳定性。
三、保险精算的应用领域保险精算的应用领域非常广泛,包括人寿保险、财产保险、健康保险、再保险等方面。
在人寿保险中,保险精算主要涉及到寿险责任的定价、赔付计算和资金积累的管理;在财产保险中,保险精算主要涉及到财产损失的评估、定价和赔付计算;在健康保险中,保险精算主要涉及到医疗费用的定价和管理等。
此外,再保险领域也是保险精算的重要应用领域,它涉及到对风险的再分担和再定价。
四、保险精算的发展趋势随着信息技术和数据分析的发展,保险精算的方法和技术也在不断地更新和改进。
未来,保险精算将更加注重在对大数据的分析和处理上,通过数据挖掘、机器学习和人工智能等技术手段来提高风险评估和定价的精准度。
保险精算学知识点总结保险精算学是一门研究保险风险和产品价格的学科,它涉及数学、统计学、经济学和财务学等多个领域的知识。
保险精算师通过对保险风险进行评估和分析,为保险公司制定产品定价和资产配置策略提供支持。
下面是保险精算学的一些重要知识点总结:一、风险评估1. 风险分析保险精算师需要对各种风险因素进行分析,包括人身保险中的寿命风险和健康风险,财产保险中的灾害风险和财产损失风险等。
通过建立数学模型,对这些风险进行定量评估,以便为保险产品定价和资产配置提供依据。
2. 数据分析在进行风险评估时,保险精算师需要分析大量的数据,包括历史保险索赔数据、资本市场数据和经济指标等。
通过对这些数据的分析,可以揭示潜在的风险趋势和相关性,为风险评估提供依据。
3. 风险建模为了更准确地评估保险风险,保险精算师需要使用各种风险建模技术,包括概率统计模型、时间序列分析和蒙特卡洛模拟等。
这些模型可以帮助精算师理解风险的概率分布和动态特性,为产品定价和资产配置提供更精准的预测。
二、产品定价1. 保费确定产品定价是保险精算师的核心工作之一,它涉及确定保险产品的保费水平。
在进行产品定价时,保险精算师需要考虑到多种因素,包括风险成本、费用支出、税收和利润要求等。
通过建立数学模型,保险精算师可以确定最优的保费水平,以平衡风险和利润的关系。
2. 实现利润保险公司的盈利能力取决于保险产品的定价是否合理。
保险精算师需要确保产品的保费收入能够覆盖风险成本和费用支出,并且实现一定的利润。
为了实现利润,精算师需要对产品的风险特性进行深入分析,以便设计出合理的保费结构。
三、资产配置1. 风险管理保险公司拥有大量的资金,在进行资产配置时,需要考虑到对冲风险和实现收益的平衡。
保险精算师需要运用投资组合理论和风险管理工具,制定合理的资产配置策略,以确保保险资金的安全性和盈利能力。
2. 投资收益保险公司的财务收益主要来自资产投资收益。
保险精算师需要在进行资产配置时,充分考虑投资组合的收益率和风险特性,以便最大限度地实现投资收益。
满期保费指从保单生效日起至统计区间末已经满期的那部分保费。
满期保费=保费收入×【min(统计区间末,保险责任终止日)-保单生效日】/【保险责任终止日-保单生效日】。
满期保费通常是针对一张保单或者是在一个承保年度内起保的所有保单而言.已赚保费指在统计区间内所有有效(包括在整个区间有效或在部分区间有效)的保单在统计区间内已经经过的那部分保费.已赚保费=统计区间保费收入+统计区间期初未到期责任准备金-统计区间期末未到期责任准备金。
已赚保费是计算统计区间承保利润的基础.反映了新承保保单和部分历史保单的保费对于核算区间的收入贡献.通常在业务保持增长的情况下,已赚保费低于保费收入。
已发生未报告未决赔款准备金(IBNR):指截止至统计区间末已经发生但尚未接到报案的案件的精算评估金额。
广义的IBNR还包含已发生未立案准备金、未决估损不足准备金、重立案件准备金以及理赔费用准备金。
其中已发生未立案准备金是指为保险事故已经报告但未记录到理赔系统的案件提取的准备金;未决估损不足准备金是指最初立案金额与最终实际赔付之间的差额;重立案件准备金是指已赔付案件,出现新的信息,赔案被重新提起并要求额外增加赔付;理赔费用准备金是指为尚未结案的赔案可能发生的费用而提取的准备金。
其中为直接发生于具体赔案的专家费、律师费、损失检验费等而提取的为直接理赔费用准备金;为非直接发生于具体赔案的费用而提取的为间接理赔费用准备金。
未到期责任准备金:指对在统计区间末仍然有效的保单的尚未终止的保险责任提取的保费责任准备金.每张保单的未到期责任准备金=保费收入×【该保单的保险责任终止日-统计区间末】/【该保单的保险责任终止日-保单生效日】。
上述计算方法为三百六十五分之一法.统计区间末的未到期责任准备金为在统计区间末仍然有效的所有保单的未到期责任准备金之和。
未到期责任准备金是计算统计区间已赚保费的基础纯风险保费:纯风险保费=出险频度×案均赔款×损失发展因子×趋势发展因子【损失发展因子:损失在未来的发展。
第一章:利息理论基础第一节:利息的度量一、利息的定义利息产生在资金的所有者和使用者不统一的场合,它的实质是资金的使用者付给资金所有者的租金,用以补偿所有者在资金租借期内不能支配该笔资金而蒙受的损失。
二、利息的度量利息可以按照不同的标准来度量,主要的度量方式有1、按照计息时刻划分:期末计息:利率期初计息:贴现率2、按照积累方式划分:(1)线性积累:单利计息单贴现计息(2)指数积累:复利计息复贴现计息(3)单复利/贴现计息之间的相关关系Ø单利的实质利率逐期递减,复利的实质利率保持恒定。
单贴现的实质利率逐期递增,复贴现的实质利率保持恒定。
时,相同单复利场合,复利计息比单利计息产生更大的积累值。
所以长期业务一般复利计息。
时,相同单复利场合,单利计息比复利计息产生更大的积累值。
所以短期业务一般单利计息。
3、按照利息转换频率划分:(1)一年转换一次:实质利率(实质贴现率)(2)一年转换次:名义利率(名义贴现率)(3)连续计息(一年转换无穷次):利息效力特别,恒定利息效力场合有三、变利息1、什么是变利息2、常见的变利息情况(1)连续变化场合(2)离散变化场合第二节:利息问题求解原则一、利息问题求解四要素1、原始投资本金2、投资时期的长度3、利率及计息方式4、本金在投资期末的积累值二、利息问题求解的原则1、本质任何一个有关利息问题的求解本质都是对四要素知三求一的问题。
2、工具现金流图:一维坐标图,记录资金按时间顺序投入或抽出的示意图。
3、方法建立现金流分析方程(求值方程)4、原则在任意时间参照点,求值方程等号两边现时值相等。
第三节:年金一、年金的定义与分类1、年金的定义:按一定的时间间隔支付的一系列付款称为年金。
原始含义是限于一年支付一次的付款,现已推广到任意间隔长度的系列付款。
2、年金的分类:(1)基本年金约束条件:等时间间隔付款付款频率与利息转换频率一致每次付款金额恒定(2)一般年金不满足基本年金三个约束条件的年金即为一般年金。
一、IBNR基本概念1、IBNR在利润核算中的作用综合赔付率=综合赔款/ 已赚保费已赚保费=保费收入–未到期提转差综合赔款=已决赔款+ 未决赔款准备金提转差=已决赔款+ 已报未决提转差+ IBNR提转差+ 间接理赔费用提转差即:在利润报表中,IBNR对利润的影响是通过IBNR提转差影响的。
至5月底各机构IBNR提转差占已赚保费比如下:2、IBNR的定义及构成●IBNR准备金有广义和狭义之分。
●狭义IBNR准备金,即保险公司为已经发生但被保险人还未向保险人报案的赔案所进行的资金准备。
●广义IBNR准备金主要包括3部分准备金:➢狭义IBNR准备金。
➢未决赔案的估损不足准备金。
已经报案的未决赔案由于估损不足导致最终赔付与估损金额的差额。
➢重开赔案准备金。
对已经赔付的赔案,经过一定时期后,由于零结案重开、追加医疗费用等原因赔案被重新提起并要求额外增加赔付时,保险人必须提取相应的准备金。
在实际评估过程中,均为广义IBNR准备金。
3、IBNR的主要评估方法●赔付率法➢在数据变动较大、过去数据经验不可能提供稳定的结果,或是理赔经验进展不充分时,赔付率法评估结果可以为准备金评估提供参考。
➢IBNR = 满期保费×终极赔付率–已决赔款–已报未决。
终极赔付率可以根据保险公司的历史数据、实际业务状况、风险恶化程度、保费的充足性、承保人员的经验判断和其他可行的行业数据进行估计。
●链梯法➢链梯法通过对历史数据的发展趋势进行分析,选定赔款的进展因子,进而预测赔款的发展趋势和终极损失。
➢链梯法可使用已决赔款数据,也可以使用已报告赔款数据。
已决链梯法基本假设是每个事故年(季度)的赔款支出具有相同的进展模式。
IBNR=∑(累计已决赔款×已决赔款进展因子–累积已决赔款–已报未决)。
已报告链梯法,除了假设理赔模式稳定外,还需假设:赔案报告模式稳定。
IBNR=∑(累计已报告赔款×已报告赔款进展因子–累积已报赔款)。
第十二章保险精算本章要点1.保险精算是以数学、统计学、金融学、保险学及人口学等学科的知识和原理,去解决商业保险和社会保障业务中需要精确计算的项目,如研究保险事故的出险规律、保险事故损失额的分布规律、保险人承担风险的平均损失及其分布规律、保险费和责任准备金等保险具体问题的计算。
2.保险精算的基本任务。
在寿险精算中,利率和死亡率的测算是厘定寿险成本的两个基本问题。
非寿险精算始终把损失发生的频率、损失发生的规模以及对损失的控制作为它的研究重心。
保险精算的首要任务是保险费率的确定,但这并不是保险精算的全部。
伴随着金融深化的利率市场化,保险基金的风险也变为精算研究的核心问题。
在这方面要研究的问题包括投资收益的敏感性分析和投资组合分析、资产和负债的匹配等。
3.保险精算的基本原理。
保险精算其最基本的原理可简单归纳为收支相等原则和大数法则。
所谓收支相等原则,就是使保险期内纯保费收入的现金价值与支出保险金的现金价值相等。
所谓大数法则,是用来说明大量的随机现象由于偶然性相互抵消所呈现的必然数量规律的一系列定理的统称。
4.在非寿险精算实务中,确定保险费率的方法主要有观察法、分类法和增减法。
5.在一定的要求之下,“大数”由下面的公式来测定:6.自留额与分保额的决策。
假定在原有业务上,赔偿基金为P1,赔偿金额标准差为Q1,则。
现将另外接受n个保险单位,保额为x元,纯费率为q,则合并业务后要使K1+2仍维持K1的值,则应有:当q十分小时,可近似得到:即要维持原有的财务稳定性,对于新接受的业务,如果保险金额在x以下,则可全部自留;对于保险金额超过x的新业务,自留额以x为限,超过部分予以分保。
7.寿险精算的计算原理及公式。
8.理论责任准备金及其计算。
9.实际责任准备金及其计算。
第一节保险精算概述一、保险精算的概念和基本任务所谓精算,就是运用数学、统计学、金融学及人口学等学科的知识和原理,去解决工作中的实际问题,进而为决策提供科学依据。
保险精算知识点
保险精算是保险行业中极为重要的一个领域,它是基于统计、数理及经济学理论,运
用数学及统计方法分析风险的特征、评价保险公司的损益、开发新的产品,进行保险费率
的设计和预测,以及制定保险公司的决策。
下面是保险精算的一些知识点。
一、保险数学
保险数学是保险精算中重要的一部分,它主要包括以下内容:
1、风险理论:包括最小保费原理、最小方差原理、福利基本原理和威尔金森模型等。
其中,最小保费原理是指保险费用必须足以支付所有的损失,同时保险公司应该争取最大
的利润。
最小方差原理是指对于相同的保费,在理论上应该选择风险系数最小的,也就是
选择最稳妥的投保方案。
2、生命保险数学:主要包括寿险费率的制定、残值保险、年金等计算方法。
3、财产保险数学:主要包括财产风险的概率分布、历史数据的分析、险种的制定和
费率的设计等。
二、统计学
1、统计分布:主要包括正态分布、泊松分布和二项分布等。
2、统计推断:主要包括点估计和区间估计等。
3、假设检验:主要是用于检验统计数据中的假设。
4、回归分析:主要是用于分析与预测变量之间的关系。
三、金融市场
1、资产定价理论:主要是用于分析资产回报率和风险之间的关系,以及评价不同资
产的相对价值。
2、投资组合理论:主要是用于评估不同投资组合的风险和收益。
四、计量经济学
1、时序分析:主要是用于分析时间序列数据,并且对未来的预测有很大的帮助。
2、横截面分析:主要是用于分析横截面数据,包括交叉分析和因素分析等。
3、面板数据分析:主要是用于同时分析时间序列数据和横截面数据。
五、风险管理
保险精算最终的目的是降低风险和管理风险,因此风险管理也是保险精算中的重要领域。
它包括以下几个方面:
1、风险的测量和评估:主要是对不同种类的风险进行评估和管理。
2、风险控制:主要是通过投保和其他风险管理工具来控制风险。
3、风险监测:主要是对风险进行监控和跟踪,以及对它们进行预测。
总之,保险精算是保险行业中非常重要的一个领域,它不仅需要数学、统计、经济学等学科的知识,还需要对金融市场、计量经济学和风险管理等领域有深刻的理解。
只有掌握这些知识,才能更好地评估风险、制定保险产品、管理资产和降低风险。