八年级下册数学 一元二次方程根与系数的关系复习专题(附答案)
- 格式:docx
- 大小:28.07 KB
- 文档页数:3
2.4一元二次方程根与系数的关系一、选择题1.一元二次方程x2+4x−3=0的两根为x1,x2,则x1·x2的值是()A.4B.−4C.3D.−32.已知一元二次方程x2+3x−4=0的两个根为x1,x2,则x1·x2的值是()A.4B.−4C.3D.−33.已知x1,x2是方程x2−x−3=0的两根,那么x21+x22的值是()A.1B.5C.7D.49 44.一元二次方程x2−3x−1=0的两根为x1,x2,则x1+x2的值是()A.3B.−3C.−1D.15.设α,β是方程x2−2x−1=0的两根,则代数式α+β+αβ的值是()A.1B.−1C.3D.−36.已知α,β是一元二次方程x2−5x−2=0的两个实数根,则α2+αβ+β2的值为()A.−1B.9C.23D.277.已知一元二次方程x2−6x+c=0有一个根为2,则另一个根为()A.2B.3C.4D.88.已知m,n是关于x的一元二次方程x2−3x+a的两个根,若(m−1)(n−1)=−6.则a的值为()A.−10B.−4C.4D.109.已知x1,x2是关于x的一元二次方程x2−(2m+3)x+m2=0的两个不相等的实数根,且满足x1+x2=m2,则m的值是()A.−1B.3C.3或−1D.−3或110.关于x的方程x2+|x|−a2=0的所有实数根之和等于()A.−1B.1C.0D.−a2二、填空题11.已知一元二次方程x2+2x−5=0的两根为x1,x2,则x1+x2=.12.已知x1,x2是方程2x2−3x=3的两个根,则x1x2+x2x1的值为.13.已知关于x的方程x2−6x+k=0的两个根分别是m,n,且3m+2n=20,则k的值为.14.如果一个矩形的长和宽是一元二次方程x2−10x+20=0的两个根,那么这个矩形的周长是.15.若方程2x2−3x−4=0的两根为x1,x2,则x1·x2=.16.若关于x的方程x2+px+1=0的一个实数根的倒数恰好是它本身,则p的值是.17.已知x1,x2是方程x2−x−2013=0的两个实数根,则x31+2014x2−2013=.18.若两个不相等的实数m,n满足m2−2m−1=0,n2−2n−1=0,则m2+n2的值是.19.已知x1,x2是一元二次方程4x2−(3m−5)x−6m2=0的两个实数根,且x1x2=32,则m=.20.关于x 的二次方程mx 2−2(m −1)x −4=0(m =0)的两根一个比1大,另一个比1小,则m 的取值范围是.三、解答题21.已知关于x 的一元二次方程x 2−(k +1)x −6=0的一个根是2,求方程的另一根和k 的值.22.已知关于x 的一元二次方程x 2−(m −3)x −m 2=0.(1)求证:方程总有两个不相等的实数根.(2)设这个方程的两个实数根分别为x 1,x 2,且|x 1|=|x 2|−2,求m 的值及方程的根.23.设x 1,x 2是方程2x 2−4mx +2m 2+3m −2=0的两个实数根,当m 为何值时,x 21+x 22有最小值?并求出这个最小值.24.已知一元二次方程ax 2−√2bx +c =0的两个根满足|x 1−x 2|=√2,且a ,b ,c 分别是△ABC 的∠A ,∠B ,∠C 的对边.若a =c ,求∠B 的度数.小敏解得此题的正确答案”∠B =120◦”后,思考以下问题,请你帮助解答.(1)若在原题中,将方程改为ax 2−√3bx +c =0,要得到∠B =120◦,而条件”a =c ”不变,那么应对条件中的|x 1−x 2|的值作怎样的改变?并说明理由.(2)若在原题中,将方程改为ax 2−√nbx +c =0(n 为正整数,n ⩾2),要得到∠B =120◦,而条件”a =c”不变,那么条件中的|x 1−x 2|的值应改为多少(不必说明理由)?25.已知关于x 的一元二次方程x 2+(m +3)x +m +1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根.(2)已知x 1,x 2是原方程的两个根,且|x 1−x 2|=2√2,求m 的值,并求出此时方程的根.2.4一元二次方程根与系数的关系—答案一、选择题12345678910D B C A A D C B B C9.由题意,得x 1+x 2=m 2=2m +3,∴m 2−2m −3=0,解得m 1=3,m 2=−1.∵∆=[−(2m +3)]2−4m 2=12m +9>0,∴m >−34.∴m 2=−1不合题意,舍去.∴m =3.二、填空题11.−212.−7213.−1614.2015.−216.±2解析:由题意,得x 1·x 2=1,且有一个实数根的倒数恰好是它本身,∴x 1=1,x 2=1或x 1=−1,x 2=−1.∴p =−(x 1+x 2)=±2.17.2014解析:因为x 1+x 2=1,x 1·x 2=−2013.所以x 2=1−x 1.所以x 1(1−x 1)=−2013.所以x 21=x 1+2013.所以x 31+2014x 2−2013=x 1(x 1+2013)+2014x 2−2013=x 21+2013x 1+2014x 2−2013=x 1+2013+2013x 1+2014x 2−20132014(x 1+x 2)=2014×1=2014.18.6.解析:由题意,知m ,n 是一元二次方程x 2−2x −1=0的两个根,∴m +n =2,mn =−1,∴m 2+n 2=(m +n )2−2mn=22−2×(−1)=4+2=6.19.1或5解析:由韦达定理知x 1+x 2=3m −54,x 1x 2=−32m 2.∵ x 1x 2=32,而由x 1x 2=−32m 2<0,知x 1,x 2异号.故x 1x 2=−32.令x 1=3k ,x 2=−2k ,则得3k +(−2k )=3m −54,(3k )(−2k )=−32m 2.从上面两式消去k 得,−6Ä3−5m 4ä2=−32m 2.即m 2−6m +5=0.解得m 1=1,m 2=5.20.m >0或m <−2解析:设方程有两个根为x 1,x 2,由韦达定理得x 1+x 2=2(m −1)m ,x 1·x 2=−4m.又由已知,有(x 1−1)(x 2−1)<0,即x 1x 2−(x 1+x 2)+1<0.故有−4m −2(m −1)m+1<0.∴2+m m>0,∴m >0或m <−2.三、解答题21.设方程的另一根为x 1,由韦达定理2x 1=−6,∴x 1=−3.由韦达定理−3+2=k +1,∴k =−2.22.(1)∵a =1,b =−(m −3)=3−m ,c =−m 2,∴∆=b 2−4ac =(3−m )2−4×(−m 2)=5Äm −35ä2=365>0,∴方程总有两个不相等的实数根.(2)∵x 1·x 2=ca=−m 2⩽0,∴x 1⩾0,x 2⩽0或x 1⩽0,x 2⩾0.∵|x 1|=|x 2|−2,∴|x 1|−|x 2|=−2.若x 1⩾0,x 2⩽0,则x 1+x 2=−2,∴x 1+x 2=m −3=−2,即m =1.方程可化为x 2+2x −1=0,解得x 1=−1+√2,x 2=−1−√2,∴x 1+x 2=m −3=2,即m =5.方程可化为x 2−2x −25=0,解得x 1=1−√26,x 2=1+√26.23.∵x 1,x 2是方程2x 2−4mx +2m 2+3m −2=0的两个实数根,∴x 1+x 2=2m ,x 1·x 2=2m 2+3m +22,∆=(−4m )2−4×2×(2m 2+3m −2)=16m 2−16m 2−24m +16⩾0,∴m ⩽23,x 21+x 22=(x 1+x 2)2−2x 1·x 2=4m 2−(2m 2+3m −2)=2m 2−3m +2=2 Äm −34ä2 +78.当m ⩽23时,易知2 Äm −34ä2 随m 的增大而减少,∴当m =23时,x 21+x 22有最小值,最小值为89.24.(1)∵∠B =120◦,a =c ,∴b =√3a ,△=5a 2>0.又∵|x 1−x 2|=√(x 1+x 2)2−4x 1x 2=√3b 2a −4c a ∴|x 1−x 2|=√5.(2)|x 1−x 2|=√3n −4.25.(1)∵∆=(m +3)2−4(m +1)=m 2+6m +9−4m −4=m 2+2m +5=(m +1)2+4⩾4>0,∴无论m 取何值,原方程总有两个不相等的实数根.(2)∵x 1,x 2是原方程的两个根,∴x 1+x 2=−(m +3),x 1x 2=m +1.∵|x 1−x 2|=2√2,∴(x 1−x 2)2=8,∴(x 1+x 2)2−4x 1x 2=8,∴[−(m +3)]2−4(m +1)=8,整理,得m 2+2m −3=0,解得m 1=−3,m 2=1.当m =−3时,x 2−2=0,解得x 1=√2,x 2=−√2;当m =1时,x 2+4x +2=0,解得x 1=−2+√2,x 2=−2−√2.。
韦达定理命题点一:利用判别式求值例1若关于x 的方程ax2+2(a +2)x +a =0有实数解,则实数a 的取值范围是 a ≥-1 .例2(1)如果关于x 的一元二次方程kx2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( D )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠0(2)若关于x 的一元二次方程12x2-2mx -4m +1=0有两个相等的实数根,则(m -2)2-2m(m -1)的值为 72. 命题点二:巧用韦达定理妙解代数式例3若m ,n 是方程x2+x -1=0的两个实数根,则m2+2m +n 的值为 0 . 例4(1)已知α,β是方程x2-x -1=0的两个实数根,则代数式α2+α(β2-2)的值为 0 .(2)若关于x 的一元二次方程2x2-2x +3m -1=0的两个实数根为x1,x2,且x1x2>x1+x2-4,则实数m 的取值范围是( D )A .m>-53B .m ≤12C .m <-53D .-53<m ≤12命题点三:根据根的范围求值例5已知关于x 的方程ax2+(a +1)x +6a =0有两个不相等的实数根x1,x2(x1<1<x2),则实数a 的取值范围是( C )A .-1<a <0B .a <-1C .-18<a <0D .a <-18例6已知关于x 的方程x2+2px +1=0的两个实数根一个大于1,另一个小于1,则实数p 的取值范围是 p <-1 .命题点四:解绝对值方程例7设方程⎪⎪⎪⎪x2+ax =4只有3个不相等的实数根,求a 的值和相应的3个根.解:方程等价于如下两个方程:x2+ax -4=0,① x2+ax +4=0. ② ∵原方程只有3个不相等的实根,又∵两个方程不可能有公共根,∴必有且只有方程①或②有重根,Δ1=a2+16≥0,Δ2=a2-16≥0.由于Δ1>Δ2,故只可能是Δ2=0,即a =±4.∴当a =4时,相应的根为-2,-2±22;∴当a =-4时,相应的根为2,2±2 2.例8若关于x 的方程x2-(m +5)⎪⎪⎪⎪x +4=m 恰好有3个实数解,则实数m = 4 . 命题点五:构造方程求值例9已知m2-2m -1=0,n2+2n -1=0且mn ≠1,则mn +n +1n的值为 3 . 例10已知mn ≠1,且5m2+2 018m +9=0,9n2+2 018n +5=0,则m n值为( B )A.59B.95C.6703D .-402 命题点六:三角形边的问题例11如果方程(x -1)(x2-2x +m)=0的三个根可以作为一个三角形的三边之长,那么实数m 的取值范围是( C )A .0≤m ≤1B .m ≥34 C.34<m ≤1 D.34≤m ≤1 例12△ABC 的一边长为5,另外两边长恰为方程2x2-12x +m =0的两个根,则m 的取值范围是 112<m ≤18 . 命题点七:整数根问题例13已知整数p ,q 满足p +q =2 010,且关于x 的一元二次方程67x2+px +q =0的两个根均为正整数,则p = -2278 .例14求满足如下条件的所有k 的值:使关于x 的方程kx2+(k +1)x +(k -1)=0的根都是整数.解:分k =0和k ≠0两种情况讨论.当k =0时,所给方程为x -1=0,有整数根x =1.当k ≠0时,所给方程为二次方程.设两个整数根为x1和x2,则x1+x2=-k +1k =-1-1k,① x1·x2=k -1k =1-1k.② 由①-②,得x1+x2-x1·x2=-2,整理,得(x1-1)(x2-1)=3.∵方程的根都是整数,∴(x1-1)(x2-1)=3=1×3=(-1)×(-3).有x1-1=1,x2-1=3或x1-1=-1,x2-1=-3.故x1+x2=6或x1+x2=-2,即-1-1k =6或-1-1k =-2,解得k =-17或k =1. 又∵Δ=(k +1)2-4k(k -1)=-3k2+6k +1,当k =-17或k =1时,都有Δ>0.∴满足要求的k 值为0,-17,1. 课后练习1.已知关于x 的一元二次方程mx2-(m +2)x +m 4=0有两个不相等的实数根x1,x2,若1x1+1x2=4m ,则m 的值为( A ) A .2 B .-1 C .2或-1 D .不存在2.已知关于x 的方程x2-(a2-2a -15)x +a -1=0的两个根互为相反数,则a的值是( B )A.5 B.-3 C.5或-3 D.13.已知四个互不相等的正实数a,b,c,d满足(a2012-c2012)(a2012-d2012)=2 012,(b2012-c2012)(b2012-d2012)=2 012,则(ab)2012-(cd)2012的值为( A )A.-2 012 B.-2 011 C.2 012 D.2 0114.若实数a,b满足12a-ab+b2+2=0,则实数a的取值范围是( C ) A.a≤-2 B.a≥4 C.a≤-2或a≥4 D.-2≤a≤45.已知关于x的方程x2+(k-2)x+5-k=0有两个大于2的实数根,则k的取值范围是( A )A.-5<k≤-4 B.k>-5 C.k≤-4 D.-4≤k<-26.关于x的一元二次方程x2-2kx+k2-k=0的两个实数根分别是x1,x2,且x21+x22=4,则x21-x1x2+x22的值为4 .7.如果m,n是两个不相等的实数,且满足m2-m=3,n2-n=3,那么代数式2n2-mn+2m+2 015=2026 .8.设a,b是一元二次方程x2-x-1=0的两个根,则3a3+4b+2a2的值为11 .9.若方程⎪⎪⎪⎪x2-5x =a 有且只有相异的两个实数根,则a 的取值范围是 a =0或a>254. 10.若p +q =198,则方程x2+px +q =0的最大整数解为 200 .11.关于x 的一元二次方程x2-mx +2m -1=0的两个实数根分别是x1,x2,且x21+x22=7,求下列代数式的值:(1)(x1-x2)2. (2)x2x1+2+x1x2. 解:由根与系数的关系,得x1+x2=m ,x1·x2=2m -1.∵x21+x22=(x1+x2)2-2x1x2=m2-2×(2m -1)=7,∴m2-4m -5=0.∴m1=5,m2=-1.当m1=5时,Δ=m2-4(2m -1)=25-36=-9<0(不合题意,舍去); 当m2=-1时,Δ=1-(-12)=13>0.∴m =-1.∴x1+x2=-1,x1x2=-3.∴(x1-x2)2=(x1+x2)2-4x1x2=13,x2x1+2+x1x2=(x1+x2)2x1·x2=-13.12.已知方程x2+px +q =0的两个根是x1,x2,那么x1+x2=-p ,x1x2=q.请根据以上结论,解决下列问题:(1)已知a ,b 满足a2-15a -5=0,b2-15b -5=0,求a b +b a的值. (2)已知a ,b ,c 均为实数,且a +b +c =0,abc =16,求正数c 的最小值. 解:(1)当a ≠b 时,则a ,b 为方程x2-15x -5=0的两个根,∴a +b =15,ab =-5.∴原式=a2+b2ab =(a +b)2-2ab ab =152-2×(-5)-5=-47. 当a =b 时,原式=2.综上所述,a b +b a的值为-47或2. (2)由条件,得a +b =-c ,ab =16c ,则a ,b 为方程x2+cx +16c=0的两个实数根,∴Δ=c2-4×16c≥0,c3≥64,即c ≥4. 故正数c 的最小值为4.13.(自主招生模拟题)已知x1,x2,x3(x1<x2<x3)为关于x 的方程x3-3x2+(a +2)x -a =0的三个实数根,则4x1-x21+x22+x23的值为( A )A .5B .6C .7 D.814.(自主招生模拟题)设a ,b ,c ,d 为四个不同的实数,若a ,b 为方程x2-10cx -11d =0的根,c ,d 为方程x2-10ax -11b =0的根,则a +b +c +d = 1210 .15.(自主招生真题)设x 为正数,求分式x (x +1)2的最大值. 解:设k =x (x +1)2. 整理,得kx2+(2k -1)x +k =0.由Δ=(2k -1)2-4k2≥0,得k ≤14, 即分式x(x +1)2的最大值为14.。
一元二次方程根与系数旳关系习题一、单选题:1.有关x 旳方程0122=+-x ax 中,如果0<a ,那么根旳状况是( B )(A )有两个相等旳实数根 (B)有两个不相等旳实数根(C )没有实数根 (D)不能拟定a 4)2(2--=∆ 解: 04>-∴a 实数根。
原方程有两个不相等的∴a 44-= 044>-∴a0<a 0>∆即2.设21,x x 是方程03622=+-x x 旳两根,则2221x x +旳值是( C )(A)15 (B)12 (C)6 (D )321x x ,方程两根为解: 2122122212)(x x x x x x -+=+∴ 2332121==+x x x x , 623232=⨯-= 3.下列方程中,有两个相等旳实数根旳是( B )(A ) 2y 2+5=6y(B)x 2+5=2错误!x(C)错误!x 2-错误!x+2=0(D)3x2-2错误!x+1=0 )0(”的方程即可本题为找出“=∆4.以方程x 2+2x-3=0旳两个根旳和与积为两根旳一元二次方程是( B )(A ) y 2+5y -6=0 (B )y2+5y +6=0 (C)y2-5y +6=0 (D)y 2-5y-6=0,则:,解:设方程两根为21x x 0)3)(2()]3()2[(2=--+-+--y y322121-=-=+x x x x , 0652=++y y 即::为根的一元二次方程为和以32--∴5.如果21x x ,是两个不相等实数,且满足12121=-x x ,12222=-x x ,那么21x x •等于( D )(A)2 (B )-2 (C ) 1 (D)-1 1212222121=-=-x x x x ,解: 的两根12221=-∴x x x x 可看作是方程, 121-=∴x x二、填空题:1、如果一元二次方程0422=++k x x 有两个相等旳实数根,那么k =2±。
21.2.4 一元二次方程的根与系数的关系A基础知识详解——————————————☆知识点一元二次方程根与系数的关系B重难点解读—————————☆重难点根据方程中两根的关系确定方程中字母的值○随堂例题例1 已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1、x2.(1)求实数k的取值范围;(2)若x1、x2满足x12+x22=16+x1•x2,求实数k的值.(2)∵关于x 的方程x +(2k-1)x+k -1=0有两个实数根x 1,x 2,∴x 1+x 2=1-2k ,x 1•x 2=k 2-1.∵x 12+x 22=(x 1+x 2)2-2x 1•x 2=16+x 1•x 2,∴(1-2k )2-2×(k 2-1)=16+(k 2-1),即k 2-4k-12=0, 解得k=-2或k=6(不符合题意,舍去). ∴实数k 的值为-2.【一中名师点拨】题目中提到两个实数根,即隐含着根的判别式大于等于0;当根据方程中两根的关系确定方程中字母的值,关键是把这种关系式转化为含x 1+x 2及x 1x 2的形式. ○随堂训练1.(2017烟台)若x 1,x 2是方程x 2-2mx+m 2-m-1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为( D )A .-1或2B .1或-2C .-2D .12.已知关于x 的一元二次方程x 2+(m+2)x+m=0, (1)求证:无论m 取何值,原方程总有两个不相等的实数根; (2)若x 1,x 2是原方程的两根,且2111x x +=-2,求m 的值.解:(1)△=(m+2)2-4m=m 2+4>0,∴无论m 取何值,原方程总有两个不相等的实数根; (2)∵x 1,x 2是原方程的两根, ∴x 1+x 2=-(m+2),x 1x 2=m . ∵2111x x +=2121x x x x +=-mm 2+=-2,解得m=2,经检验,m=2是分式方程的解,且符合题意,∴m 的值为2.课后达标基础训练1.(2017呼和浩特)关于x 的一元二次方程x 2+(a 2-2a )x+a-1=0的两个实数根互为相反数,则a 的值为( B ) A .2 B .0 C .1 D .2或02.(2017新疆)已知关于x 的方程x 2+x-a=0的一个根为2,则另一个根是( A ) A .-3 B .-2 C .3 D .63.已知m ,n 是一元二次方程x 2-4x-3=0的两个实数根,则代数式(m+1)(n+1)的值为( D ) A .-6 B .-2 C .0 D .24.已知实数x 1,x 2满足x 1+x 2=11,x 1x 2=30,则以x 1,x 2为根的一元二次方程是( A )A .x 2-11x+30=0B .x 2+11x+30=0C .x 2+11x-30=0D .x 2-11x-30=05.已知x 1、x 2是方程2x 2+3x-4=0的两根,那么x 1+ x 2= 23- ;x 1·x 2= 2 ;11x +21x = 43- ;x 12+ x 22=47-;21x x -= 423-. 6.已知关于x 的方程x 2+ax+b+1=0的解为x 1=x 2=2,则a+b 的值为 -1 .7.以3+2和3-28.已知方程5x 2+mx-10=0的一根是-5,求方程的另一根及m 的值. 解:设方程的另一个根为k , 则-5k=-2,解得52k =,又k-5=5m -,得m=23.9.已知关于x 的一元二次方程kx 2+x-2=0有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程两个实数根分别为x 1,x 2,且满足x 12+x 22+3x 1•x 2=3,求k 的值.12(1)求实数m 的取值范围;(2)若x 1+x 2=6-x 1x 2,求(x 1-x 2)2+3x 1x 2-5的值. 解:(1)△=(2m-3)2-4m 2=4m 2-12m+9-4m 2=-12m+9,∵△≥0,∴-12m+9≥0,∴m ≤43; (2)由题意可得x 1+x 2=-(2m-3)=3-2m ,x 1x 2=m 2,又∵x 1+x 2=6-x 1x 2,∴3-2m=6-m 2,∴m 2-2m-3=0,∴m 1=3,m 2=-1,又∵m ≤43,∴m=-1,∴x 1+x 2=5,x 1x 2=1,∴(x 1-x 2)2+3x 1x 2-5=(x 1+x 2)2-4x 1x 2+3x 1x 2-5=(x 1+x 2)2-x 1x 2-5=52-1-5=19.能力提升11.(2017仙桃)若α、β为方程2x 2-5x-1=0的两个实数根,则2α2+3αβ+5β的值为( B ) A .-13 B .12 C .14 D .1512.若非零实数a ,b (a ≠0)满足a 2-a-2018=0,b 2-b-2018=0,则ba 11+= 20181-. 13.已知关于x 的方程x 2-(k+1)x+41k 2+1=0的两根是一个矩形两邻边的长,且矩形的对角线长为5,求k= 2 .14.已知关于x 的一元二次方程x 2+(2k+1)x+k 2-2=0的两根为x 1和x 2,且(x 1-2)(x 1-x 2)=0,则k 的值是 -2或-4.15.(2017黄石)已知关于x 的一元二次方程x 2-4x-m 2=0. (1)求证:该方程有两个不等的实根;(2)若该方程的两实根x 1、x 2满足x 1+2x 2=9,求m 的值.。
初中数学一元二次方程根与系数关系专项复习题3(附答案详解)1.一元二次方程x 2+3x =0的解是( )A .x =3B .x 1=0,x 2=3C .x 1=0,x 2=-3D .x =-32.关于x 的一元二次方程x 2+bx ﹣1=0的判别式为( )A .1﹣b 2B .b 2﹣4C .b 2+4D .b 2+13.下列方程中,两实数根之和等于2的方程是( )A .x 2+2x ﹣3=0B .x 2﹣2x+3=0C .2x 2﹣2x ﹣3=0D .3x 2﹣6x+1=0 4.关于x 的一元二次方程x 2-2x +2k =0有实数根,则k 得范围是( )A .k <B .k >C .k≤D .k≥5.方程x 2﹣3x +4=0和2x 2﹣4x ﹣3=0所有实数根的和是( )A .3B .5C .1D .26.方程2270x ax -+=,有一根是12,则另一根为( ) A .7 B .7.5C .-7D .15 7.已知关于x 的方程()2a 1x 2x 10--+=有实数根,则a 的取值范围是()n nA .a 2≤B .a 2>C .a 2≤且a 1≠D .a 2<-8.x=1是关于x 的一元二次方程2x 2+mx−1=0的一个根,则此方程的两根之和为A .−1B .1C .12D .−129.关于x 的方程220x x k +-=有两个相等的实数根,则k 的值为( )A .12 B .12- C .1? D . 1-10.甲、乙两个同学分别解一道二次项系数是1的一元二次方程,甲因把一次项系数看错了,而解得方程两根为﹣3和5,乙把常数项看错了,解得两根为2和2,则原方程是....( )A .x 2+4x ﹣15=0B .x 2﹣4x ﹣15=0C .x 2+4x+15=0D .x 2﹣4x+15=011.若x=3是一元二次方程x 2﹣2x+c=0的一个根,则这个方程的另一个根为_____. 12.设x 1、x 2是方程2x 2+4x-3=0的两个根,则(x 1+1)(x 2+1)=_______.13.已知关于x 的方程230x x k ++=的一个根是1-,则k =________;另一根为________.14.若关于x 的一元二次方程2430kx x -+=有两个不相等的实数根,则k 的取值范围15.若关于x 的一元二次方程()()21220m x mx m --++=有两个不等的实数根,则m 的取值范围是________.16.方程x 2-2x -3=0,两根分别为3,-1,记为[3,-1],请写出一个根为[-2,3]的一元二次方程________________________.17.方程(2x +1)(x +2)=6化为一般形式是______,b 2—4ac ____,用求根公式求得x 1=______,x 2=______,x 1+x 2=______,12x x =______,18.关于x 的一元二次方程2310kx x --=有实数根,则k 的取值范围是________. 19.如果关于x 的方程2420x x m -+=有实数根,则m 的取值范围是_______________.20.已知实数a 、b 满足a b ¹,且222018a a b b -=-=-,则11a b+的值为_______. 21.(1)不解方程,求方程5x 2﹣1=2x 的两个根x 1、x 2的和与积;(2)求证:无论p 取何值,方程(x ﹣2)(x ﹣1)﹣p 2=0总有两个不相等的实数根.22.如果x 1,x 2是一元二次方程ax 2+bx+c=0的两根,那么有x 1+x 2=-b a ,x 1x 2=c a.这是一元二次方程根与系数的关系,我们可以利用它来解题,例如:x 1,x 2是方程x 2+6x-3=0的两根,求x 12+x 22的值.解法可以这样:因为x 1+x 2=-6,x 1x 2=-3,所以x 12+x 22=(x 1+x 2)2-2x 1x 2=(-6)2-2×(-3)=42. 请你根据以上解法解答下题:设x 1,x 2是方程2x 2-x-15=0的两根,求: (1)11x +21x 的值; (2)(x 1-x 2)2的值.23.关于x 的方程3x 2﹣2x+m=0的一个根为﹣1,求方程的另一个根及m 的值.24.关于x 的一元二次方程()21210k x x +++=的实数解是1x 和2x . ()1求k 的取值范围;()2如果12121x x x x k +-=-,求k 的值.25.已知2x 2﹣4x+c=0的一个根,求方程的另一个根和c 的值.26.已知:关于x 的方程x 2+2ax+a 2﹣1=0(1)不解方程,判列方程根的情况; (2)若方程有一个根为2,求a 的值.27.已知关于x 的一元二次方程2220x x k -+-=有两个不相等的实数根1x ,2x . (1)求k 的取值范围;(2)若1x ,2x 满足211212325x x x x x ---<,且k 为整数,求k 的值.28.阅读材料:①韦达定理:设一元二次方程ax 2+bx+c=0(且a≠0)中,两根12x x 、有如下关系: 12b x x a +=-,12c x x a⋅=. ②已知p 2﹣p ﹣1=0,1﹣q ﹣q 2=0,且pq≠1,求1pq q+ 的值. 解:由p 2﹣p ﹣1=0及1﹣q ﹣q 2=0,可知p≠0,q≠0.又∵pq≠1,∴1p q≠ ; ∴1﹣q ﹣q 2=0可变形为21110q q⎛⎫--= ⎪⎝⎭的特征.所以p 与1q是方程x 2﹣x ﹣1=0的两个不相等的实数根. 则p+1q=1, ∴1pq q+=1. 根据阅读材料所提供的方法,完成下面的解答.已知:2m 2﹣5m ﹣1=0,21520n n +-=,且m≠n .求:11m n+ 的值.29.已知关于x 的方程:2244(3)x m x m --=(1)求证:无论m 取什么实数值,这个方程总有两个相异实根.(2)若这个方程的两个实数根1x 、2x 满足211x x -=,求m 的值及相应的1x 、2x .30.学了一元二次方程的根与系数的关系后,小亮兴奋地说:“若设一元二次方程的两个根为x 1,x 2,就能快速求出11x +21x ,x 12+x 22,…的值了.比如设x 1,x 2是方程x 2+2x -3=0的两个根,则x 1+x 2=-2,x 1x 2=-3,得11x +21x =1212x x x x +=23.” (1)小亮的说法对吗?简要说明理由;参考答案1.C【解析】分析:分解因式得到x (x+3)=0,转化成方程x=0,x+3=0,求出方程的解即可.详解:x 2+3x=0,x(x+3)=0,x=0,x+3=0,x 1=0,x 2=−3,故选:C.点睛:此题考查了解一元二次方程-因式分解法,用因式分解法解方程的一般步骤是:移项、化积、转化、求解.2.C【解析】【分析】将一元二次方程的各项系数代入根的判别式24b ac ∆=-中,即可得出答案.【详解】在一元二次方程x 2+bx ﹣1=0中,∵a =1,b =b ,c =-1,∴222441(1)4b ac b b ∆=-=-⨯⨯-=+.故选C.【点睛】本题考查了一元二次方程根的判别式.找出一元二次方程中各项的系数并准确进行计算是解题的关键.3.D【解析】【分析】先根据根的判别式,判断有无实数根的情况,再根据根与系数的关系,逐一判断即可.【详解】A. x 2+2x ﹣3=0,∴△=b²-4ac=-8<0,∴此方程没有实数根,故此选项错误;B. ∵x 2﹣2x+3=0 ,∴△=b²-4ac=-8<0,∴此方程没有实数根,故此选项错误;C. ∵2x 2﹣2x ﹣3=0,∴△=b²-4ac=32>0,∴此方程有实数根, 根据根与系数的关系可求12212b x x a -+=-=-= , 故此选项错误;D. ∵3x 2﹣6x+1=0,∴△=b²-4ac=24>0,∴此方程有实数根, 根据根与系数的关系可求12623b x x a -+=-=-=, 故此选项正确.故选D.【点睛】本题考查了根的判别式及根与系数的关系,若1x ,2x 是一元二次方程ax²+bx+c=0(a≠0)的两根时12b x x a +=-,12c x x a=. 4.C【解析】【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b 2-4ac≥0.【详解】因为关于x 的一元二次方程有实根,所以解得故选:C.【点睛】考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.5.D【解析】解:在方程x2﹣3x+4=0中,△=(﹣3)2﹣4×1×4=﹣7<0,∴方程x2﹣3x+4=0无实数根;在方程2x2﹣4x﹣3=0中,△=(﹣4)2﹣4×2×(﹣3)=40>0,∴方程2x2﹣4x﹣3=0有两个不等的实数根.设x1、x2是方程2x2﹣4x﹣3=0的实数根,∴x1+x2=2.故选D.6.A【解析】【分析】由韦达定理即可求解.【详解】解:令另一根为x,由韦达定理可知1722x ,解得x=7,故选择A.【点睛】本题考查了一元二次方程的韦达定理.7.A【解析】【分析】分两种情况进行讨论,即一元一次方程和一元二次方程,从而得出答案.【详解】当方程为一元一次方程时,a=1,方程有实数根;当方程为一元二次方程时,a≠1且4-4(a-1)≥0,解得:a≤2且a≠1;综上所述,a≤2.故选A.【点睛】考查的是方程的解得情况以及分类讨论的思想,属于中等题型.解决这个问题的关键就是分类讨论,很多同学会把这个方程当做一元二次方程来解.8.C【解析】设方程的另一根为x1,∵x=1是关于x的一元二次方程2x2+mx−1=0的一个根,根据根与系数的关系可得:x1·1=−12,∴x1=−12,∴x1+1=12.故选C.9.D【解析】【分析】利用一元二次方程根的判别式,得出△>0时,方程有两个不相等的实数根,当△=0时,方程有两个相等的实数根,代入公式求出即可.【详解】∵关于x的方程x2+2x-k=0有两个相等的实数根,∴△=b2+4ac=4+4k=0,解得;k=-1,故选:D.【点睛】考查了一元二次方程根的判别式,一元二次方程ax²+bx+c=0(a≠0)的根与根的判别式24b ac∆=-有如下关系:①当∆>0时,方程有两个不相等的实数根;②当∆=0时,方程有两个相等的实数根;③当∆<0时,方程无实数根.10.B【解析】甲的常数项是对的,所以常数项为:-3×5 = -15,乙的一次项系数是对的,所以是一次项系数为:-(2+2)= -4,原方程是x2 - 4 x -15 = 0,故选D.【点睛】本题主要考查了根与系数的关系,牢记根与系数的关系是解决此类问题的关键.【解析】【分析】由根与系数的关系,设另一个根为x ,再根据两根之和为b a -,代入计算即可. 【详解】由根与系数的关系,设另一个根为x ,则3+x =2,解得:x =−1.故答案为:x =−1.【点睛】 本题主要考查一元二次方程根与系数的关系,熟记公式1212,,b c x x x x a a +=-= 是解决本题的关键.12.52-; 【解析】【分析】根据(x 1+1)(x 2+1)=1212()1x x x x +++,依据一元二次方程的根与系数的关系,可得两根之积或两根之和,代入数值计算即可.【详解】∵x 1、x 2是方程2x 2+4x-3=0的两个根, ∴121232,2x x x x +=-=-, 又∵(x 1+1)(x 2+1)=121235()12122x x x x +++=--+=-, 故填空答案:52-. 【点睛】 本题考查了根与系数的关系,解题的关键是将根与系数的关系与代数式变形.13.2 -2【解析】把x=-1代入已知方程列出关于k 的新方程,通过解新方程来求k 的值;然后利用根与系数的关系来求方程的另一根.【详解】依题意,得(−1)2+3×(−1)+k =0,解得,k =2.设方程的另一根为t ,则−1×t =2, 解得t =−2.故答案是:2;−2.【点睛】考查一元二次方程()200++=≠ax bx c a 根与系数的关系, 熟记公式1212,,b c x x x x a a+=-=是解决本题的关键. 14.43k <且0k ≠ 【解析】由题意可得:016430k k ≠⎧⎨∆=-⋅⋅>⎩, ∴43k <且0k ≠. 点睛:本题考查了一元二次方程ax 2+bx +c =0(a≠0)的定义和根的判别式∆=b 2﹣4ac :当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.15.2m <且1m ≠【解析】【详解】根据题意得:△=b 2﹣4ac=4m 2﹣4()()1?2m m -+>0, 解得m <2,∵方程为一元二次方程,∴m ﹣1≠0,即m≠1,则m 的取值范围是2m <且1m ≠. 故答案为2m <且1m ≠. 16.x 2-x -6=0(答案不唯一) 【解析】 【分析】根据一元二次方程的一般形式ax 2+bx+c=0,利用一元二次方程根与系数的关系可以求出该方程. 【详解】设该方程为ax 2+bx+c=0, x 1+x 2=-b a ,x 1•x 2=c a, 方程的两根为-2和3, 则-ba=-(-2+3)=-1, ca=(-2)×3=-6, 如果a=1,则b=-1,c=-6, 则该方程为x 2-x-6=0. 答案不唯一. 故可以填x 2-x-6=0.故答案为:x 2-x -6=0(答案不唯一) 【点睛】此题主要考查了根与系数的关系,先设出一元二次方程的一般形式,利用根与系数的关系可求出方程.17.2x 2+5x —4=0, 57, 154x -±=, 254x -=, 52-, —2【解析】 【分析】一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0),据此可得出方程(2x+1)(x+2)=6的一般形式;把一般形式中a ,b ,c 的值代入计算,即可求出b 2-4ac 的值;将a ,b ,c 的值代入求根公式x =中进行计算,即可得出x 1,x 2的值;根据一元二次方程根与系数的关系即可得出x 1+x 2,x 1•x 2的值. 【详解】方程(2x +1)(x +2)=6化为一般形式是22540x x +-=; 在方程22540x x +-=中,∵a =2,b =5,c =−4,∴()2245424253257b ac -=-⨯⨯-=+=,∴x ==∴1x =,2x =,∵12x x 、是方程22540x x +-=的两根,∴121252.2x x x x +=-⋅=-,故答案为:25254057 2.2x x +-=--;, 【点睛】考查了一元二次方程的一般形式,求根公式以及根与系数的关系,属于基础题,比较简单. 18.94k ≥-且0k ≠ 【解析】 【分析】先求出∆的值,然后根据∆的值与一元二次方程根的关系列式求解即可. 【详解】 由题意得,∆=(-3)2-4×k×(-1)≥0,且k≠0,∴94k ≥-且0k ≠ 故答案为:94k ≥-且0k ≠.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2﹣4ac 与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 19.2m ≤ 【解析】分析:根据方程的系数结合根的判别式,即可得出△=16-8m≥0,解之即可得出m 的取值范围. 详解:∵关于x 的方程2420x x m -+=有实数根, ∴△=(-4)²-4×2m=16-8m≥0, 解得:m≤2 故答案为:m≤2点睛:本题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根. 20.12018-【解析】 【分析】由于实数a≠b ,且a ,b 满足a-a 2=b-b 2=-2018,则a ,b 可看着方程x 2-x-2018=0的两根,根据根与系数的关系得a+b=1,ab=-2018,然后把11a b+通分后变形,再利用整体代入的方法计算. 【详解】∵a ,b 满足222018a a b b -=-=-, ∴a ,b 可看着方程x 2−x −2018=0的两根, ∴a +b =1,ab =−2018,∴111.2018a b a b ab ++==- 故答案为:1.2018-【点睛】考查一元二次方程根与系数的关系,熟记根与系数的关系式是解题的关键.21.(1)x 1+x 2=25,x 1x 2=﹣15;(2)见解析. 【解析】 【分析】(1)先把右边的项移到左边,然后根据一元二次方程根与系数的关系求解即可; (2)先整理成一元二次方程的一般形式,然后求出∆的值即可判断. 【详解】(1)方程可化为5x 2﹣2x ﹣1=0, ∴x 1+x 2=25,x 1x 2=﹣15; (2)方程可化为x 2﹣3x+2﹣p 2=0, ∴△=(﹣3)2﹣4(2﹣p 2)=4p 2+1>0,∴无论p 取何值,方程(x ﹣2)(x ﹣1)﹣p 2=0总有两个不相等的实数根. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根的判别式及根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12bx x a +=-,12c x x a⋅= . 22.(1)115;(2)1214【解析】分析:(1)根据根与系数的关系得出12x x + 和12x x ⋅的值,再把要求的式子进行通分,然后代值计算即可;(2)把要求从的式子变形为21212()4x x x x +-,再把12x x +=12,12152x x =-代入进行计算即可.详解:x 1+x 2=12,x 1x 2=-152. (1)1211x x +=2112x x x x +=12152-=- 115;(2)(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(12)2-4×(-152)=1214. 点睛:此题主要考查了根与系数的关系,根据题意得出12=bx x a +-和12c x x a=的值是解决问题的关键.23.-5,53【解析】试题分析:把x =−1代入方程2320x x m -+=得关于m 的方程,可求出m =−5,然后利用根与系数的关系求方程的另一根.试题解析:把x =−1代入方程2320x x m -+=得3+2+m =0,解得m =−5, 设方程的另一个根为t ,则13m t -⋅=-, 所以5.3t =即方程的另一个根为5.324.:()1k 的取值范围是0k ≤,且1k ≠-;()2 k 的值为2-. 【解析】 【分析】(1)根据题意可知,一元二次方程有两个实数根,故△≥0,且方程为一元二次方程,可知二次项系数不为0,据此解答即可;(2)根据一元二次方程根与系数的关系,得x 1+x 2=﹣21k -+,x 1x 2=11k +,根据x 1+x 2﹣x 1x 2=1﹣k 列出等式,解答即可. 【详解】(1)△=22﹣4×(k ﹣1)×1=﹣4k . ∵方程有实数根,∴△≥0且k +1≠0,解得:k ≤0且k ≠﹣1,k 的取值范围是k ≤0且k ≠﹣1; (2)根据一元二次方程根与系数的关系,得:x 1+x 2=﹣21k -+,x 1x 2=11k +. 由x 1+x 2﹣x 1x 2=1﹣k ,得:21k -+﹣11k +=1﹣k ,解得:k 1=2,k 2=﹣2. 经检验,k 1、k 2是原方程的解.又由(1)k ≤0且k ≠﹣1,故k 的值为﹣2. 【点睛】本题考查了一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根. 25.,c=-1 【解析】试题分析:设出方程另一根,利用根与系数的关系建立方程求解即可得出结论. 试题解析:解:设方程的另一根为m ,由题意得:24(2m m c ⎧-=⎪⎨-=⎪⎩①②,解得:21m c ⎧=⎪⎨=-⎪⎩ 答:方程的另一根为:xc 的值为﹣1.点睛:本题主要考查了一元二次方程的根与系数的关系,解答本题的关键是求出方程的另一根.26.(1)证明见解析;(2)-1或-3.【解析】分析: (1)根据根的判别式可得△=4a 2-4(a 2-1)=4即可判断根的情况; (2)由题意可知把x=2代入原方程求得a 的值,然后再把a 的值代入原方程求得方程的另外一个根即可.详解: :(1)∵关于x 的方程x 2-2ax+a 2-1=0, ∴△=4a 2-4(a 2-1)=4>0,即△>0, ∴方程有两不相等的实数根; (2)∵x=2是方程的一个根,∴把x=2代入原方程中得:4-4a+a 2-1=0, ∴a=-1或a=-3,点睛: 本题主要考查了根的判别式的知识和一元二次方程的解的知识,解答此题要掌握一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根 27.(1)k <3(2)0,1,2 【解析】试题分析:(1)根据判别式的意义得到△=(-2)2-4(k-2)>0,然后解不等式即可;(2)由根的定义知: 211220x x k -+-= ,由一元二次方程根与系数的关系,得x 1+x 2=2,x 1x 2=k-2,再代入不等式211212325x x x x x ---<,即可求得k 的取值范围,然后根据k 为整数,求出k 的值.试题解析:(1)依题意可知:()()22420k --->,解得3k <;(2)由根的定义知: 211220x x k -+-= ,∴ 21122x x k -=-,由根与系数的关系知:122x x +=, 122x x k =- ,若1x ,2x 满足211212325x x x x x ---<, 则 2111212225x x x x x x ----<,∴ ()2111212225x x x x x x --+-<, ∴ ()22225k k ----<,∴ 13k >- ,又由(1)知3k <,∴ 133k -<< ,Q k 为整数,∴ k 的值为 0,1, 2.28.-5. 【解析】 【分析】类比材料中所给的方法解答即可. 【详解】 由21520n n+-=得2n 2﹣5n ﹣1=0, 根据2m 2﹣5m ﹣1=0与2n 2﹣5n ﹣1=0的特征,且m≠n , ∴m 与n 是方程2x 2﹣5x ﹣1=0的两个不相等的实数根 ∴m+n=52,mn=12- ,∴11m n +=5212m nmn +=-=-5. .【点睛】本题是阅读理解题,根据题目中所给的解题方法解决问题是解决本题的关键.29.(1)证明见解析(2)①112x -=,212x --=②1x =,2x =【解析】试题分析:(1)求出b 2-4ac>0,即可判断方程总有两个实数根;(2)根据根与系数的关系求得123x x m +=-,21204m x x ⋅=-≤,即可得1x 、2x 异号或有1个为0.再根据211x x -=,分①10x ≥,20x <和②10x ≤,2>0x 两种情况求m 的值及相应的1x 、2x .试题解析:(1)()2216316m m ∆=-+23296144m m =-+2332722m ⎛⎫=-+ ⎪⎝⎭72≥.∴无论m 取何值,方程有两个异根. (2)()224430x m x m ---=.∵4a =,124b m =-,2c m =-. ∴123x x m +=-,21204m x x ⋅=-≤,∴1x 、2x 异号或有1个为0.211x x -=,①10x ≥,20x <,211x x --=即121x x +=-,31m -=-,∴2m =.24440x x +-=.115x -+=,215x --=.②10x ≤,2>0x .211x x +=,4m =. 244160x x --=. 240x x --=.11172x +=,21172x -=. 30.(1) 小亮的说法不对,理由见解析;(2)答案不唯一,详见解析 【解析】 【分析】根据:如果方程ax 2+bx +c =0(a ≠0)有两个实数根x 1,x 2,那么x 1+x 2=-b a ,x 1x 2=ca. 注意分式的分母不能等于0. 【详解】(1)小亮的说法不对.若有一根为零时,就无法计算+的值了,因为零作除数无意义 (2)答案不唯一,如:一元二次方程x 2-5x -6=0.设方程的两个根分别为x 1,x 2,则x 1+x 2=5,x 1·x 2=-6. 又∵x 12+x 22+2x 1x 2-2x 1x 2=(x 1+x 2)2-2x 1x 2,将x 1+x 2=5,x 1·x 2=-6代入, 得x 12+x 22=52-2×(-6)=37 【点睛】本题考查了根与系数的关系,属于基础题,关键掌握x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,那么x 1+x 2=-b a ,x 1x 2=ca.。
z根与系数的关系分类讨论思想:当问题所给的对象不能进行统一研究时,我们就需要对研究对象进行分类,然后对每一类分别进行研究,得出每一类的结论,最后综合各类的结果,得到整个问题的解答。
分类讨论的分类并非是随心所欲的,而是要遵循以下基本原则:1. 不重(互斥性)不漏(完备性);2. 按同一标准划分(同一性);3. 逐级分类(逐级性)。
一、一元二次方程的根与系数的关系如果一元二次方程ax !+bx +c =0(a ≠0)的两个实数根是,那么,. 注意:它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.【典例1】已知:关于x 的一元二次方程kx !+2x +1−2k =0有两个实数根x ",x !.(1)若|x "|+|x !|=2√2,求k 的值; (2)当k 取哪些整数时,x ",x !均为整数; (3)当k 取哪些有理数时,x ",x !均为整数. 【思路点拨】(1)分两种情况:①若两根同号,②若两根异号;根据根与系数的关系结合根的判别式解答即可; (2)根据根与系数的关系可得若x "+x !=−!#为整数,可得整数k =±1,±2,然后结合两根之积、解方程分别验证即可;(3)显然,当k =−1时,符合题意;由两根之积可得k 应该是整数的倒数,不妨设k ="$,则方程可变形21x x ㄑa b x x -=+21ac x x =21◆思想方法◆典例分析◆知识点总结z为x !+2mx +m −2=0,即为(x +m )!=m !−m +2,再结合整数的意义即可解答. 解:(1)∵Δ=2!−4k (1−2k )=4−4k +8k !=88k !−"!k +"!9=88k −"%9!+&!>0, ∴不论k 为何值,关于x 的一元二次方程kx !+2x +1−2k =0都有两个实数根x ",x !, ∵关于x 的一元二次方程kx !+2x +1−2k =0有两个实数根x ",x !, ∴x "+x !=−!#,x "x !="'!##,分两种情况:①若两根同号,由|x "|+|x !|=2√2可得:x "+x !=2√2,或x "+x !=−2√2, 当x "+x !=2√2时,则−!#=2√2,解得k =−√!!; 当x "+x !=−2√2时,则−!#=−2√2,解得k =√!!; ②若两根异号,由|x "|+|x !|=2√2可得:(x "−x !)!=8, 即(x "+x !)!−4x "x !=8, ∴8−!#9!−4×"'!##=8,解得:k =1, 综上,k 的值为1或 ±√!!; (2)∵关于x 的一元二次方程kx !+2x +1−2k =0有两个实数根x ",x !, ∴x "+x !=−!#,x "x !="'!##,若x ",x !均为整数, 则x "+x !=−!#为整数, ∴整数k =±1,±2, 当k =±2时,x "x !="'!##不是整数,故应该舍去;当k =1时,此时方程为x !+2x −1=0,方程的两个根不是整数,故舍去;当k =−1时,此时方程为−x !+2x +3=0,方程的两个根为x "=−1,x !=3,都是整数,符合题意; 综上,当k 取−1时,x ",x !均为整数; (3)显然,当k =−1时,符合题意; 当k 为有理数时,由于x "x !="'!##="#−2为整数,zxx∴k 应该是整数的倒数,不妨设k ="$ (m ≠0),m 为整数, 则方程kx !+2x +1−2k =0即为x !+2mx +m −2=0, 配方得:(x +m )!=m !−m +2, 即x =−m ±√m !−m +2,当m =2即k ="!时,方程的两根为x "=0,x !=−4,都是整数,符合题意;当m ≠2时,m !−m +2=(m −"!)!+&%不是完全平方数,故不存在其它整数m 的值使上式成立; 综上,k =−1或"!.1.(22-23九年级上·湖北襄阳·自主招生)设方程ax !+bx +c =0(a ≠0)有两个根x "和x !,且1<x "<2<x !<4,那么方程cx !−bx +a =0的较小根x )的范围为( ) A ."!<x )<1 B .−4<x )<−2C .−"!<x )<−"%D .−1<x )<−"!【思路点拨】由根与系数的关系得出x "+x !=−*+,x "⋅x !=,+,再设方程cx !−bx +a =0的为m ,n ,根据根与系数的关系得出m +n =−("-!+"-"),mn ="-"⋅-!,从而得出方程cx !−bx +a =0的两根为−"-",−"-!,然后由1<x "<2<x !<4,求出−"-",−"-!的取值范围,从而得出结论.【解题过程】解:∵方程ax !+bx +c =0(a ≠0)有两个根x "和x !, ∴x "+x !=−*+,x "⋅x !=,+,设方程cx !−bx +a =0的两根为m ,n , 则m +n =*,,mn =+,,∵m +n =*,=−*+⋅(−+,),mn ="-"⋅-!,∴m +n =−(x "+x !)⋅"-"⋅-!=−-"/-!-"⋅-!=−("-!+"-"),∴方程cx !−bx +a =0的两根为−"-",−"-!,◆学霸必刷∵1<x"<2,2<x!<4,∴"!<"-"<1,"%<"-!<"!,∴−1<−"-"<−"!,−"!<−"-!<−"%,∵−"-"<−"-!,∴方程cx!−bx+a=0的较小根x)的范围为−1<x)<−"!.故选:D.2.(22-23九年级下·安徽安庆·阶段练习)若方程x!+2px−3p−2=0的两个不相等的实数根x"、x!满足x"!+x")=4−(x!!+x!)),则实数p的所有值之和为()A.0 B.−)%C.−1D.−0%【思路点拨】先根据一元二次方程解的定义和根与系数的关系得到x"!+2px"−3p−2=0,x"+x!=−2p,进而推出x")=3px"+2x"−2px"!,则x")+x"!=3px"+2x"−2px"!+x"!,x!)+x!!=3px!+2x!−2px!!+ x!!,即可推出(3p+2)(x"+x!)+(1−2p)(x"!+x!!)=4,然后代入x"+x!=−2p,x"!+x!!= (x"+x!)!−4p得到2p(4p+3)(p+1)=0,再根据判别式求出符号题意的值即可得到答案.【解题过程】解:∵x"、x!是方程x!+2px−3p−2=0的两个相等的实数根,∴x"!+2px"−3p−2=0,x"+x!=−2p,x"x!=−3p−2,∴x"!+2px"=3p+2,∴x")+2px"!=3px"+2x",∴x")=3px"+2x"−2px"!,∴x")+x"!=3px"+2x"−2px"!+x"!,同理得x!)+x!!=3px!+2x!−2px!!+x!!,∵x"!+x")=4−(x!!+x!)),∴x"!+x")+(x!!+x!))=4,∴3px"+2x"−2px"!+x"!+3px!+2x!−2px!!+x!!=4,∴(3p+2)(x"+x!)+(1−2p)(x"!+x!!)=4,∴(3p+2)(−2p)+(1−2p)[(−2p)!−2(−3p−2)]=4,∴−6p!−4p+(1−2p)(4p!+6p+4)=4,∴−6p!−4p+4p!+6p+4−2p(4p!+6p+4)=4,∴−2p!+2p−2p(4p!+6p+4)=0,∴−2p(4p!+6p+4+p−1)=0,∴2p(4p!+7p+3)=0,∴2p(4p+3)(p+1)=0,解得p"=0,p!=−1,p)=−)%,∵Δ=(2p)!+4(3p+2)>0,∴p!+3p+2>0,∴(p+1)(p+3)>0,∴p=−1不符合题意,∴p"+p)=−)%∴符合题意,故选B.3.(22-23八年级下·安徽合肥·期末)若关于x的一元二次方程x!−2x+a!+b!+ab=0的两个根为x"=m,x!=n,且a+b=1.下列说法正确的个数为( )①m·n>0;②m>0,n>0;③a!≥a;④关于x的一元二次方程(x+1)!+a!−a=0的两个根为x"= m−2,x!=n−2.A.1B.2C.3D.4【思路点拨】根据根与系数的关系得x"x!=mn=a!+b!+ab,利用a+b=1消去b得到mn=a!−a+1=8a−"!9! +)%>0,从而即可对①进行判断;由于x"+x!=m+n=2>0,x"x!=mn>0,利用有理数的性质可对②进行判断;根据根的判别式的意义得到Δ=4−4(a!+b!+ab)≥0,即4−4(a!−a+1)≥0,则可对③进行判断;利用a!+b!+ab=a!−a+1把方程x!−2x+a!+b!+ab=0化为(x−1)!+a!−a+1=0,由于方程(x−1)!+a!−a=0可变形为[(x+2)−1]!+a!−a=0,所以x+2=m或x+2=n,于是可对④进行判断.【解题过程】解:根据根与系数的关系得x"x!=mn=a!+b!+ab,∵a+b=1,∴b=1−a,∴mn=a!+(1−a)!+a(1−a)=a!−a+1=8a−"!9!+)%>0,所以①正确;∵x"+x!=m+n=2>0,x"x!=mn>0,∴m>0,n>0,所以②正确;∵Δ≥0,∴4−4(a!+b!+ab)≥0,即4−4(a!−a+1)≥0,∴a≥a!,所以③错误;∵a!+b!+ab=a!−a+1,∴方程x!−2x+a!+b!+ab=0化为(x−1)!+a!−a+1=0,即(x−1)!+a!−a=0,∵方程(x+1)!+a!−a=0可变形为[(x+2)−1]!+a!−a=0,∴x+2=m或x+2=n,解得x"=m−2,x!=n−2,所以④正确.故选:C.4.(22-23九年级上·浙江·自主招生)设a、b、c、d是4个两两不同的实数,若a、b是方程x!−8cx−9d=0的解,c、d是方程x!−8ax−9b=0的解,则a+b+c+d的值为.【思路点拨】由根与系数的关系得a+b,c+d的值,两式相加得的值,根据一元二次方程根的定义可得a!−8ac−9d= 0,代入可得a!−72a+9c−8ac=0,同理可得c!−72c+9a−8ac=0,两式相减即可得a+c的值,进而可得a+b+c+d的值.【解题过程】解:由根与系数的关系得a+b=8c,c+d=8a,两式相加得a+b+c+d=8(a+c).因为a是方程x!−8cx−9d=0的根,所以a!−8ac−9d=0,又d=8a−c,所以a!−72a+9c−8ac=0①同理可得c!−72c+9a−8ac=0②①-②得(a−c)(a+c−81)=0.因为a≠c,所以a+c=81,所以a+b+c+d=8(a+c)=648.故答案为648.5.(23-24九年级上·江苏南通·阶段练习)已知实数a,b,c满足:a+b+c=2,abc=4.求|a|+|b|+|c|的最小值【思路点拨】用分类讨论的思想,解决问题即可.【解题过程】解:不妨设a是a,b,c中的最大者,即a≥b,a≥c,由题设知a>0,,且b+c=2−a,bc=%+=0的两实根,于是b,c是一元二次方程x!−(2−a)x+%+≥0,即(a!+4)(a−4)≥0,∴Δ=(2−a)!−4×%+所以a≥4.又当a=4,b=c=−1时,满足题意.故a,b,c中最大者的最小值为4.因为abc=4>0,所以a,b,c为全大于0或一正二负.①若a,b,c均大于0,a,b,c中的最大者不小于4,这与a+b+c=2矛盾.②若a,b,c为或一正二负,不妨设a>0,b<0,c<0,则|a|+|b|+|c|=a−b−c=a−(2−a)=2a−2,∵a≥4,故2a−2≥6,当a=4,b=c=−1时,满足题设条件且使得不等式等号成立.故|a|+|b|+|c|的最小值为6.故答案为:6.6.(22-23九年级上·四川成都·期末)将两个关于x的一元二次方程整理成a(x+ℎ)!+k=0(a≠0,a、h、k均为常数)的形式,如果只有系数a不同,其余完全相同,我们就称这样的两个方程为“同源二次方程”.已知关于x的一元二次方程ax!+bx+c=0(a≠0)与方程(x+1)!−2=0是“同源二次方程”,且方程ax!+ bx+c=0(a≠0)有两个根为x"、x!,则b-2c=,ax"+x"x!+ax!的最大值是.【思路点拨】利用ax!+bx+c=0(a≠0)与方程(x+1)!−2=0是“同源二次方程”得出b=2a,c=a−2,即可求出b−2c;利用一元二次方程根与系数的关系可得x"+x!=−2,x"x!=+'!+,进而得出ax"+x"x!+ax!=−28a+"+9+1,设a+"+=t(t>0),得a!−t⋅a+1=0,根据方程a!−t⋅a+1=0有正数解可知Δ=t!−4≥0,求出t的取值范围即可求出ax"+x"x!+ax!的最大值.【解题过程】解:根据新的定义可知,方程ax!+bx+c=0(a≠0)可变形为a(x+1)!−2=0,∴a(x+1)!−2=ax!+bx+c,展开,ax!+2ax+a−2=ax!+bx+c,可得b=2a,c=a−2,∴b−2c=2a−2(a−2)=4;∵x"+x!=−2,x"x!=+'!+,∴ax"+x"x!+ax!=a(x"+x!)+x"x!=−2a++'!+=−28a+"+9+1,∵方程ax!+bx+c=0(a≠0)有两个根为x"、x!,∴Δ=b!−4ac=(2a)!−4a(a−2)=8a≥0,且a≠0,∴a>0,设a+"+=t(t>0),得a!−t⋅a+1=0,∵方程a!−t⋅a+1=0有正数解,∴Δ=t!−4≥0,解得t≥2,即a+"+≥2,∴ax"+x"x!+ax!=−28a+"+9+1≤−3.故答案为:4,-3.7.(23-24九年级上·山东济南·期末)已知xy+x+y=44,x!y+xy!=484,求x)+y).【思路点拨】本题主要考查了代数式求值、一元二次方程的根与系数的关系、因式分解的应用等知识点,综合应用所学知识成为解题的关键.设xy=m,x+y=n,等量代换后可得44=m+n、484=mn,则m、n为t!−44t+484=0的根,可解得m=n=22,然后再对x)+y)变形后将m=n=22代入计算即可.【解题过程】解:设xy=m,x+y=n,∴44=xy+x+y=m+n,484=x!y+xy!=xy(x+y)=mn,∴m、n为t!−44t+484=0的根,∴m=n=22,∴x)+y)=(x+y)(x!+y!−xy)=(x+y)[(x+y)!−3xy]=n[n!−3m]=n)−3mn=9196.8.(2024九年级·全国·竞赛)记一元二次方程x!+3x−5=0的两根分别为x"、x!.(1)求"-"'"+"-!'"的值;(2)求3x"!+6x"+x!!的值.【思路点拨】本题考查了一元二次方程根与系数的关系、一元二次方程的解.在利用根与系数的关系x"⋅x!=,+,x"+x!=−*+时,需要弄清楚a、b、c的意义.(1)利用根与系数的关系求得求"-"'"+"-!'"的值的值;(2)由一元二次方程的解可得x"!+3x"−5=0,再利用根与系数的关系求解即可.【解题过程】(1)∵x"+x!=−3,x"x!=−5,∴1x"−1+1x!−1=x!−1+x"−1 (x"−1)(x!−1)=x"+x!−2 x"x!−(x"+x!)+1=−3−2−5−(−3)+1=5;(2)∵x"是一元二次方程x!+3x−5=0的根,∴x"!+3x"−5=0,∴x"!+3x"=5,又∵x"+x!=−3,x"x!=−5,∴3x"!+6x"+x!!=2(x"!+3x")+(x"+x!)!−2x"x!=29.9.(23-24九年级下·北京·开学考试)已知关于x的方程x!−2mx+m!−n=0有两个不相等的实数根.(1)求n的取值范围;(2)若n为符合条件的最小整数,且该方程的较大根是较小根的3倍,求m的值.【思路点拨】本题考查一元二次方程根的判别式及根与系数的关系,对于一元二次方程ax!+bx+c=0(a≠0),当判别式Δ>0时方程有两个不相等的实数根,Δ=0时方程有两个相等的实数根,Δ<0时方程没有实数根,若方程的两个实数根为x"、x!,则x"+x!=−*+,x"⋅x!=,+.(1)根据方程x!−2mx+m!−n=0有两个不相等的实数根得出判别式Δ>0,列出不等式即可得答案;(2)根据(1)中结果得出n值,利用一元二次方程根与系数的关系列方程求出m的值即可.【解题过程】(1)解:∵关于x的方程x!−2mx+m!−n=0有两个不相等的实数根,∴Δ=(−2m)!−4(m!−n)>0,解得:n>0.(2)设方程的两个实数根为x"、x!,且x">x!,∴x"+x!=2m,x"⋅x!=m!−n,由(1)可知:n>0,∵n为符合条件的最小整数,∴n=1,∵该方程的较大根是较小根的3倍,∴x"=3x!,∴4x!=2m,3x!!=m!−1,∴3×$!%=m!−1,解得:m"=−2,m!=2.当m=2时,x!=1,则x"=3x!=3,符合题意,当m=−2时,x!=−1,则x"=3x!=−3<x!,与x">x!不符,舍去,∴m=2.10.(23-24九年级上·安徽淮南·阶段练习)若关于x的一元二次方程x!+2x−m!−m=0.(1)若α和β分别是该方程的两个根,且αβ=−2,求m的值;(2)当m=1,2,3,⋅⋅⋅,2024时,相应的一元二次方程的两个根分别记为α"、β",α!、β!,⋅⋅⋅,α!1!%、β!1!%,求"2"+"3"+"2!+"3!+⋯+"2!#!$+"3!#!$的值.【思路点拨】(1)根据一元二次方程的根与系数的关系进行求解即可;(2)根据一元二次方程的根与系数的关系x"+x!=−*+,x"⋅x!=,+可得:"-"+"-!=-"/-!-"⋅-!=!$!/$,进一步可寻找"2!#!$+"3!#!$的规律,即可求解.【解题过程】(1)解:∵关于x的一元二次方程x!+2x−m!−m=0,α和β分别是该方程的两个根,∴αβ=−m!−m∵αβ=−2,∴−2=−m!−m∴m=1或m=−2;(2)解:设方程x!+2x−m!−m=0的两个根为:x",x!则x"+x!=−*+=−2,x"⋅x!=,+=−m!−m,∴" -"+"-!=-"/-!-"·-!=!$!/$=!$($/")∴" 2"+"3"=!"×!,"2!+"3!=!!×),"2%+"3%=!)×%…..1α!1!%+1β!1!%=22024×2025∴" 2"+"3"+"2!+"3!+⋯+"2!#!$+"3!#!$=2×8""×!+"!×)+...+"!1!%×!1!09=2×X1−12+12−13+...+12024−12025Y=2×X1−1 2025Y=4048 202511.(22-23九年级上·湖北武汉·期中)已知α、β是关于x的一元二次方程x!+(2m+3)x+m!=0的两个不相等的实数根(1)直接写出m的取值范围(2)若满足"2+"3=−1,求m的值.(3)若α>2,求证:β>2;【思路点拨】(1)根据一元二次方程x!+(2m+3)x+m!=0的两个不相等的实数根,得Δ>0,即可列式作答;(2)结合一元二次方程根与系数的关系,得α+β=−(2m+3)和αβ=m!,因为"2+"3=−1,所以!$/)$!=1,解得m"=3,m2=−1,结合m>−)%,即可作答;(3)因为(α−2)(β−2)=αβ−2(α+β)+4,结合α+β=−(2m+3)和αβ=m!,得m!+2(2m+3)+ 4=(m+2)!+6,则(α−2)(β−2)≥6>0,又因为α>2,即可证明β>2.【解题过程】(1)解:∵一元二次方程x!+(2m+3)x+m!=0的两个不相等的实数根∴Δ=b!−4ac=(2m+3)!−4×1×m!=4m!+12m+9−4m!=12m+9>0,即m>−)%;(2)解:∵"2+"3=323+223=2/323=−1,且α+β=−*+=−(2m+3),αβ=,+=m!∴!$/)$!=1整理得m!−2m−3=0,解得:m"=3,m2=−1∵由(1)知m>−)%,∴m=3检验:当m=3时,m!≠0,即m=3;(3)证明:因为(α−2)(β−2)=αβ−2(α+β)+4,把α+β=−(2m+3)和αβ=m!代入上式,得m!+2(2m+3)+4=m!+4m+10=(m+2)!+6,∵(m +2)!≥0, ∴(m +2)!+6≥6 ∴(α−2)(β−2)≥6>0 ∵α>2, ∴α−2>0, ∴β−2>0, 即β>2.12.(22-23九年级·浙江·自主招生)已知方程x !+4x +1=0的两根是α、β. (1)求|α−β|的值; (2)求Z 23+Z 32的值;(3)求作一个新的一元二次方程,使其两根分别等于α、β的倒数的立方.(参考公式:x )+y )=(x +y)(x !+y !−xy ). 【思路点拨】(1)利用一元二次方程根与系数的关系可得α+β=−4,αβ=1,再求得(α−β)!的值,进而求得|α−β|的值.(2)先根据二次根式的性质将Z 23+Z 32化为√293+93√2,然后通分化简可得2/3923,最后将α+β=−4,αβ=1代入计算即可;(3)由题意可得新一元二次方程的两个根为8"29)和8"39),然后求得8"29)+8"39)和8"29)8"39)的值,然后根据一元二次方程根与系数的关系即可解答. 【解题过程】(1)解:∵方程x !+4x +1=0的两根是α、β ∴α+β=−4,αβ=1∴(α−β)!=(α+β)!−4αβ=12 ∴|α−β|=2√3;(2)解:由(1)可知:α<0,β<0,∵[\αβ+\βα]!=αβ+βα+2=α!+β!αβ+2=(α+β)!−2αβαβ+2=16,∴Z23+Z32=4(负值舍去);(3)解:由题意可得新一元二次方程的两个根为8"29)和8"39)则8"29)+8"39)=(1α+1β)^X1αY!+X1βY!−1αβ_=α+βαβ^α!+β!α!β!−1αβ_=α+βαβ^(α+β)!−2αβα!β!−1αβ_=−41`16−21!−1a=−52X 1αY)X1βY)=X1αβY)=1所以新的一元二次方程x!+52x+1=0.13.(22-23九年级上·福建泉州·期末)已知关于x的方程mx!−(m−1)x+2=0有实数根.(1)若方程的两根之和为整数,求m的值;(2)若方程的根为有理根,求整数m的值.【思路点拨】(1)根据关于x的方程mx!−(m−1)x+2=0有两个根,且为实数根,先利用一元二次方程的根的判别式确定m的取值范围,再根据一元二次方程的根与系数的关系,可知x"+x!=$'"$,若方程的两根之和为整数,即$'"$为整数,即可确定m的值;(2)分两种情况讨论:当m=0时,此时关于x的方程为x+2=0,求解可得x=−2,符合题意;当m≠0时,对于关于x的方程mx!−(m−1)x+2=0可有x=($'")±√$!'"1$/"!$,若方程的根为有理根,且m为整数,则Δ=m!−10m+1为某一有理数的平方,据此分析即可获得答案.【解题过程】(1)解:∵关于x的方程mx!−(m−1)x+2=0有两个根,且为实数根,∴m ≠0,且Δ=[−(m −1)]!−4m ×2=m !−10m +1≥0, 根据一元二次方程的根与系数的关系,可知x "+x !=−'($'")$=$'"$,若方程的两根之和为整数,即$'"$为整数,∵$'"$=1−"$,∴"$是整数, ∴m =±1,当m =1时,Δ=1−10+1=−8<0,不符合题意; 当m =−1时,Δ=1+10+1=12>0,$'"$='"'"'"=2,为整数,符合题意;∴m 的值为−1;(2)当m =0时,此时关于x 的方程为x +2=0,解得x =−2; 当m ≠0时,对于关于x 的方程mx !−(m −1)x +2=0的根为:x =($'")±√$!'"1$/"!$,若方程的根为有理根,且m 为整数, 则Δ=m !−10m +1为完全平方数, 设m !−10m +1=k !(k 为正整数), 则:m ="1±√"11'%/%#!!=5±√24+k !,∵m 为整数,设24+k !=n !(n 为正整数), ∴(k +n )(n −k )=24,∴b k +n =12n −k =2 或b k +n =6n −k =4 或b k +n =8n −k =3 或b k +n =24n −k =1 , 解得:bk =5n =7 或b k =1n =5 或d k =0!n =""!(不合题意,舍去)或d k =!)!n =!0!(不合题意,舍去) ∴m !−10m +1=1!=1或m !−10m +1=5!=25; 当m !−10m +1=1时,解得m =10或m =0(舍去); 当m !−10m +1=25时,解得m =−2或m =12,综上所述,若方程的根为有理根,则整数m 的值为0或10或−2或12.14.(22-23九年级下·浙江·自主招生)设m 为整数,关于x 的方程(m !+m −2)x !−(7m +2)x +12=0有两个整数实根. (1)求m 的值.(2)设△ABC 的三边长a,b,c 满足c =4√2,m !+a !m −12a =0,m !+b !m −12b =0.求△ABC 的面积. 【思路点拨】(1)设原方程的两个解分别为x ",x !,根据两个整数实根,则x "+x !=&$/!$!/$'!,x "x !="!$!/$'!都是整数,进而分类讨论,即可求解;(2)由(1)得出的m 的值,然后代入将m !+a !m −12a =0,m !+b !m −12b =0进行化简,得出a ,b 的值.然后再根据三角形三边的关系来确定符合条件的a ,b 的值,用三角形的面积公式得出三角形的面积. 【解题过程】(1)解:∵m !+m −2≠0, ∴m ≠−2或m =1, ∵方程有两个实数根,∴Δ=b !−4ac =[−(7m +2)]!−4×12×(m !+m −12) =m !−20m +580=(m −10)!+480>0 设原方程的两个解分别为x ",x !∴x "+x !=&$/!$!/$'!,x "x !=∴m !+m −2=1,2,3,4,6,12 m !+m −2=1,解得:m ='"±√")!(舍去) m !+m −2=2,解得:m ='"±√"&!(舍去) m !+m −2=3,解得:m ='"±√!"!(舍去)m !+m −2=4,解得:m =−3或m =2 m !+m −2=6,解得:m ='"±√))!(舍去)m !+m −2=12,解得:m ='"±√"!;!(舍去) 当m =−3时,&$/!$!/$'!='!"/!%=−";%不是整数,舍去当m =2时,&$/!$!/$'!="%/!%=4符合题意,综上所述,m=2;(2)把m=2代入两等式,化简得a!−6a+2=0,b!−6b+2=0,当a=b时,a=b=3±√7,当a≠b时,a、b是方程x!−6x+2=0的两根,而Δ>0,根据根与系数的关系可得,a+b=6>0,ab=2>0,则a>0、b>0,①a≠b,c=4√2时,由于a!+b!=(a+b)!−2ab=36−4=32=c!,故△ABC为直角三角形,且∠C=90°,S<=>?="!ab=1;②a=b=3−√7,c=4√2时,因2(3−√7)<4√2,故不能构成三角形,不合题意,舍去;;③a=b=3+√7,c=4√2时,因2(3+√7)>4√2,故能构成三角形,S<=>?="!×4√2×Z l3+√7m!−l2√2m!=4n4+3√7;综上,△ABC的面积为1或4n4+3√7.15.(22-23九年级上·湖南常德·期中)阅读材料:材料1:若关于x的一元二次方程ax!+bx+c=0(a≠0)的两个根为x1,x2,则x"+x!=−*+,x"x!=,+.材料2:已知一元二次方程x!−x−1=0的两个实数根分别为m,n,求m!n+mn!的值.解:∵一元二次方程x!−x−1=0的两个实数根分别为m,n,∴m+n=1,mn=−1,则m!n+mn!=mn(m+n)=−1×1=−1.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程x!−3x−1=0的两个根为x1,x2,则x"+x!=___________,x"x!=___________.(2)类比应用:已知一元二次方程x!−3x−1=0的两根分别为m、n,求A$+$A的值.(3)思维拓展:已知实数s、t满足s!−3s−1=0,t!−3t−1=0,且s≠t,求"B −"C的值.【思路点拨】(1)直接利用一元二次方程根与系数的关系求解即可;(2)利用一元二次方程根与系数的关系可求出m+n=−*+=3,mn=,+=−1,再根据A$+$A=$!/A!$A=($/A)!'!$A$A,最后代入求值即可;(3)由题意可将s、t可以看作方程x!−3x−1=0的两个根,即得出s+t=−*+=3,s⋅t=,+=−1,从而可求出(t−s)!=(t+s)!−4st=13,即t−s=√13或t−s=−√13,最后分类讨论分别代入求值即可.【解题过程】(1)解:∵一元二次方程x!−3x−1=0的两个根为x1,x2,∴x"+x!=−*+=−')"=3,x"⋅x!=,+=−""=−1.故答案为:3,−1;(2)∵一元二次方程x!−3x−1=0的两根分别为m、n,∴m+n=−*+=3,mn=,+=−1,∴A $+$A=$!/A!$A=(m+n)!−2mnmn=3!−2×(−1)−1=−11;(3)∵实数s、t满足s!−3s−1=0,t!−3t−1=0,∴s、t可以看作方程x!−3x−1=0的两个根,∴s+t=−*+=3,st=,+=−1,∵(t−s)!=(t+s)!−4st=3!−4×(−1)=13∴t−s=√13或t−s=−√13,当t−s=√13时," B −"C=C'BBC=√")'"=−√13,当t−s=−√13时," B −"C=C'BBC='√")'"=√13,综上分析可知,"B −"C的值为√13或−√13.16.(23-24八年级上·北京海淀·期中)小聪学习多项式研究了多项式值为0的问题,发现当mx +n =0或px +q =0时,多项式A =(mx +n )(px +q )=mpx !+(mq +np )x +nq 的值为0,把此时x 的值称为多项式A 的零点.(1)已知多项式(3x +1)(x −2),则此多项式的零点为__________;(2)已知多项式B =(x −1)(bx +c )=ax !−(a −1)x −+!有一个零点为1,求多项式B 的另一个零点; (3)小聪继续研究(x −3)(x −1),x (x −4)及8x −0!98x −)!9等,发现在x 轴上表示这些多项式零点的两个点关于直线x =2对称,他把这些多项式称为“2系多项式”.若多项式M =(2ax +b )(cx −5c )=bx !−4cx −2a −4是“2系多项式”,求a 与c 的值. 【思路点拨】(1)根据多项式的零点的定义即可求解;(2)根据多项式的零点的定义将x =1代入ax !−(a −1)x −+!=0,求得a =2,再解一元二次方程即可求解;(3)令cx −5c =0,求得M 的一个零点为5,根据“2系多项式”的定义求得方程bx !−4cx −2a −4=0的两个根为x "=−1,x !=5,再利用根与系数的关系即可求解. 【解题过程】(1)解:令(3x +1)(x −2)=0, ∴3x +1=0或x −2=0, ∴x =−")或x =2,则此多项式的零点为−")或2; 故答案为:−")或2;(2)解:∵多项式B =(x −1)(bx +c )=ax !−(a −1)x −+!有一个零点为1,∴将x =1代入ax !−(a −1)x −+!=0,得a −(a −1)−+!=0,解得a =2,∴B =2x !−x −1=(x −1)(2x +1), 令2x +1=0,解得x =−"!, ∴多项式B 的另一个零点为−"!;(3)解:∵M=(2ax+b)(cx−5c)=bx!−4cx−2a−4是“2系多项式”,令cx−5c=0,解得x=5,即M的一个零点为5,∴设M的另一个零点为y,则D/0!=2,解得y=−1,即2ax+b=0时,x=−1,则−2a+b=0①,令M=bx!−4cx−2a−4=0,根据题意,方程bx!−4cx−2a−4=0的两个根为x"=−1,x!=5,∴x"+x!=−'%,*=5+(−1)=4,x"⋅x!='!+'%*=5×(−1)=−5,∴c=b②,5b−2a−4=0③,解①②③得c=b=1,a="!,∴a="!,c=1.17.(22-23九年级上·湖北黄石·期末)(1)x",x!是关于x的一元二次方程x!−2(k+1)x+k!+2=0的两实根,且(x"+1)⋅(x!+1)=8,求k的值.(2)已知:α,β(α>β)是一元二次方程x!−x−1=0的两个实数根,设s"=α+β,s!=α!+β!,…,s A=αA+βA.根据根的定义,有α!−α−1=0,β!−β−1=0,将两式相加,得(α!+β!)−(α+β)−2= 0,于是,得s!−s"−2=0.根据以上信息,解答下列问题:①直接写出s",s!的值.②经计算可得:s)=4,s%=7,s0=11,当n≥3时,请猜想s A,s A'",s A'!之间满足的数量关系,并给出证明.【思路点拨】(1)根据一元二次方程根与系数的关系可得出x"+x!=2(k+1),x"x!=k!+2.由(x"+1)(x!+1)=8,可得x"x!+(x"+x!)+1=8,即得出关于k的一元二次方程,解出k的值,再根据一元二次方程根的判别式验证,舍去不合题意的值即可;(2)①根据一元二次方程根与系数的关系可得出α+β=−*+=1,αβ=,+=−1,进而可求出s"=α+β=1,s!=α!+β!=(α+β)!−2αβ=3;②由一元二次方程的解的定义可得出α!−α−1=0,两边都乘以αA'!,得:αA−αA'"−αA'!=0①,同理可得:βA−βA'"−βA'!=0②,再由①+②,得:(αA+βA)−(αA'"+βA'")−(αA'!+βA'!)=0.最后结合题意即可得出s A−s A'"−s A'!=(αA+βA)−(αA'"+βA'")−(αA'!+βA'!)=0,即s A=s A'"+s A'!.【解题过程】解:(1)∵x",x!是关于x的一元二次方程x!−2(k+1)x+k!+2=0的两实根,∴x"+x!=−*+=−'!(#/")"=2(k+1),x"x!=,+=#!/!"=k!+2,∴(x"+1)(x!+1)=x"x!+(x"+x!)+1=k!+2+2(k+1)+1=8,整理,得:k!+2k−3=0,解得:k"=−3,k!=1.当k=−3时,Δ=b!−4ac=[−2(k+1)]!−4(k!+2)=[−2(−3+1)]!−4[(−3!)+2]=−28<0,∴此时原方程没有实数根,∴k=−3不符合题意;当k=1时,Δ=b!−4ac=[−2(k+1)]!−4(k!+2)=[−2×(1+1)]!−4(1!+2)=4>0,∴此时原方程有两个不相等的实数根,∴k=1符合题意,∴k的值为1;(2)①∵x!−x−1=0,∴a=1,b=−1,c=−1.∵α,β(α>β)是一元二次方程x!−x−1=0的两个实数根,∴α+β=−*+=1,αβ=,+=−1,∴s"=α+β=1,s!=α!+β!=(α+β)!−2αβ=1!−2×(−1)=3;②猜想:s A=s A'"+s A'!.证明:根据一元二次方程根的定义可得出α!−α−1=0,两边都乘以αA'!,得:αA−αA'"−αA'!=0①,同理可得:βA−βA'"−βA'!=0②,由①+②,得:(αA+βA)−(αA'"+βA'")−(αA'!+βA'!)=0,∵s A=αA+βA,s A'"=αA'"+βA'",s A'!=αA'!+βA'!,∴s A−s A'"−s A'!=(αA+βA)−(αA'"+βA'")−(αA'!+βA'!)=0,即s A=s A'"+s A'!.18.(23-24九年级上·福建宁德·期中)已知关于x的方程x!−(m+2)x+4m=0有两个实数根x",x!,其中x"<x!.(1)若m=−1,求x"!+x!!的值;(2)一次函数y=3x+1的图像上有两点A(x",y"),B(x!,y!),若AB=√10,求m的值;(3)边长为整数的直角三角形,其中两直角边的长度恰好为x"和x!,求该直角三角形的面积.【思路点拨】该题主要考查了一元二次方程的根判别式“Δ=b!−4ac”,根与系数关系“x"+x!=−*+,x"⋅x!=,+”,一次函数的性质,直角三角形的性质,勾股定理“直角三角形两直角边的平方之和等于斜边的平方”等知识点,解题的关键是分类谈论思想的运用;(1)将m=−1代入方程得出方程,再根据根与系数关系得到x"+x!=−*+=1,x"⋅x!=,+=−4,将x"!+x!!转化即可求解;(2)根据点A(x",y"),B(x!,y!)在函数图像上,得出Alx",3x"+1m,Blx!,3x!+1m,再根据根与系数关系得到x"+x!=m+2,x"⋅x!=4m,根据AB=√10即可求解;(3)根据直角三角形两直角边x",x!为整数,得出Δ=b!−4ac=m!−12m+4,令m!−12m+4=k!(k为正整数),得出(m+k−6)(m−k−6)=32,又m+k−6>m−k−6,然后分三种情况取值即可解答;【解题过程】(1)当m=−1时,方程为x!−x−4=0,Δ=b!−4ac=(−1)!−4×1×(−4)=17>0,∴x"+x!=−*+=1,x"⋅x!=,+=−4,即x"!+x!!=(x"+x!)!−2x"x!=1!−2×(−4)=9;(2)将A(x",y"),B(x!,y!)代入y=3x+1可得Alx",3x"+1m,Blx!,3x!+1m,又Δ=(m+2)!−4×4m>0,故x"+x!=m+2,x"⋅x!=4m,AB!=(x"−x!)!+(y"−y!)!=10(x"−x!)!,即10(x"−x!)!=10,(x"−x!)!=1,(x"−x!)!=(x"+x!)!−4x"x!=1,(m+2)!−4×4m=1,(m−6)!=33,m"=6+√33,m!=6−√33;(3)∵直角三角形两直角边x ",x !为整数,∴Δ=b !−4ac =(m +2)!−4×4m =m !−12m +4为平方数, 不妨令m !−12m +4=k !(k 为正整数), (m −6)!−32=k !,(m +k −6)(m −k −6)=32, m +k −6>m −k −6,当①∴m +k −6=32,m −k −6=1, 解得m =%0!(不合题意舍去);当②m +k −6=16,m −k −6=2, 解得m =15,∴方程x !−17x +60=0, x "=12,x !=5,则斜边为13, 即S =-"⋅-!!=30;当③m +k −6=8,m −k −6=4, 解得m =12,∴方程x !−14x +48=0,x "=6,x !=8,则斜边为10, 即S =-"⋅-!!=24,综上所述:该直角三角形的面积为30或24.19.(22-23九年级上·全国·单元测试)如果方程x !+px +q =0有两个实数根x ",x !,那么x "+x !=−p ,x "x !=q ,请根据以上结论,解决下列问题:(1)已知a ,b 是方程x !+15x +5=0的二根,则+*+*+=?(2)已知a 、b 、c 满足a +b +c =0,abc =16,求正数c 的最小值.(3)结合二元一次方程组的相关知识,解决问题:已知b x =x "y =y "和b x =x !y =y !是关于x ,y 的方程组t x !−y +k =0x −y =1 的两个不相等的实数解.问:是否存在实数k ,使得y "y !−-"-!−-!-"=2?若存在,求出的k 值,若不存在,请说明理由.【思路点拨】(1)根据a ,b 是方程x !+15x +5=0的二根,求出a +b ,ab 的值,即可求出+*+*+的值; (2)根据a +b +c =0,abc =16,得出a +b =−c ,ab ="E,,a 、b 是方程x !+cx +"E ,=0的解,再根据c !−4×"E ,≥0,即可求出c 的最小值;(3)运用根与系数的关系求出x "+x !=1,x "x !=k +1,再解y "y !−-"-!−-!-"=2,即可求出k 的值.【解题过程】(1)解:∵a ,b 是方程x !+15x +5=0的二根, ∴a +b =−15,ab =5, ∴+*+*+=(+/*)!'!+*+*=('"0)!'!×0=43,∴+*+*+=43;(2)∵a +b +c =0,abc =16, ∴a +b =−c ,ab ="E ,,∴a 、b 是方程x !+cx +"E ,=0的解,∴c !−4×"E ,≥0,∴c !−%%,≥0,∵c 是正数,∴c )−4)≥0, ∴c )≥4), ∴c ≥4,∴正数c 的最小值是4;(3)存在,当k =−2时,y "y !−-"-!−-!-"=2.理由如下: ∵u x !−y +k =0①x −y =1② ,由①得:y =x !+k , 由②得:y =x −1,∴x !+k =x −1,即x !−x +k +1=0,由题意思可知,x ",x !是方程x !−x +k +1=0的两个不相等的实数根, ∴d (−1)!−4(k +1)>0x "+x !=1x "x !=k +1 , 则k <−)%,∵b x =x "y =y " 和b x =x !y =y ! 是关于x ,y 的方程组t x !−y +k =0x −y =1 的两个不相等的实数解,∴y "y !=(x "−1)(x !−1), ∴y "y !−-"-!−-!-"=(x "−1)(x !−1)−(-"/-!)!'!-"-!-"-!=2,∴x "x !−(x "+x !)+1−(-"/-!)!'!-"-!-"-!=2,∴k +1−1+1−"'!(#/")#/"=2,整理得:k !+2k =0,解得:k "=−2,k !=0(舍去), ∴k 的值为−2.20.(22-23九年级上·四川资阳·期末)定义:已知x ",x !是关于x 的一元二次方程ax !+bx +c =0(a ≠0)的两个实数根,若x "<x !<0,且3<-"-!<4,则称这个方程为“限根方程”.如:一元二次方程x !+13x +30=0的两根为x "=−10,x !=−3,因−10<−3<0,3<'"1')<4,所以一元二次方程x !+13x +30=0为“限根方程”.请阅读以上材料,回答下列问题:(1)判断一元二次方程x !+9x +14=0是否为“限根方程”,并说明理由;(2)若关于x 的一元二次方程2x !+(k +7)x +k !+3=0是“限根方程”,且两根x "、x !满足x "+x !+x "x !=−1,求k 的值;(3)若关于x 的一元二次方程x !+(1−m )x −m =0是“限根方程”,求m 的取值范围. 【思路点拨】(1)解该一元二次方程,得出x "=−7,x !=−2,再根据“限根方程”的定义判断即可; (2)由一元二次方程根与系数的关系可得出x "+x !=−#/&!,x "x !=#!/)!,代入x "+x !+x "x !=−1,即可求出k "=2,k !=−1.再结合“限根方程”的定义分类讨论舍去不合题意的值即可;(3)解该一元二次方程,得出x"=−1,x!=m或x"=m,x!=−1.再根据此方程为“限根方程”,即得出此方程有两个不相等的实数根,结合一元二次方程根的判别式即可得出Δ>0,m<0且m≠−1,可求出m 的取值范围.最后分类讨论即可求解.【解题过程】(1)解:x!+9x+14=0,(x+2)(x+7)=0,∴x+2=0或x+7=0,∴x"=−7,x!=−2.∵−7<−2,3<'&'!=&!<4,∴此方程为“限根方程”;(2)∵方程2x!+(k+7)x+k!+3=0的两个根分比为x"、x!,∴x"+x!=−#/&!,x"x!=#!/)!.∵x"+x!+x"x!=−1,∴−#/&!+#!/)!=−1,解得:k"=2,k!=−1.分类讨论:①当k=2时,原方程为2x!+9x+7=0,∴x"=−&!,x!=−1,∴x"<x!<0,3<-"-!=&!<4,∴此时方程2x!+(k+7)x+k!+3=0是“限根方程”,∴k=2符合题意;②当k=−1时,原方程为2x!+6x+4=0,∴x"=−2,x!=−1,∴x"<x!<0,-"-!=2<3,∴此时方程2x!+(k+7)x+k!+3=0不是“限根方程”,∴k=−1不符合题意.综上可知k的值为2;(3)x!+(1−m)x−m=0,(x+1)(x−m)=0,∴x+1=0或x−m=0,∴x"=−1,x!=m或x"=m,x!=−1.∵此方程为“限根方程”,∴此方程有两个不相等的实数根,∴Δ>0,m<0且m≠−1,∴(1−m)!+4m>0,即(1+m)!>0,∴m<0且m≠−1.分类讨论:①当−1<m<0时,∴x"=−1,x!=m,∵3<-"-!<4,∴3<'"$<4,解得:−")<m<−"%;②当m<−1时,∴x"=m,x!=−1,∵3<-"-!<4,∴3<$'"<4,解得:−4<m<−3.综上所述,m的取值范围为−")<m<−"%或−4<m<−3.。
一元二次方程的根与系数的关系(B)一、 填空:1.一元二次方程的根与系数的关系(韦达定理) 如果方程ax 2+bx+c=0(a ≠0,Δ≥0)有两个实数根x 1和x 2,那么x 1+x 2=______,x 1x 2=_____.2.韦达定理只能在一元二次方程有实数根的条件下使用,因此等式 x 1+x 2 = -a b ,x 1x 2= ac 成立的条件是:a________,Δ________.3.根据乘法公式填空:(1)x 12+x 22=(x 1+x 2)2-______;(2)(x 1-x 2)2=(x 1+x 2)2-_______; (3)221212222121222221)(2)(11x x x x x x x x x x -=+=+;(4). 丨x 1-x 2丨=a∆. 4.设方程3x 2-9x-1=0的两个根是x 1和x 2,则下列各式的值是:(1)x 1+x 2 =_____;(2)x 1x 2 =____; (3)x 1x 22+x 12x 2=_____;(4)(x 1-3)(x 2-3) =_____;(5)x 12+x 22=____;(6)(x 1-x 2)2=____;(7)2111x x +=____; (8) + =_____;(9)丨x 1-x 2丨=_____。
5. 已知方程2x 2-mx+n=0的两个根是-3和4, 那么由韦达定理得:-3+4=____,-3×4=____, 所以m=____,n=____.6.已知方程x 2-13x+m=0的两根满足 x 1-4x 2+2=0,那么由韦达定理得 ⎩⎨⎧=+-=+024___2121x x x x ,所以m=___.7. 方程5x 2+kx -10=0的一根x 1=-5,另一根是x 2,那么⎩⎨⎧=-=+-___5___522x x ,所以另一个根是____,k=___.8. 若方程4x 2-12x+n=0的两个根之比是2∶3,设两根为2k 和3k ,则⎩⎨⎧=⨯=+__32__32k k k k ,所以n=____.9.若方程x 2-ax -2a=0的两个根之和是4a -3,则由韦达定理得4a -3=___,a=___,两个根之积是___. 10.已知方程x 2-6x+m-3=0的两个根互为倒数,则x 1x 2=______=1, 所以m=_______,此时Δ=_____. 11. 以两个数x 1和x 2为根的一元二次方程(二次项系数为1)是________________________. 12.若x 1+x 2=7,x 1x 2=5,则以x 1和2为根的一元二次方程是________________________________. 13.以3+2和3-2为根的一元二次方程是___________________________________。
一元二次方程的根与系数的关系一.选择题1.一元二次方程x2+2x﹣6=0的两实数根为x1,x2,则x1+x2的值为()A.B.﹣2C.2D.62.关于x的方程(x﹣3)(x﹣2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.根的符号与p的值有关3.在下列方程中,满足两个实数根的和等于2的方程是()A.x2﹣2x+4=0B.x2+2x﹣4=0C.x2+2x+4=0D.x2﹣2x﹣4=0 4.关于x的方程x2﹣4x+m=0有一个根为﹣1,则另一个根为()A.﹣2B.2C.﹣5D.55.若一元二次方程x2﹣7x+5=0的两个实数根分别是a、b,则一次函数y=abx+a+b的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.已知关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=﹣3,则原方程可化为()A.(x+2)(x+3)=0B.(x+2)(x﹣3)=0C.(x﹣2)(x﹣3)=0D.(x﹣2)(x+3)=07.设m、n是一元二次方程x2+5x﹣8=0的两个根,则m2+7m+2n=()A.﹣5B.﹣2C.2D.58.定义运算:a*b=2ab,若a、b是方程x2+x﹣m=0(m>0)的两个根,则(a+1)*b+2a 的值为()A.m B.2﹣2m C.2m﹣2D.﹣2m﹣29.已知m,n是一元二次方程x2=x的两个实数根,则下列结论错误的是()A.m+n=0B.m•n=0C.m2=m D.n2=n二.填空题10.已知a,b是关于x的一元二次方程x2﹣2x﹣2022=0的两个实数根,则ab+a+b的值为.11.对于任意实数a、b,定义:a*b=a2+ab+b2.若方程(x*2)﹣5=0的两根记为m,n,则(m+3)(n+3)=.12.α是一元二次方程x2﹣2x﹣4=0的一个根,α+β=2,则β2﹣2β的值是.13.若x1,x2方程x2﹣4x﹣2021=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.14.已知方程x2+5x﹣6=0的解是x1=1,x2=﹣6,则方程(2x+3)2+5(2x+3)﹣6=0的解是.三.解答题15.已知关于x的一元二次方程x2﹣(a﹣3)x﹣a=0.(1)求证:无论a取何值时,该方程总有两个不相等的实数根;(2)若该方程两根的平方和为21,求a的值.16.已知关于x的方程x2+2(2﹣k)x+3﹣6k=0.若x=1是此方程的一根,求k的值及方程的另一根.17.已知关于x的方程x2﹣2x+k﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若,求k的值.参考答案一.选择题1.B.2.D.3.D.4.D.5.D.6.D.7.B.8.D.9.A.二.填空题10.﹣2020.11.2.12.4.13.2029.14.x1=﹣1,x2=﹣.三.解答题15.(1)证明:∵△=[﹣(a﹣3)]2﹣4(﹣a)=a2﹣2a+9=(a﹣1)2+8>0,∴无论a取何值时,该方程总有两个不相等的实数根;(2)解:设方程的两根分别为m、n,∴m+n=a﹣3,mn=﹣a,∴m2+n2=(m+n)2﹣2mn=(a﹣3)2+2a,由题意可得(a﹣3)2+2a=21,解得a=6或a=﹣2.16.解:把x=1代入方程有:1+2(2﹣k)+3﹣6k=0,解得k=1.∴方程为x2+2x﹣3=0,设方程的另一个根是x2,则:1•x2=﹣3,解得x2=﹣3.∴k=1,方程的另一根为﹣3.17.解:(1)由题意得:a=1,b=﹣2,c=k﹣1,∴△=(﹣2)2﹣4(k﹣1)=8﹣4k≥0,∴k≤2;(2)由根与系数的关系得:x1+x2=2,x1x2=k﹣1,∵,∴,∴,∴k=3或﹣1,经检验,k=3或﹣1符合题意,∵k≤2,∴k=﹣1.。
一元二次方程根与系数的关系(一) 姓名◆课前预习1.如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么x 1+x 2=____,x 1x 2=____. 2.如果方程x 2+px+q=0的两个根是x 1,x 2,那么x 1+x 2=_____,x 1x 2=________;以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是__________. ◆互动课堂【例1】写出下列方程的两根和与积(1)2x 3x-5=0- (2)22x +3x 8=0- (3)52x 7x 10-+=【例2】设方程4x 2-7x -3=0的两根为x 1,x 2,不解方程,求下列各式的值: (1)x 12+x 22; (2)(x 1-3)(x 2-3);(3)21121x x x x x +++; (4)│x 1-x 2│.【例3】已知方程25x +kx 6=0-的一个根为2,求k 的值及另一个根 【例4】已知关于x 的一元二次方程x 2-(2k+1)x+4k -3=0。
(1)求证:无论x 取什么实数值,该方程总有两个不相等的实数根;(2)当Rt △ABC 的斜边长b 和c 恰好是这个方程的两个根时,求△ABC 的周长.【例5】已知关于x 的一元二次方程22x +3x m+1=0-的两实根的倒数和为3, 求m 的值. ◆跟进课堂1.如果方程x 2+px+q=01,那么p=_____,q=_____. 2.已知一元二次方程x 2-5x -6=0x 1,x 2,则x 12+x 22=_______.3.已知x 1、x 2是关于x 的一元二次方程a 2x 2-(2a -3)x+1=0的两个实数根,如果1211x x +=-2,那么a 的值是_______.4.已知关于x 的方程x 2-3x+m=0的一个根是另一个根的2倍,则m 的值为______. 5.已知方程x 2+3x -1=0的两个根为α、β,那么aβαβ+=_______.6.设方程x 2+x -1=0的两个实数根分别为x 1,x 2,则1211x x +的值为( ).A .1B .-1 CD 7.对于方程x 2+bx -2=0,以下观点正确的是( ).A .方程有无实数根,要根据b 的取值而定B .无论b 取何值,方程必有一正根,一负根C .当b>0时,方程两根为正;b<0时,方程两根为负D .∵-2<0,∴方程两根肯定为负 8.已知一个直角三角形两条直角边的长恰好是方程x 2-8x+7=0的两个根,•则这个直角三角形的斜边长是( ). A .5 B .3 C .D .99.已知α、β满足α+β=5,且αβ=6,则以α、β为两根的一元二次方程是( ).A .x 2+5x+6=0B .x 2-5x+6=0C .x 2-5x -6=0D .x 2+5x -6=0 10.一元二次方程ax 2+bx+c=0(a ≠0)有两异号实数根的条件是( ). A .b a>0 B .b a <0 C .c a >0 D .c a <0◆课外作业1.设x 1,x 2是方程x 2-4x+2=0的两实数根,则x 1+x 2=____,x 1·x 2=_____.2.关于x 的一元二次方程x 2+bx+c=0的两根为x 1=1,x 2=2,则x 2+bx+c •分解因式的结果为_______. 3.如果一个矩形的长和宽是一元二次方程x 2-10x+20=0的两个根,•那么这个矩形的周长是______.4.已知x 1,x 2是方程x 2-x -3=0的两个根,那么x 12+x 22的值是( ) A .1 B .5 C .7 D .4945.已知关于x 的一元二次方程x 2-mx+2m -1=0的两个实数根的平方和为7,那么m •的值是( ) A .5 B .-1 C .5或-1 D .-5或16.下列说法中正确的是( )A .方程x 2+2x -7=0的两实数根之和是2B .方程2x 2-3x -5=0的两实数根之积为52C .方程x 2-2x -7=0的两实数根的平方和为18D .方程2x 2+3x -5=0的两实数根的倒数和为357.若ab≠1,且有5a 2+2002a+9=0及9b 2+2002b+5=0,则ab的值是( ) A .95B .59C .-20025D .-200298.设x 1,x 2是方程2x 2+4x -3=0的两个根,利用根与系数的关系,求下列各式的值: (1)(x 1+1)(x 2+1); (2)x 12x 2+x 1x 22; (3)2112x x x x +; (4)(x 1-x 2)2.9.已知关于x 的一元二次方程x 2+(2m -3)x+m 2=0的两个不相等的实数根α,β,满足11αβ+=1,求m 的值.10.已知x 1,x 2是关于x 的方程x 2+mx+n=0的两根,x 1+1,x 2+1是关于x 的方程x 2+nx+m=0的两根,求m ,n 的值.11.已知关于x 的方程x 2-2kx+k -14=0的一个根大于1,另一个根小于1,求实数k •的取值范围.12.已知x 1,x 2是一元二次方程2x 2-2x+m+1=0的两个实数根. (1)求实数m 的取值范围.(2)如果x 1,x 2满足不等式7+4x 1x 2>x 12+x 22,且m 为整数,求m 的值.13.已知关于x 的一元二次方程x 2-(m+2)x+14m 2-2=0.(1)当m为何值时,这个方程有两个相等的实数根.(2)如果这个方程的两个实数根x1,x2满足x12+x22=18,求m的值.答案:1.- 1 2.37 3.124.2 5.-116.A 7.B 8.C 9.B 10.D11.(1)-52(2)3 (3)-143(4)10 12.m=-313.m=-1,n=-3 14.k>3 415.(1)m≤-12(2)m=-2或m=•-1。
一元二次方程根与系数的关系(韦达定理)韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b cx x x x a a+=-=说明:(1)定理成立的条件0∆≥(2)注意公式重12bx x a+=-的负号与b 的符号的区别已知x1,x2是方程2x 2-x-5=0的两个根考点:根与系数的关系.专题:应用题.分析:利用根与系数的关系,分别求得x1+x2,x1/x2的值,整体代入所求的代数式即可.解:∵x1,x2是方程2x 2-x-5=0的两个根 ∴x1+x2=-b/a=12,x1×x2=c/a=-5/2本题考查了一元二次方程根与系数的关系.要掌握根与系数的关系式:x1+x2=-b/a ,x1×x2=c/a .(1)计算对称式的值例一 若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2) 1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.(2)定性判断字母系数的取值范围例二 一个三角形的两边长是方程的两根,第三边长为2,求k 的取值范围。
例三 已知关于x 的方程221(1)104x k x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.例四 已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.一元二次方程根与系数的关系练习题A 组1.一元二次方程2(1)210k x x ---=有两个不相等的实数根,则k 的取值范围是( )A .2k >B .2,1k k <≠且C .2k <D .2,1k k >≠且2.若12,x x 是方程22630x x -+=的两个根,则1211x x +的值为( )A .2B .2-C .12 D .923.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +-++=的根,则m 等于( )A .3-B .5C .53-或D .53-或4.若t 是一元二次方程20 (0)ax bx c a ++=≠的根,则判别式24b ac ∆=-和完全平方式2(2)M at b =+的关系是()A .M ∆=B .M ∆>C .M ∆<D .大小关系不能确定5.若实数a b ≠,且,a b 满足22850,850a a b b -+=-+=,则代数式1111b a a b --+--的值为( )A .20-B .2C .220-或D .220或6.如果方程2()()()0b c x c a x a b -+-+-=的两根相等,则,,a b c 之间的关系是 ______ 7.已知一个直角三角形的两条直角边的长恰是方程22870x x -+=的两个根,则这个直角三角形的斜边长是 _______ .8.若方程22(1)30x k x k -+++=的两根之差为1,则k 的值是 _____ .9.设12,x x 是方程20x px q ++=的两实根,121,1x x ++是关于x 的方程20x qx p ++=的两实根,则p = _____ ,q = _____ .10.已知实数,,a b c 满足26,9a b c ab =-=-,则a = _____ ,b = _____ ,c = _____ . 11.对于二次三项式21036x x -+,小明得出如下结论:无论x 取什么实数,其值都不可能等于10.您是否同意他的看法?请您说明理由.12.若0n >,关于x 的方程21(2)04x m n x mn --+=有两个相等的的正实数根,求m n的值.13.已知关于x 的一元二次方程2(41)210x m x m +++-=. (1) 求证:不论为任何实数,方程总有两个不相等的实数根; (2) 若方程的两根为12,x x ,且满足121112x x +=-,求m 的值.14.已知关于x 的方程221(1)104x k x k -+++=的两根是一个矩形两边的长.(1) k 取何值时,方程存在两个正实数根?(2) k 的值.B 组1.已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根12,x x . (1) 求k 的取值范围;(2) 是否存在实数k ,使方程的两实根互为相反数?如果存在,求出k 的值;如果不存在,请您说明理由.2.已知关于x 的方程230x x m +-=的两个实数根的平方和等于11.求证:关于x 的方程22(3)640k x kmx m m -+-+-=有实数根.3.若12,x x 是关于x 的方程22(21)10x k x k -+++=的两个实数根,且12,x x 都大于1.(1) 求实数k的取值范围;(2) 若121 2xx,求k的值.。
初中数学一元二次方程根与系数关系专项复习题(附答案详解)1.已知关于x 的一元二次方程2210ax x --=有两个不相等的实数根,则二次项系数a 的取值范围是( ) A .1a >-B .2a >-C .1a >且0a ≠D .1a >-且0a ≠2.若关于x 的一元二次方程x 2-2x+k=0有两个不相等的实数根,那么k 的取值范围是( )A .k <1B .k≠0C .k >1D .k <03.一元二次方程ax 2+x ﹣2=0有两个不相等实数根,则a 的取值范围是( ) A .a 18<B .a= 18-C .a 18>-且a≠0 D .a 18> 且a≠0 4.下列方程中,两根是﹣2和﹣3的方程是( ) A .x 2﹣5x+6=0 B .x 2﹣5x ﹣6=0 C .x 2+5x ﹣6=0 D .x 2+5x+6=05.关于x 的一元二次方程260x mx +-=的一个根是3,则另一个根是( ) A .-1B .1C .-2D .26.已知方程x 2+2x-1=0,则此方程( )A .无实数根B .两根之和为2C .两根之积为-1D .有一个根为21+7.已知方程x 2﹣4x +k =0有一个根是﹣1,则该方程的另一根是( ) A .1B .0C .﹣5D .58.已知关于x 的一元二次方程x 2-6x +k +1=0的两个实数根是x 1,x 2,且x +x =24,则k 的值是(). A .8B .-7C .6D .59.关于x 的方程的022=+-a ax x 两个根的平方和5是,则a 的值是( )A .-1或5B . 1C .5D .-110.已知一元二次方程2310x x -+=的两根是1x 、2x ,则12x x +的值是( ) A .3B .1C .3-D .1-11.若方程25320x x --=的两个实数根为,m n ,则11m n+的值为__________. 12.若方程x 2+(m+1)x ﹣2n=0的两根分别为2和﹣5,则m=_____,n=_____. 13.已知a ,b 是一元二次方程220180x x --=的两个实数根,则22________a a b--=;14.方程2x2+4x﹣1=0的两根为x1,x2,则x1+x2=____.15.若关于x的方程的两根互为倒数,则= .16.如果一元二次方程2x2﹣5x+m=0有两个实数根,那么实数m的取值范围为_____.17.写出一个二次项系数为2,一个根比1大,另一个根比1小的一元二次方程__________.18.若-2是一元二次方程x2―2x―a=0的一个根,则a的值为____.19.若关于的方程有两个相等的实数根,则k的值为▲ . 20.如果方程x2﹣2x+m=0的两实根为a,b,且a,b,1可以作为一个三角形的三边之长,则实数m的取值范围是___________________.21.已知关于的方程.(1)若该方程有两个不相等的实数根,求实数的取值范围;(2)若该方程的一个根为1,求的值及该方程的另一根.22.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两个不相等的实数根,(1)求m的取值范围(2)若α,β是方程的两个实数根,且满足11αβ+=﹣1,求m的值.23.阅读材料:材料1 若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2则x1+x2=﹣ba,x1x2=ca.材料2 已知实数m,n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求n mm n+的值.解:由题知m,n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1得m+n=1,mn =﹣1,所以222()2121n m m n m n mn m n mn mn ++-++===-=﹣3. 根据上述材料解决以下问题:(1)材料理解:一元二次方程5x 2+10x ﹣1=0的两个根为x 1,x 2,则x 1+x 2= ,x 1x 2= .(2)类比探究:已知实数m ,n 满足7m 2﹣7m ﹣1=0,7n 2﹣7n ﹣1=0,且m ≠n ,求m 2n +mn 2的值:(3)思维拓展:已知实数s 、t 分别满足19s 2+99s +1=0,t 2+99t +19=0,且st ≠1.求41st s t++的值.24.已知关于x 的一元二次方程(k ﹣1)x 2+(2k+1)x+k =0. (1)依据k 的取值讨论方程解的情况.(2)若方程有一根为x =﹣2,求k 的值及方程的另一根.25.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值.26.已知关于的一元二次方程x 2-4x +k +1=0(1)若=-1是方程的一个根,求k 值和方程的另一根;(2)设x 1,x 2是关于x 的方程x 2-4x +k +1=0的两个实数根,是否存在实数k ,使得x 1x 2>x 1+x 2成立?请说明理由.27.已知关于x 的一元二次方程2104x x m -+=有两个实数根. ()1若m 为正整数,求此方程的根.()2设此方程的两个实数根为a 、b ,若2221y ab b b =-++,求y 的取值范围.28.已知关于x 的一元二次方程x 2+(4m+1)x+2m-1=O . (1)求证:不论m 为任何实数,方程总有两个不相等的实数根; (2)若方程两根为x 1、x 2,且满足12111+?=2x x ,求m 的值.29.关于的一元二次方程(1)求证:方程有两个不相等的实数根; (2)为何整数时,此方程的两个根都为正整数.30.已知关于x的一元二次方程01)1(22=-+++k x k kx 有两个实数根,求k 的取值范围.参考答案1.D【解析】【分析】由关于x的一元二次方程ax2-2x-1=0有两个不相等的实数根,即可得判别式△>0且二次项系数a≠0,继而可求得a的范围.【详解】∵一元二次方程ax2-2x-1=0有两个不相等的实数根,∴△=(-2)2-4×a×(-1)>0,且a≠0,解得:a>-1且a≠0,故选D.【点睛】此题考查了一元二次方程根的判别式的知识.此题比较简单,注意掌握一元二次方程有两个不相等的实数根,即可得△>0.2.A【解析】∵关于x的一元二次方程x2−2x+k=0有两个不相等的实数根,∴△=(−2)2−4k>0,解得:k<1.故选:A.3.C【解析】【分析】根据已知得出b2-4ac=12-4a•(-2)>0,求出即可.【详解】∵一元二次方程ax2+x-2=0有两个不相等实数根,∴b2-4ac=12-4a•(-2)>0,解得:a>-18且a≠0,故选:C.【点睛】本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的根的判别式是b 2-4ac ,当b 2-4ac >0时,方程有两个不相等的实数根,当b 2-4ac=0时,方程有两个相等的实数根,当b 2-4ac <0时,方程没有实数根. 4.D . 【解析】试题分析:设两根是﹣2和﹣3的方程为:x 2+ax+b=0,根据根与系数的关系,可得(﹣2)+(﹣3)=﹣a=5,(﹣2)×(﹣3)=b=6,故方程为:x 2+5x+6=0.故选D . 考点:根与系数的关系. 5.C 【解析】 【分析】设该一元二次方程的另一根为t ,则根据根与系数的关系得到36t =-,由此易求t 的值. 【详解】解:设关于x 的一元二次方程260x mx +-=的另一个根为t ,则36t =-, 解得2t =-. 故选:C . 【点睛】本题考查了根与系数的关系.若二次项系数为1,常用以下关系:1x ,2x 是方程20x px q ++=的两根时,12x x p +=-,12x x q =,反过来可得12()p x x =-+,12q x x =,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数. 6.C . 【解析】试题解析:A 、△=22-4×1×(-1)=8>0,则该方程有两个不相等的实数根.故本选项错误; B 、设该方程的两根分别是α、β,则α+β=-2.即两根之和为2,故本选项错误; C 、设该方程的两根分别是α、β,则αβ=-1.即两根之积为-1,故本选项正确;D 、根据求根公式1=-±1-+1-.故本选项错误; 故选C .考点:1.根与系数的关系;2.根的判别式.【解析】 【分析】利用根与系数的关系,即可求出. 【详解】设该方程的另一根为m , 利用根与系数的关系:12b x x a+=- 得:m ﹣1=4, 解得:m =5. 故选:D . 【点睛】本题考查一元二次方程的解的定义以及根数系数的关系,熟练掌握相关知识点是解题关键. 8.D 【解析】 【分析】根据一元二次方程根与系数的关系,即韦达定理进行作答. 【详解】 由韦达定理,即,x 1·x 2=.而x +x =24=()2-2 x 1·x 2=36-2(k +1),解出k =5.所以,答案选D. 【点睛】本题考查了一元二次方程根与系数的关系,即韦达定理的运用,熟练掌握一元二次方程根与系数的关系,即韦达定理是本题解题关键. 9.D 【解析】试题分析:设,αβ是方程022=+-a ax x 的两个根,则,2a a αβαβ+==,又225αβ+=,所以22()245a a αβαβ+-=-=,解得a =-1或5,当a=-1时,9=V >0,当a=5时,16=-V <0,所以a=5不合题意舍去,所以选:D . 考点:根与系数的关系.【解析】 【分析】根据根与系数的关系得到x 1+x 2=3,即可得出答案. 【详解】解:∵x 1、x 2是一元二次方程x 2−3x+1=0的两个根, ∴x 1+x 2=3, 故选A.. 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 11.32-【解析】 【分析】因为方程25320x x --=的两个实数根为m 、n ,所以32,55m n mn +==-,而11m n +=m nnm +,将所得的式子代入计算即可. 【详解】解:∵方程25320x x --=的两个实数根为m 、n ,∴32,55m n mn +==-, ∴11m n +=m n n m +=3525-=32-.故答案为32-.【点睛】本题考查的是一元二次方程的根与系数的关系,对于此类题目,一般的思路和方法是先写出两根之和与两根之积,再将所求的式子变形成两根和与积的形式,整体代入求解. 12. 2 5【解析】∵方程x 2+(m+1)x ﹣2n=0的两根分别为2和﹣5,∴由一元二次方程“根与系数的关系”可得:2+(﹣5)=﹣(m+1),2×(﹣5)=﹣2n,解得:m=2,n=5.故答案为2,5.13.2017【解析】【分析】先根据一元二次方程解的定义得到a2=a+2018,所以a2-2a-b化简为-(a+b)+2018,再利用根与系数的关系得到a+b=1,然后利用整体代入的方法计算.【详解】∵a为方程x2-x-2018=0的根,∴a2-a-2018=0,即a2=a+2018,∴a2-2a-b=a+2018-2a-b=-(a+b)+2018,∵a、b是一元二次方程x2-x-2018=0的两个实数根,∴a+b=1,所以原式=-1+2018=2017.故答案是:2017.【点睛】考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.也考查了一元二次方程解的定义.14.﹣2 【解析】试题解析:根据一元二次方程根与系数的关系可得:x1+x2=4-=-2 2.15.-1.【解析】试题分析:设已知方程的两根分别为m,n,由题意得:m与n互为倒数,即mn=1,由方程有解,得到,解得:,又mn=,∴=1,解得:=1(舍去)或=-1,则=-1.故应填为:-1.考点:根与系数的关系.点评:此题要求熟练掌握一元二次方程ax 2+bx+c=0(a ≠0),当b 2-4ac≥0时,方程有解,然后利用韦达定理得出,.16.m≤258【解析】 【分析】此题根据方程有实数根,可得25420,m -⨯≥解这个不等式即可得出答案. 【详解】解:关于x 的一元二次方程2250x x m -+=有两个实数根,由一元二次方程根的判别式,得25420,m -⨯≥解得:25.8m ≤ 故答案为:25.8m ≤ 【点睛】一元二次方程根的判别式:△>0时,一元二次方程有两个不等实根; △=0时,一元二次方程有两个相等实根; △<0时,一元二次方程没有实根; △≥0时,方程有实数根.17.2240x x -=(答案不唯一) 【解析】 【分析】根据题意可设一根为2,另一根为0,再计算出2+0=2,2×0=0,然后根据根与系数的关系写出新方程,再把二次项系数化为2即可. 【详解】解:设一根为2,另一根为0, ∵2+0=2,2×0=0,∴以2和0为根的一元二次方程可为x 2-2x=0, 当二次项系数为2时,方程变形为2x 2-4x=0. 故答案为2240x x -=. 【点睛】本题考查了根与系数的关系:若x 1,x 2是方程ax 2+bx+c=0的两根时,12bx x a +=-,12c x x a=. 18.8【解析】解析:把x=-2代入方程得:4+4-a=0, 解得:a=8.考点:一元二次方程的解. 19.8 【解析】若一元二次方程有两个相等的实数根,则根的判别式△=b 2-4ac=0,建立关于k 的等式,求出k 的值.解:由题意知方程有两相等的实根, ∴△=b 2-4ac=36-4k-4=0, 解得k=8. 20.34<m≤1. 【解析】 【分析】若一元二次方程有两根,则根的判别式△=b 2-4ac≥0,建立关于m 的不等式,求出m 的取值范围.再根据根与系数的关系和三角形中三边的关系来再确定m 的取值范围,最后综合所有情况得出结论. 【详解】∵方程x 2-2x+m=0的两实根为a ,b , ∴有△=4-4m≥0, 解得:m≤1,由根与系数的关系知:a+b=2,a•b=m , 若a ,b ,1可以作为一个三角形的三边之长, 则必有a+b >1与|a-b|<1同时成立,故只需(a-b )2<1即可, 化简得:(a+b )2-4ab <1,把a+b=2,a•b=m 代入得:4-4m <1, 解得:m >34, ∴34<m≤1, 故本题答案为:34<m≤1. 【点睛】主要考查一元二次方程的根的判别式与根的关系和一元二次方程根与系数的关系、三角形中三边的关系. 21.(1);(2)的值是,该方程的另一根为.【解析】试题分析:(1)利用根的判别式列出不等式求解即可; (2)利用根与系数的关系列出有关的方程(组)求解即可.试题解析:(1)∵b 2﹣4ac=22﹣4×1×(a ﹣2)=12﹣4a >0, 解得:a <3, ∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:111x 21x 2a +=-⎧⎨⋅=-⎩,解得:11x 3a =-⎧⎨=-⎩, 则a 的值是﹣1,该方程的另一根为﹣3.22.(1)m >﹣34;(2)m =3. 【解析】 【分析】(1)根据方程有两个相等的实数根可知△>0,求出m 的取值范围即可; (2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可. 【详解】(1)∵关于x 的一元二次方程x 2+(2m +3)x +m 2=0有两个不相等的实数根,∴△>0,即△=(2m +3)2﹣4m 2>0,解得m >﹣34; (2)∵α,β是方程的两个实数根, ∴α+β=﹣(2m +3),αβ=m 2. ∵211(23)1m mαβαβαβ+-++===-, ∴﹣(2m +3)=﹣m 2,解得m 1=3,m 2=﹣1(舍弃). ∴m =3. 【点睛】考查的是根与系数的关系,熟知x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=﹣b a ,x 1x 2=ca是解答此题的关键. 23.(1)-2,-15;(2)﹣17;(3)﹣15.【解析】 【分析】(1)直接利用根与系数的关系求解;(2)把m 、n 可看作方程7x 2﹣7x ﹣1=0,利用根与系数的关系得到m +n =1,mn =﹣17,再利用因式分解的方法得到m 2n +mn 2=mn (m +n ),然后利用整体的方法计算;(3)先把t 2+99t +19=0变形为19•(1t )2+99•1t +1=0,则把实数s 和1t可看作方程19x 2+99x +1=0的两根,利用根与系数的关系得到s +1t =﹣9919,s •1t =119,然后41st s t ++变形为s +4•s t +1t,再利用整体代入的方法计算. 【详解】解:(1)x 1+x 2=﹣105=﹣2,x 1x 2=﹣15;故答案为﹣2;﹣15;(2)∵7m 2﹣7m ﹣1=0,7n 2﹣7n ﹣1=0,且m ≠n , ∴m 、n 可看作方程7x 2﹣7x ﹣1=0, ∴m +n =1,mn =﹣17,∴m2n+mn2=mn(m+n)=﹣17×1=﹣17;(3)把t2+99t+19=0变形为19•(1t)2+99•1t+1=0,实数s和1t可看作方程19x2+99x+1=0的两根,∴s+1t=﹣9919,s•1t=119,∴41st st++=s+4•st+1t=﹣9919+4×119=﹣15.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣ba,x1x2=ca.也考查了解一元二次方程.24.(1)k>﹣18且k≠1时,原方程有两个不相等的实数根;k=﹣18时,原方程有两个相等的实数根;k<﹣18时,原方程没有实数根;(2)k=6,方程的另一根为﹣35.【解析】【分析】(1)根据方程的系数可得出根的判别式△=8k+1,进而可得出方程解得情况;(2)将x=﹣2代入原方程可求出k值,再利用两根之和等于ba-及方程的一根为x=﹣2,可求出方程的另一根.【详解】解:(1)a=k﹣1,b=2k+1,c=k,∵△=b2﹣4ac=(2k+1)2﹣4×(k﹣1)×k=8k+1,∴当k>﹣18且k≠1时,原方程有两个不相等的实数根;当k=﹣18时,原方程有两个相等的实数根;当k<﹣18时,原方程没有实数根.(2)将x=﹣2代入原方程,得:(k﹣1)×(﹣2)2+(2k+1)×(﹣2)+k=0,解得:k=6,∴原方程为5x2+13x+6=0,∴方程的另一根为x =﹣135﹣(﹣2)=﹣35. 【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根”;(2)代入x=-2求出k 值. 25.0. 【解析】 【分析】由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解. 【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩V=== , 由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1,则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k -1=0时,k =1,x =23-,则22106k k k -=+-.Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178k ≤, 又k 是正整数,且k≠1,则k =2,但使2216k k k -+-无意义.综上,代数式2216k k k -+-的值为0【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程, 26.(1)k=" -6" ,方程的另一根是5. (2)不存在.理由见解析. 【解析】试题分析:(1)把已知的根代入原方程,求出k ,然后根据根与系数的关系,求得另一根; (2)根据一元二次方程的跟的判别式求出k 的范围,然后再根据根与系数的关系表示出x 1+x 2=4,x 1·x 2=k +1,根据已知的不等式求出k 的范围,从判断是否存在. 试题解析:(1)k="-6" ,方程的另一根是5. ( 2 ) 不存在.理由:由题意得Δ=16-4(k +1)≥0,解得k≤3. ∵x 1,x 2是一元二次方程的两个实数根, ∴x 1+x 2=4,x 1x 2=k +1, 由x 1x 2>x 1+x 2得k +1>4, ∴k >3,∴不存在实数k 使得x 1x 2>x 1+x 2成立.考点:一元二次方程根的判别式,根与系数的关系 27.()11m =,1212x x ==.()724y ≤. 【解析】 【分析】(1)根据方程的系数结合根的判别式,即可得出114m 1m 04=-⨯=-≥V ,由此吉可求得m 的取值范围,根据m 为正整数,可得出m 的值,将m 代入原方程求出x 的值即可; (2)根据根与系数的关系以及一元二次方程根的定义可得1ab m 4=,21b b m 04-+=,由此可得3y m 14=+,根据m 的取值范围进行求解即可. 【详解】()1∵一元二次方程21x x m 04-+=有两个实数根,∴114m 1m 04=-⨯=-≥V , ∴m 1≤.∵m 为正整数, ∴m 1=,当m 1=时,此方程为21x x 04-+=, ∴此方程的根为121x x 2==; ()2∵此方程的两个实数根为a 、b ,∴1ab m 4=,21b b m 04-+=, ∴()22113y ab 2b 2b 1ab 2b b 1m 2m 1m 1444⎛⎫=-++=--+=--+=+ ⎪⎝⎭, ∵()4m y 13=-, 又∵m 1≤, ∴()4m y 113=-≤, ∴y 的取值范围为7y 4≤. 【点睛】本题考查了一元二次方程根的判别式、根与系数的关系、一元二次方程的根等,综合性较强,正确理解题意,熟练运用相关知识是解题的关键. 28.(1)相交线;(2)m=110-. 【解析】 【分析】(1)要证明方程总有两个不相等的实数根,那么只要证明△>0即可; (2)首先利用根与系数的关系可以得到x 1+x 2,x 1x 2,接着利用根与系数的关系得到关于m 的方程,解方程即可解决问题. 【详解】(1)证明:因为一元二次方程x 2+(4m+1)x+2m-1=O 的根的判别式 △=(4m+1)2-4(2m-1)=16m 2+8m+1-8m+4=16m 2+5.因为不论m 取何值时,m 2≥0,所以16m 2+5总大于0,即不论m 为任何实数,方程总有两个不相等的实数根;(2)因为方程两根为x 1、x 2,所以x 1+x 2=-(4m+1),x 1x 2=2m -1, 因为12111+=,2x x 所以121212x x x x +=,所以()411212m m -+=-,所以m=110-.【点睛】本题考查了一元二次方程根的判别式及根与系数的关系,掌握(1) △>0,方程有两个不相等的实数根;(2) △=0,方程有两个相等的实数根;(3) △<0,方程没有实数根,是解答本题的关键. 29.(1)证明见解析;(2)2或3. 【解析】试题分析:(1)表示出根的判别式,得到根的判别式大于0,进而确定出方程总有两个不相等的实数根;(2)由(1)得到方程有两个不相等的实数根,利用求根公式表示出方程的两根:x 1=,x 2=1,要使原方程的根是整数,必须使得x 1==1+为正整数,则m-1=1或2,进而得出符合条件的m 的值.解:(1)∵△=b 2-4ac=(-2m )2-4(m-1)(m+1)=4>0, ∴方程有两个不相等的实数根; (2)由求根公式,得x=, ∴x 1==,x 2==1;∵m 为整数,且方程的两个根均为正整数, ∴x 1==1+,必为正整数,∴m-1=1或2, ∴m=2或m=3.考点:根的判别式;一元二次方程的定义. 30.k≥-13且k≠0. 【解析】试题分析:若一元二次方程有两不等实数根,则根的判别式△=b 2-4ac≥0,建立关于k 的不等式,求出k 的取值范围.还要注意二次项系数不为0. 试题解析:∵a=k ,b=2(k+1),c=k-1,∴△=[2(k+1)]2-4×k×(k-1)=12k+4≥0,解得:k≥-13,∵原方程是一元二次方程,∴k≠0.所以:k的取值范围为:k≥-13且k≠0.考点:根的判别式.。
专题21.10 一元二次方程的根与系数的关系(拓展提高)一、单选题1.已知1x ,2x 是一元二次方程2430x x -+=两个根,则1212x x x x --的值为( )A .1-B .7-.C .1D .7 【答案】A 【分析】根据根与系数的关系12b x x a +=-,12c x x a =,在原方程中找到一元二次方程的系数 a 、b 、c 就可以求出1212x x x x --的值即可.【详解】解:∵1x ,2x 是一元二次方程2430x x -+=两个根,∴由根与系数的关系得,12441b x x a -+=-=-=,12331c a x x ===, ∴()12121212341x x x x x x x x --=-+=-=-,故选:A .【点睛】本题考查的是一元二次方程根与系数的关系,熟悉相关性质是解题的关键.2.已知关于x 的方程x 2+kx +2=0的两个根为x 1,x 2,且1212110x x x x ++=,则k 的值为( ) A .0B .2C .4D .8【答案】C 【分析】根据根与系数关系列出方程求解即可.【详解】解:由题意知,x 1+x 2=﹣k ,x 1•x 2=2. 则由1212110x x x x ++=得, 2112120x x x x x x ++=⋅,即202k -+=. 解得k =4.故选:C .【点睛】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.3.如果m 、n 是一元二次方程x 2+x =4的两个实数根,那么多项式2n 2﹣mn ﹣2m 的值是( ) A .16 B .14 C .10 D .6【答案】B【分析】先根据一元二次方程的解的定义得到24n n +=,即24n n =-,依此可得()()22224282n mn m n mn m m n mn --=---=-+-,然后根据根与系数的关系得到1m n +=-,4mn =-,再利用整体代入的方法计算.【详解】解:∵n 是一元二次方程x 2+x =4的根,∴n 2+n =4,即n 2=﹣n +4,∵m 、n 是一元二次方程x 2+x =4的两个实数根, ∴b m n a+=-,c mn a = ∴1m n +=-,4mn =-∴()()22224282n mn m n mn m m n mn --=---=-+-=2+4+8=14. 故选B .【点睛】本题考查了根与系数的关系:若1x ,2x 是一元二次方程()200++=≠ax bx c a 的两根时,12b x x a +=-,12c x x a=,同时也考查了一元二次方程的解. 4.等腰三角形的一边长为4,另外两边的长是关于x 的方程2100x x k -+=的两个实数根,则该等腰三角形的周长是( )A .14B .14或15C .4或6D .24或25【答案】A【分析】分为腰长为4和底边长为4两种情况讨论,再根据韦达定理即可得解.【详解】解:设底边为a ,分为两种情况:①当腰长是4时,根据韦达定理:a +4=10,解得:a =6,即此时底边为6,②底边为4,根据韦达定理:2a =10,解得a =5,所以该等腰三角形的周长是14.故选:A .【点睛】本题考查了有关等腰三角形的分类讨论,韦达定理;能够正确的分类讨论是本题的关键. 5.关于x 的方程ax 2+(a +2)x +9a =0有两个不等的实数根x 1,x 2,且x 1<1<x 2,那么a 的取值范围是( )A .﹣27<a <25B .a >25C .a <﹣27D .﹣211<a <0 【答案】D 【分析】根据一元二次方程的根的判别式,建立关于a 的不等式,求出a 的取值范围.又存在x 1<1<x 2,即(x 1-1)(x 2-1)<0,x 1x 2-(x 1+x 2)+1<0,利用根与系数的关系,从而最后确定a 的取值范围.【详解】解:∵方程有两个不相等的实数根,则a≠0且△>0,由(a+2)2-4a×9a=-35a 2+4a+4>0, 解得2275a -<<, 又∵x 1<1<x 2,∴x 1-1<0,x 2-1>0,那么(x 1-1)(x 2-1)<0,∴x 1x 2-(x 1+x 2)+1<0,122a x x a ++=-,x 1x 2=9, 即2910a a+++<, 解得2011a -<<, 综上所述,a 的取值范围为:2011a -<<. 故选D .【点睛】本题考查了一元二次方程根的判别式及根与系数的关系.掌握相关知识是关键:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.根与系数的关系为:1212,b c x x x x a a+=-=. 6.如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,其中正确的有( )个.①方程x 2+5x +6=0是倍根方程:②若pq =2,则关于x 的方程px 2+4x +q =0是倍根方程;③若(x ﹣3)(mx +n )=0是倍根方程,则18m 2+15mn +2n 2=0;④若方程ax 2+bx +c =0是倍根方程,且3a +b =0,则方程ax 2+bx +c =0的一个根为1A .1B .2C .3D .4【答案】B【分析】①解得方程后即可利用倍根方程的定义进行判断;②已知条件2pq =,然后解方程240px x q ++=即可得到正确的结论.③根据(3)()0x mx n -+=是倍根方程,且且13x =,2n x m =-,得到32n m =-,或6n m=-,从而得到320m n +=,60m n +=,进而得到2218152(32)(6)0m mn n m n m n ++=++=正确;④利用“倍根方程”的定义进行解答.【详解】解:①解方程2560x x ++=得:12x =-,23x =-,∴方程2560x x ++=不是倍根方程,故①错误;②2pq =,解方程240px x q ++=得:1x ,2x = 122x x ∴≠,故②错误;③(3)()0x mx n -+=是倍根方程,且13x =,2n x m=-, ∴32n m =-,或6n m=-, 320m n ∴+=,60m n +=,2218152(32)(6)0m mn n m n m n ∴++=++=,故③正确; ④方程20ax bx c ++=是倍根方程,∴设122x x =,∵3a+b=0,123x x ∴+=,2223x x ∴+=,21x ∴=,故④正确.【点睛】本题考查了一元二次方程的解,根与系数的关系,根的判别式,反比例函数图形上点的坐标特征,正确的理解“倍根方程”的定义是解题的关键.二、填空题7.若关于x 的一元二次方程2(1)20x m x +++=的一个根是1-,则另一个根是_________.【答案】-2【分析】把-1代入方程求m ,再把m 代回方程,解方程即可;或用根与系数关系可求.【详解】解:方法一,把-1代入方程2(1)20x m x +++=,得,1(1)20m -++=,解得,m=2,代入原方程得,2320x x ++=,解得,121,2x x =-=-,故答案为:-2;方法二,设另一个根是a ,根据根与系数关系,a ×(-1)=2,a =-2,故答案为:-2【点睛】本题考查了一元二次方程的根和一元二次方程根与系数关系,选择不同方法解题,体现思维的灵活性,准确把握知识是解题关键.8.若实数a 、b 满足a 2﹣8a +5=0,b 2﹣8b +5=0,则a +b 的值_____.【答案】8或8±【分析】分类讨论:当a =b ,解方程易得原式=8±;当a ≠b ,可把a 、b 可看作方程x 2﹣8x +5=0的两根,然后根据根与系数的关系求解.【详解】解:当a =b 时,由a 2﹣8a +5=0解得a =∴a +b =8±;a 、b 可看作方程x 2﹣8x +5=0的两根,∴a +b =8.故答案为8或8±. 【点睛】本题主要考查解一元二次方程以及根与系数的关系,能够对a 、b 进行分类讨论是解题关键. 9.若实数m 、n 满足21010m m -+=,21010n n -+=,则代数式33m n mn +的值为______.【答案】98【分析】由题意得:m 、n 是方程21010x x -=+的两个根,利用跟与系数的关系,得出10m n +=,1⋅=m n ,进而即可求解.【详解】解:∵实数m 、n 满足21010m m -+=,21010n n -+=,∴m 、n 是方程21010x x -=+的两个根,∴10m n +=,1⋅=m n ,∴33m n mn +=222()()2mn m n mn m n mn ⎡⎤+=+-⎣⎦=21102198⎡⎤⨯-⨯=⎣⎦,故答案是:98.【点睛】本题主要考查一元二次方程根与系数的关系,完全平方公式,把实数m 、n 看作是方程21010x x -=+的两个根,是解题的关键. 10.已知α、β是方程x 2-2x -1=0的两个根,则α2+2β=_____.【答案】5【分析】先用一元二次方程跟与系数的关系,再利用方程变形即可【详解】解:由题意可得:+=2=-1αβαβ,∴2+24=αβ∴2=42αβ-∵α、β是方程x 2-2x -1=0的两个根∴2210αα--=∴()24210αβ---=故答案是:5【点睛】本题考查一元二次方程跟与系数的关系,换元法是关键11.已知方程2410x x --=的两根为12,x x ,则()()1211x x --=________.【答案】4-【分析】根据根与系数关系,求出两根之和、两根之积,代入求值即可.【详解】解:方程2410x x --=的两根为12,x x ,所以,124x x +=,121x x ⋅=-,()()121212111()x x x x x x --+-+=,把124x x +=,121x x ⋅=-代入得,原式=1414--=-,故答案为:-4.【点睛】本题考查了一元二次方程根与系数关系,解题关键是明确一元二次方程根与系数关系,求出两根之和、两根之积,把所求式子变形,整体代入求值.12.若1x ,2x 是关于x 的方程()22230x k x k --+=的两个实数根,且12:1:4x x =,则k 的值是___________. 【答案】23k =或6k =- 【分析】设方程的两根分别为x 1,x 2,根据根与系数的关系得到1223x x k +=-,212x x k =,根据题意有12:1:4x x =,可得2316120k k +-=,解得23k =或6k =-,而△≥0,即(2k ﹣3)2﹣4k 2≥0,解得34k ≤;最后得到满足条件的k 值; 【详解】解:根据题意1223x x k +=-,212x x k =,∵12:1:4x x =,∴214x x =,∴12215234x k x k =-⎧⎨=⎩,∴222345-⎛⎫⨯= ⎪⎝⎭k k , 整理得2316120k k +-=, 解得23k =或6k =-. ∵方程有两个实数根∴△≥0,即(2k ﹣3)2﹣4k 2≥0, 解得34k ≤, ∴23k =或6k =-. 故答案为:23k =或6k =-. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系:若方程的两根分别为x 1,x 2,则x 1+x 2b a =-,x 1•x 2c a=. 13.已知一元二次方程ax 2+bx +c =0(a ≠0).下列说法:①若a +c =0,则方程一定有两个不相等的实数根;②若a +b +c =0,则1一定是这个方程的实数根;③若b 2﹣6ac >0,则方程一定有两个不相等的实数根;④若ax 2+bx +c =0(a ≠0)的两个根为2和3,则1211,23x x ==是方cx 2+bx +a =0(a ≠0)的根,其中正确的是_____(填序号).【答案】①②④【分析】根据一元二次方程根的判别式、根与系数的关系、解的意义求解.【详解】解:①因为a +c =0,a ≠0,所以a 、c 异号,所以△=b 2﹣4ac >0,所以方程有两个不等的实数根故①正确;②∵x=1时,ax 2+bx +c =a+b+c ,∴a +b +c =0时,一定有一个根是1,故②正确;③根据b 2﹣6ac >0,不能得到b 2﹣4ac >0,从而不能证得方程ax 2+bx +c =0一定有两个不相等的实数根,故③错误;④∵2和3是ax 2+bx +c =0(a ≠0)的两个根, ∴235,236b c a a-=+==⨯=, ∴51,66b a c c -==,而115111,236236b a c c+==-⨯==, ∴121123x x ==,是方和cx 2+bx +a =0(a ≠0)的根,故④正确, ∴正确的结论是①②④,故答案为:①②④,【点睛】本题考查一元二次方程的应用,熟练掌握一元二次方程根判别式的计算与应用、根与系数的关系、解的意义是解题关键.14.已知对于两个不相等的实数a 、b,定义一种新的运算:@a b a b=+,如6@15615217===+,已知m ,n 是一元二次程22170x x -+=的两个不相等的实数根,则[()@m n mn +=_______. 【答案】25【分析】首先根据韦达定理求解两根之和与两根之积,然后代入原式根据定义进行求解.【详解】由m ,n 是22170x x -+=的两个不相等的实数根可得:21m n +=,7mn =故[()@(21@m n mn +=217⎛= +⎝⎭28⎛= ⎝⎭28===2=25= 【点睛】本题考查了一元二次方程的根与系数关系(也叫韦达定理),实数的定义新运算,此类题型一定要严格按照题目中的定义来求解,注意过程的正确性.三、解答题15.若关于x 的方程()21410k x x ---=有两个实数根.(1)求k 的取值范围;(2)若方程的两根1x ,2x ,满足()()12114x x ++=,求k 的值.【答案】(1)k ≥-3且k ≠1;(2)74【分析】(1)根据方程有两个实数根,结合根的判别式,即可得出关于k 的一元一次不等式,解之即可得出结论.(2)根据一元二次方程的根与系数的关系可以得到x 1+x 2=41k -,x 1x 2=11k --,再将它们代入()()12114x x ++=,即可求出k 的值.【详解】(1)∵关于x 的一元二次方程()21410k x x ---=有两个实数根,∴△=42+4(k ﹣1)=4k +12≥0,且k -1≠0,解得:k ≥-3且k ≠1.∴k 的取值范围为:k ≥-3且k ≠1.(2)由根与系数关系得:x 1+x 2=41k - ,x 1x 2=11k --, ∴()()1211x x ++=x 1x 2+(x 1+x 2)+1=41k -+11k --=4. 解得k =74. 经检验,k =74是分式方程的解. 故k 的值是74. 【点睛】本题主要考查了根的判别式及根与系数的关系,熟练运用根的判别式及根与系数的关系是解决问题的关键.16.已知关于x 的一元二次方程x 2+(m +3)x +m +1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若已知方程的一个根为﹣2,求方程的另一个根以及m 的值.【答案】(1)见解析;(2)方程的另一根为0,m 的值为1-【分析】(1)由△=(m +3)2﹣4×1×(m +1)=(m +1)2+4>0可得答案;(2)设方程的另外一根为a ,根据一元二次方程根与系数的关系得出2321a m a m -=--⎧⎨-=+⎩,解之即可得出答案. 【详解】(1)证明:∵△=(m +3)2﹣4×1×(m +1)=m 2+6m +9﹣4m ﹣4=m 2+2m +1+4=(m +1)2+4>0,∴无论m 取何值,原方程总有两个不相等的实数根;(2)设方程的另外一根为a ,根据题意,得:2321a m a m -=--⎧⎨-=+⎩, 解得:01a m =⎧⎨=-⎩, 所以方程的另一根为0,m 的值为1-.【点睛】本题考查的是一元二次方程根的判别式与一元二次方程根与系数的关系,掌握以上知识解决一元二次方程根的问题是解题的关键.17.非零实数a ,b (a ≠b )满足a 2﹣a ﹣2013=0,b 2﹣b ﹣2013=0,求11a b+的值. 【答案】12013- 【分析】根据题意,可把a 和b 看作方程x x --=220130的两根,根据根与系数的关系得到a +b =1,ab =-2013,再变形11a b+得到a b ab +,然后利用整体代入的方法计算即可. 【详解】解:∵非零实数a ,b (a ≠b )满足220130a a --=,220130b b --=,∴实数a 、b 是方程x x --=220130的两根.由根与系数的关系可知a +b =1,ab =-2013. ∴111120132013a b a b ab ++===--. 【点睛】本题考查一元二次方程根与系数的关系以及代数式求值.若12x x ,是一元二次方程20(a 0)++=≠ax bx c 的两个根,那么12b x x a +=-,12c x x a=. 18.已知m ,n 是方程x 2﹣2x ﹣1=0的两个根,是否存在实数a 使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8?若存在,求出a 的值;若不存在,请说明理由.【答案】存在,a =-6【分析】根据方程的解的定义得出m 2-2m =1,n 2-2n =1,m +n =2,再整体代入即可得出a 的值.【详解】解:存在,理由如下:∵m ,n 是方程x 2﹣2x ﹣1=0的两个根,∴m 2﹣2m =1,n 2﹣2n =1,m +n =2,∴﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)=﹣(m +n )[7(m 2﹣2m )+a ][3(n 2﹣2n )﹣7]=﹣2×(7+a )(3﹣7)=8(7+a ),由8(7+a )=8得a =﹣6,∴存在实数a =﹣6,使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8.【点睛】本题考查了一元二次方程的解、根与系数的关系,解题的关键是得出m 2-2m =1,n 2-2n =1,m +n =2,注意解题中的整体代入思想.19.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.【答案】(1)见解析;(2)经过,理由见解析【分析】(1)根据判别式公式得△=m 2≥0,即可得到答案;(2)根据一元二次方程根与系数的关系,得到x 1+x 2和x 1x 2关于m 的表达式,整理n =x 12+x 22-4,得n =(m +2)2,即可得到答案.【详解】解:(1)证明:∵△=[-(m +4)]2-4(2m +4)=m 2≥0,∴该一元二次方程总有两个实数根;(2)根据题意得:x 1+x 2=m +4,x 1x 2=2m +4,n =x 12+x 22-4=(x 1+x 2)2-2x 1x 2-4,=(m +4)2-2(2m +4)-4=m 2+4m +4=(m +2)2即n =(m +2)2,经过(-5,9).【点睛】本题考查了根与系数的关系,根的判别式,坐标与图形性质,解题的关键:(1)正确掌握根的判别式,(2)正确掌握一元二次方程根与系数的关系,坐标与图形性质.20.已知:α,β(α>β)是一元二次方程210x x --=的两个实数根,设1s αβ=+,222s αβ=+, …,n n n s αβ=+.根据根的定义,有210αα--=,210ββ--=,将两式相加,得22()()20αβαβ+-+-=,于是,得2120s s --=.根据以上信息,解答下列问题: ①利用配方法求α,β的值,并利用一元二次方程根与系数的关系直接写出1s ,2s 的值.②猜想:当n ≥3时,n s ,1n s -,2n s -之间满足的数量关系,并证明你的猜想的正确性.(注:关于x 的一元二次方程20ax bx c ++=若有两根12,x x ,则有1212;b c x x x x a a +=-=)【答案】①12α+=,12β=;11s =,23s =;②12n n n s s s --=+,证明见解析 【分析】①按照配方法的步骤对原方程进行求解即可得出α,β的值,然后结合根与系数的关系求出1s ,2s 的值即可;②根据材料定义得120n n n ααα----=和120n n n βββ----=,然后联立求和即可推出结论.【详解】①移项,得21x x -=,配方,得22211121222x x ⎛⎫⎛⎫-⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭,即21524x ⎛⎫-= ⎪⎝⎭,开平方,得122x -=±,即x =,∴α=,β=. 于是,11s =,23s =.②猜想:12n n n s s s --=+.证明:根据根的定义,210αα--=,两边都乘以2n α-,得120n n n ααα----=,①同理,120n n n βββ----=,②①+②,得1122()()()0n n n n n n αβαβαβ----+-+-+=,∵n n n s αβ=+,111n n n s αβ---=+,222n n n s αβ---=+,∴120n n n s s s ----=,即12n n n s s s --=+.【点睛】本题考查一元二次方程根与系数的关系以及新定义问题,理解材料给出的定义,熟练掌握一元二次方程根与系数的关系是解题关键.。
21.2.4 一元二次方程的根与系数的关系A基础知识详解——————————————☆知识点一元二次方程根与系数的关系B重难点解读—————————☆重难点根据方程中两根的关系确定方程中字母的值○随堂例题例1 已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1、x2.(1)求实数k的取值范围;(2)若x1、x2满足x12+x22=16+x1•x2,求实数k的值.(2)∵关于x 的方程x +(2k-1)x+k -1=0有两个实数根x 1,x 2,∴x 1+x 2=1-2k ,x 1•x 2=k 2-1.∵x 12+x 22=(x 1+x 2)2-2x 1•x 2=16+x 1•x 2,∴(1-2k )2-2×(k 2-1)=16+(k 2-1),即k 2-4k-12=0, 解得k=-2或k=6(不符合题意,舍去). ∴实数k 的值为-2.【一中名师点拨】题目中提到两个实数根,即隐含着根的判别式大于等于0;当根据方程中两根的关系确定方程中字母的值,关键是把这种关系式转化为含x 1+x 2及x 1x 2的形式. ○随堂训练1.(2017烟台)若x 1,x 2是方程x 2-2mx+m 2-m-1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为( D )A .-1或2B .1或-2C .-2D .12.已知关于x 的一元二次方程x 2+(m+2)x+m=0, (1)求证:无论m 取何值,原方程总有两个不相等的实数根; (2)若x 1,x 2是原方程的两根,且2111x x +=-2,求m 的值.解:(1)△=(m+2)2-4m=m 2+4>0,∴无论m 取何值,原方程总有两个不相等的实数根; (2)∵x 1,x 2是原方程的两根, ∴x 1+x 2=-(m+2),x 1x 2=m . ∵2111x x +=2121x x x x +=-mm 2+=-2,解得m=2,经检验,m=2是分式方程的解,且符合题意,∴m 的值为2.课后达标基础训练1.(2017呼和浩特)关于x 的一元二次方程x 2+(a 2-2a )x+a-1=0的两个实数根互为相反数,则a 的值为( B ) A .2 B .0 C .1 D .2或02.(2017新疆)已知关于x 的方程x 2+x-a=0的一个根为2,则另一个根是( A ) A .-3 B .-2 C .3 D .63.已知m ,n 是一元二次方程x 2-4x-3=0的两个实数根,则代数式(m+1)(n+1)的值为( D ) A .-6 B .-2 C .0 D .24.已知实数x 1,x 2满足x 1+x 2=11,x 1x 2=30,则以x 1,x 2为根的一元二次方程是( A )A .x 2-11x+30=0B .x 2+11x+30=0C .x 2+11x-30=0D .x 2-11x-30=05.已知x 1、x 2是方程2x 2+3x-4=0的两根,那么x 1+ x 2= 23- ;x 1·x 2= 2 ;11x +21x = 43- ;x 12+ x 22=47-;21x x -= 423-. 6.已知关于x 的方程x 2+ax+b+1=0的解为x 1=x 2=2,则a+b 的值为 -1 .7.以3+2和3-28.已知方程5x 2+mx-10=0的一根是-5,求方程的另一根及m 的值. 解:设方程的另一个根为k , 则-5k=-2,解得52k =,又k-5=5m -,得m=23.9.已知关于x 的一元二次方程kx 2+x-2=0有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程两个实数根分别为x 1,x 2,且满足x 12+x 22+3x 1•x 2=3,求k 的值.12(1)求实数m 的取值范围;(2)若x 1+x 2=6-x 1x 2,求(x 1-x 2)2+3x 1x 2-5的值. 解:(1)△=(2m-3)2-4m 2=4m 2-12m+9-4m 2=-12m+9,∵△≥0,∴-12m+9≥0,∴m ≤43; (2)由题意可得x 1+x 2=-(2m-3)=3-2m ,x 1x 2=m 2,又∵x 1+x 2=6-x 1x 2,∴3-2m=6-m 2,∴m 2-2m-3=0,∴m 1=3,m 2=-1,又∵m ≤43,∴m=-1,∴x 1+x 2=5,x 1x 2=1,∴(x 1-x 2)2+3x 1x 2-5=(x 1+x 2)2-4x 1x 2+3x 1x 2-5=(x 1+x 2)2-x 1x 2-5=52-1-5=19.能力提升11.(2017仙桃)若α、β为方程2x 2-5x-1=0的两个实数根,则2α2+3αβ+5β的值为( B ) A .-13 B .12 C .14 D .1512.若非零实数a ,b (a ≠0)满足a 2-a-2018=0,b 2-b-2018=0,则ba 11+= 20181-. 13.已知关于x 的方程x 2-(k+1)x+41k 2+1=0的两根是一个矩形两邻边的长,且矩形的对角线长为5,求k= 2 .14.已知关于x 的一元二次方程x 2+(2k+1)x+k 2-2=0的两根为x 1和x 2,且(x 1-2)(x 1-x 2)=0,则k 的值是 -2或-4.15.(2017黄石)已知关于x 的一元二次方程x 2-4x-m 2=0. (1)求证:该方程有两个不等的实根;(2)若该方程的两实根x 1、x 2满足x 1+2x 2=9,求m 的值.。
一元二次方程根与系数的关系(附答案)评卷人得分一.选择题(共6小题)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值范围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣13.关于x的一元二次方程x2+3x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.65.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D.6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()A.﹣1 B.0 C.1 D.3评卷人得分二.填空题(共1小题)7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为.评卷人得分三.解答题(共8小题)8.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长.9.已知关于x的方程x2+ax+a﹣2=0.(1)若该方程的一个根为1,求a的值;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根;(2)若该方程一个根为3,求m的值.11.已知关于x的一元二次方程x2﹣x+a﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x1,x2,求a的取值范围;(3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值.12.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由;(2)求使+﹣2的值为整数的实数k的整数值;(3)若k=﹣2,λ=,试求λ的值.13.已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.14.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.15.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1、x2.(1)求m的取值范围;(2)若x12+x22=6x1x2,求m的值.参考答案与试题解析一.选择题(共6小题)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定【解答】解:∵△=42﹣4×3×(﹣5)=76>0,∴方程有两个不相等的实数根.故选:B.2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值范围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣1【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有实数根,∴△=22﹣4×1×(﹣m)=4+4m≥0,解得:m≥﹣1.故选:A.3.关于x的一元二次方程x2+3x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【解答】解:∵a=1,b=3,c=﹣1,∴△=b2﹣4ac=32﹣4×1×(﹣1)=13>0,∴方程有两个不相等的实数根.故选:A.4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.6【解答】解:∵x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣,∴x12+x22=(x1+x2)2﹣2x1x2=22﹣2×(﹣)=5.故选:C.5.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D.【解答】解:∵α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,∴α+β=5.故选:B.6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()A.﹣1 B.0 C.1 D.3【解答】解:∵关于x的方程x2﹣4x+c+1=0有两个相等的实数根,∴△=(﹣4)2﹣4×1×(c+1)=12﹣4c=0,解得:c=3.故选:D.二.填空题(共1小题)7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为﹣5.【解答】解:∵关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p、q,∴p+q=3,pq=a,∵p2﹣pq+q2=(p+q)2﹣3pq=18,即9﹣3a=18,∴a=﹣3,∴pq=﹣3,∴+====﹣5.故答案为:﹣5.三.解答题(共8小题)8.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长.【解答】解:(1)∵方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△=[﹣(2k+1)]2﹣4×1×(k2+1)=4k﹣3>0,∴k>.(2)当k=2时,原方程为x2﹣5x+5=0,设方程的两个为m、n,∴m+n=5,mn=5,∴==.9.已知关于x的方程x2+ax+a﹣2=0.(1)若该方程的一个根为1,求a的值;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.【解答】(1)解:将x=1代入原方程,得:1+a+a﹣2=0,解得:a=.(2)证明:△=a2﹣4(a﹣2)=(a﹣2)2+4.∵(a﹣2)2≥0,∴(a﹣2)2+4>0,即△>0,∴不论a取何实数,该方程都有两个不相等的实数根.10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根;(2)若该方程一个根为3,求m的值.【解答】(1)证明:原方程可化为x2﹣(2m+2)x+m2+2m=0,∵a=1,b=﹣(2m+2),c=m2+2m,∴△=b2﹣4ac=[﹣(2m+2)]2﹣4(m2+2m)=4>0,∴不论m为何值,该方程总有两个不相等的实数根.(2)解:将x=3代入原方程,得:(3﹣m)2﹣2(3﹣m)=0,解得:m1=3,m2=1.∴m的值为3或1.11.已知关于x的一元二次方程x2﹣x+a﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x1,x2,求a的取值范围;(3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值.【解答】解:(1)把a=﹣11代入方程,得x2﹣x﹣12=0,(x+3)(x﹣4)=0,x+3=0或x﹣4=0,∴x1=﹣3,x2=4;(2)∵方程有两个实数根,∴△≥0,即(﹣1)2﹣4×1×(a﹣1)≥0,解得;(3)∵是方程的两个实数根,,∴.∵[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,∴,把代入,得:[2+a﹣1][2+a﹣1]=9,即(1+a)2=9,解得a=﹣4,a=2(舍去),所以a的值为﹣412.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由;(2)求使+﹣2的值为整数的实数k的整数值;(3)若k=﹣2,λ=,试求λ的值.【解答】解:(1)∵x1、x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根,∴x1+x2=1,x1x2=,∴(2x1﹣x2)(x1﹣2x2)=2x12﹣4x1x2﹣x1x2+2x22=2(x1+x2)2﹣9x1x2=2×12﹣9×=2﹣,若2﹣=﹣成立,解上述方程得,k=,∵△=16k2﹣4×4k(k+1)=﹣16k>0,∴k<0,∵k=,∴矛盾,∴不存在这样k的值;(2)原式=﹣2=﹣2=﹣4=﹣,∴k+1=1或﹣1,或2,或﹣2,或4,或﹣4解得k=0或﹣2,1,﹣3,3,﹣5.∵k<0.∴k=﹣2,﹣3或﹣5;(3)∵k=﹣2,λ=,x1+x2=1,∴λx2+x2=1,x2=,x1=,∵x1x2==,∴=,∴λ=3±3.13.已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.【解答】解:(1)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根,∴,解得:k≤且k≠﹣1.(2)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.∴x1+x2=,x1x2=.∵x1+x2=x1x2+2,即=+2,解得:k=﹣4,经检验,k=﹣4是原分式方程的解,∴k=﹣4.14.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.【解答】解:(1)△=[﹣2(m+1)]2﹣4(m2﹣3)=8m+16,当方程有两个不相等的实数根时,则有△>0,即8m+16>0,解得m>﹣2;(2)根据一元二次方程根与系数之间的关系,得x1+x2=2(m+1),x1x2=m2﹣3,∵x12+x22=22+x1x2=(x1+x2)2﹣2x1x2,∴[2(m+1)]﹣2(m2﹣3)=6+(m2﹣3),化简,得m2+8m﹣9=0,解得m=1或m=﹣9(不合题意,舍去),∴实数m的值为1.15.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1、x2.(1)求m的取值范围;(2)若x12+x22=6x1x2,求m的值.【解答】解:(1)∵方程有两个实数根,∴△≥0,即(﹣2)2﹣4(m﹣1)≥0,解得m≤2;(2)由根与系数的关系可得x1+x2=2,x1x2=m﹣1,∵x12+x22=6x1x2,∴(x1+x2)2﹣2x1x2=6x1x2,即(x1+x2)2=8x1x2,∴4=8(m﹣1),解得m=1.5.。
同步测验一、选择题(本题共计10小题,每题3分,共计30分)1.若关于x的一元二次方程x2−4x−m2=0有两个实数根x1,x2,则m2(1x1+1x2)=()A.m 44B.−m44C.4D.−42.关于x的一元二次方程x2+mx−6=0的一个根是3,则另一个根是()A.−1B.1C.−2D.23.已知x1,x2是方程x2−2x−1=0的两根,则x1+x2的值为()A.1B.−2C.−1D.24.一元二次方程x2+4x−3=0的两根为x1、x2,则x1⋅x2的值是()A.4B.−4C.3D.−35.已知a、b是方程x2−4x+2=0的两个根,则a2−2a+2b的值为()A.−4B.6C.−8D.86.若x1、x2是一元二次方程2x2−3x+1=0的两个根,则x12+x22的值是()A.54B.94C.114D.77.已知x1,x2是关于x的元二次方程x2−(5m−6)x+m2=0的两个不相等的实根,且满足x1+x2=m2,则m的值是()A.2B.3C.2或3D.−2或−38.x1,x2是关于x的一元二次方程x2−mx+m−2=0的两个实数根,是否存在实数m使1x1+1x2=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在9.关于x的方程x2−(k+3)x+3k=0的两根为x1,x2,1x1+1x2=23,则k值为()A.1B.2C.3D.410.下列方程中,两根是−2和−3的方程是()A.x2−5x+6=0B.x2−5x−6=0C.x2+5x−6=0D.x2+5x+6=0二、填空题(本题共计10小题,每题3分,共计30分)11.一元二次方程x2−2x−1=0的两根为x1,x2,则x12+2x1−2x1x2的值为________.12.设x1,x2是方程2x2+4x−3=0的两个根,则x12+x22=________.13.方程x2−2ax+3=0有一个根是1,则另一根为________,a的值是________.14.已知2−√5是一元二次方程x2−4x+c=0的一个根,则方程的另一个根是________.15.已知x1,x2分别是一元二次方程x2−x−6=0的两个实数根,则x1+x2=________.16.请写出方程两个根互为相反数的一个一元二次方程________.17.已知m,n是方程x2−2017x+2018=0的两根,则(n2−2018n+2 019)(m2−2018m+2019)=________.18.以−3,4为解的一元二次方程可以为________.19.已知关于x的一元二次方程x2+bx+c=0的两根分别为x1=1,x2=2,则b=________;c=________.20.关于x的方程x2−2√3x+1=0的两根分别为x1,x2,则x1x2+x2x1=________.三、解答题(本题共计6小题,每题10分,共计60分)21.已知方程x2−2x−15=0的两个根分别是a和b,求代数式(a−b)2+4b(a−b)+4b2的值.22.已知关于x的一元二次方程x2−2(k−1)x+k2−1=0有两个不相等的实数根.(1)求k的取值范围;(2)若该方程的两根分别为x1,x2,且满足|x1+x2|=2x1x2,求k的值.23.回答下列问题:(1)解方程:x2−2x−1=0;(2)已知α,β是方程x2+2x−3=0的两个实数根,求α2β+αβ2的值.24.已知关于x的一元二次方程x2+4x+m−1=0.(1)若m是使得方程有两个不相等的实数根的最大正整数,求m的值;(2)设x1、x2是(1)中你所得到的方程的两个实数根,求:−x1−x2+x1x2的值.25.设x1、x2是方程x2+2x−2=0的两个实数根,求x2x1+x1x2的值.26.已知x1、x2为方程x2+3x+1=0的两实根.(1)填空:x1+x2=________;x1⋅x2=________.(2)求代数式x12+x22的值.同步测验学校:__________班级:__________姓名:__________考号:__________ 一、选择题(本题共计10小题,每题3分,共计30分)1.若关于x的一元二次方程x2−4x−m2=0有两个实数根x1,x2,则m2(1x1+1x2)=()A.m 44B.−m44C.4D.−4【解答】解:∵x2−4x−m2=0有两个实数根x1,x2,∴{x1+x2=4,x1x2=−m2,∴则m2(1x1+1x2)=m2⋅x1+x2x1x2=m2⋅4−m2=−4.故选D.2.关于x的一元二次方程x2+mx−6=0的一个根是3,则另一个根是()A.−1B.1C.−2D.2【解答】解:设关于x的一元二次方程x2+mx−6=0的另一个根为t,则3t=−6,解得t=−2.故选C.3.已知x1,x2是方程x2−2x−1=0的两根,则x1+x2的值为()A.1B.−2C.−1D.2【解答】解:∵x1,x2是方程x2−2x−1=0的两根,∴x1+x2=2.故选D.4.一元二次方程x2+4x−3=0的两根为x1、x2,则x1⋅x2的值是()A.4B.−4C.3D.−3【解答】解:x 1⋅x 2=−3. 故选D .5.已知a 、b 是方程x 2−4x +2=0的两个根,则a 2−2a +2b 的值为( ) A.−4 B.6 C.−8 D.8【解答】解:∵a 、b 是方程x 2−4x +2=0的两个根, ∴a 2−4a +2=0,a +b =4, ∴a 2−4a =−2,2a +2b =8, ∴a 2−4a +2a +2b =6, ∴a 2−2a +2b =6, 故选B .6.若x 1、x 2是一元二次方程2x 2−3x +1=0的两个根,则x 12+x 22的值是( )A.54 B.94C.114D.7【解答】 解:由题意知,x 1x 2=12,x 1+x 2=32,∴x 12+x 22=(x 1+x 2)2−2x 1x 2=(32)2−2×12=54.故选A .7.已知x 1,x 2是关于x 的元二次方程x 2−(5m −6)x +m 2=0的两个不相等的实根,且满足x 1+x 2=m 2,则m 的值是( ) A.2 B.3 C.2或3 D.−2或−3【解答】∵x 1,x 2是关于x 的元二次方程x 2−(5m −6)x +m 2=0的两个不相等的实根, ∴x 1+x 2=5m −6,△=[−(5m −6)]2−4m 2>0, 解得m <67或m >2, ∵x 1+x 2=m 2, ∴5m −6=m 2,解得m =2(舍)或m =3,8.x 1,x 2是关于x 的一元二次方程x 2−mx +m −2=0的两个实数根,是否存在实数m 使1x 1+1x 2=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在【解答】解:∵x1,x2是关于x的一元二次方程x2−mx+m−2=0的两个实数根,∴x1+x2=m,x1x2=m−2.假设存在实数m使1x1+1x2=0成立,则x1+x2x1x2=0,∴mm−2=0,∴m=0.当m=0时,方程x2−mx+m−2=0即为x2−2=0,此时Δ=8>0,∴m=0符合题意.故选A.9.关于x的方程x2−(k+3)x+3k=0的两根为x1,x2,1x1+1x2=23,则k值为()A.1B.2C.3D.4【解答】解:∵关于x的方程x2−(k+3)x+3k=0的两根为x1,x2,∴x1+x2=k+3,x1⋅x2=3k,∵1x1+1x2=23,∴x1+x2x1⋅x2=23,即k+33k =23,解得k=3.经检验k=3符合题意.故选C.10.下列方程中,两根是−2和−3的方程是()A.x2−5x+6=0B.x2−5x−6=0C.x2+5x−6=0D.x2+5x+6=0【解答】解:设两根是−2和−3的方程为:x2+ax+b=0,根据根与系数的关系,∴(−2)+(−3)=−a=5,(−2)×(−3)=b=6,故方程为:x2+5x+6=0.故选D.二、填空题(本题共计10小题,每题3分,共计30分)11.一元二次方程x2−2x−1=0的两根为x1,x2,则x12+2x1−2x1x2的值为________.【解答】解:∵一元二次方程x2−2x−1=0的两根为x1,x2,∴x12=1+2x1,x1x2=−1,x1+x2=2,∴x12+2x2−2x1x2=1+2(x1+x2)−2x1x2=1+4+2=7.故答案为:7.12.设x1,x2是方程2x2+4x−3=0的两个根,则x12+x22=________.【解答】,解:根据题意得x1+x2=−2,x1x2=−32)=7.所以x12+x22=(x1+x2)2−2x1x2=(−2)2−2×(−32故答案为7.13.方程x2−2ax+3=0有一个根是1,则另一根为________,a的值是________.【解答】解:设方程的另一根为x2,根据题意得1⋅x2=3,则x2=3;∵1+x2=2a,∴1+3=2a,∴a=2;故答案为3,2.14.已知2−√5是一元二次方程x2−4x+c=0的一个根,则方程的另一个根是________.【解答】解:设方程的另一根为x1,由x1+2−√5=4,得x1=2+√5.15.已知x1,x2分别是一元二次方程x2−x−6=0的两个实数根,则x1+x2=________.【解答】解:∵一元二次方程x2−x−6=0的二次项系数a=1,一次项系数b=−1,又∵x1,x2分别是一元二次方程x2−x−6=0的两个实数根,∴根据韦达定理,知x 1+x 2=−b a =−−11=1;故答案是:1.16.请写出方程两个根互为相反数的一个一元二次方程________. 【解答】解:例如,x 2−4=0.(答案不唯一).17.已知m ,n 是方程x 2−2017x +2018=0的两根,则(n 2−2018n +2 019)(m 2−2018m +2019)=________. 【解答】∵m 、n 是方程x 2−2 017x +2 018=0的两根,∴m 2−2017m =−2018,n 2−2017n =−2018,m +n =2017,mn =2018, ∴原式=(−n +1)(−m +1)=mn −(m +n)+1=2018−2017+1=2. 18.以−3,4为解的一元二次方程可以为________. 【解答】解:根据根与系数的关系可知:在二次项系数为1时,一次项系数等于两根之和的相反数即−(−3+4)=−1,常数项等于两根之积即−3×4=−12, 故以−3,4为解的一元二次方程为:x 2−x +12=0, 故答案为:x 2−x +12=0.19.已知关于x 的一元二次方程x 2+bx +c =0的两根分别为x 1=1,x 2=2,则b =________;c =________. 【解答】解:∵关于x 的一元二次方程x 2+bx +c =0的两根分别为x 1=1,x 2=2, ∴1+2=−b ,1×2=c , ∴b =−3,c =2, 故答案为:−3,2.20.关于x 的方程x 2−2√3x +1=0的两根分别为x 1,x 2,则x 1x 2+x2x 1=________.【解答】解:根据题意得x 1+x 2=2√3,x 1x 2=1, 所以原式=x 12+x 22x 1x 2=(x 1+x 2)2x 1x 2=(2√3)2−2×11=10.故答案为10.三、解答题(本题共计6小题,每题10分,共计60分)21.已知方程x2−2x−15=0的两个根分别是a和b,求代数式(a−b)2+4b(a−b)+4b2的值.【解答】解:根据题意得a+b=2,ab=−15,原式=(a+b)2−4ab+4ab−4b2+4b2=(a+b)2,所以原式=22=4.22.已知关于x的一元二次方程x2−2(k−1)x+k2−1=0有两个不相等的实数根.(1)求k的取值范围;(2)若该方程的两根分别为x1,x2,且满足|x1+x2|=2x1x2,求k的值.【解答】解:(1)由题意知:Δ=[−2(k−1)]2−4(k2−1)=−8k+8,∵方程有两个不相等的实数根,∴−8k+8>0,解得:k<1.故k的取值范围是k<1.(2)由韦达定理可知:x1x2=k2−1,x1+x2=2(k−1),∵|x1+x2|=2x1x2,∴|2(k−1)|=2k2−2,∵k<1,∴2−2k=2k2−2,整理得:k2+k−2=0,解得:k=1(舍去)或k=−2.故k的值为−2.23.回答下列问题:(1)解方程:x2−2x−1=0;(2)已知α,β是方程x2+2x−3=0的两个实数根,求α2β+αβ2的值.【解答】解:(1)x2−2x−1=0,x2−2x=1,(x−1)2=2,x−1=±√2,∴x=√2+1或x=1−√2(2)由根与系数的关系可知,α+β=−2,αβ=−3,∴α2β+αβ2=αβ(α+β)=−3×(−2)=6..24.已知关于x的一元二次方程x2+4x+m−1=0.(1)若m是使得方程有两个不相等的实数根的最大正整数,求m的值;(2)设x1、x2是(1)中你所得到的方程的两个实数根,求:−x1−x2+x1x2的值.【解答】解:(1)当Δ>0时,方程有两个不相等的实数根,即42−4(m−1)>0,解得m<5,∴m的最大正整数为m=4.(2)由(1)得x1x2=3,x1+x2=−4,则−x1−x2+x1x2=−(x1+x2)+x1x2=−(−4)+3=7.25.设x1、x2是方程x2+2x−2=0的两个实数根,求x2x1+x1x2的值.【解答】解:根据题意得x1+x2=−2,x1x2=−2,所以x2x1+x1x2=x12+x22x1x2=(x1+x2)2−2x1x2x1x2=(−2)2−2×(−2)−2=−4.26.已知x1、x2为方程x2+3x+1=0的两实根.(1)填空:x1+x2=________;x1⋅x2=________.(2)求代数式x12+x22的值.【解答】解:(1)x1+x2=−3,x1x2=1;(2)x12+x22=(x1+x2)2−2x1x2=(−3)2−2×1=7.11。
专题17.4一元二次方程根与系数的关系【十大题型】【沪科版】【题型1由根与系数的关系直接求代数式的值】 (1)【题型2由根与系数的关系和方程的解通过代换求代数式的值】 (4)【题型3由根与系数的关系和方程的解通过降次求代数式的值】 (6)【题型4由方程两根满足关系求字母的值】 (10)【题型5不解方程由根与系数的关系判断根的正负】 (13)【题型6由方程两根的不等关系确定字母系数的取值范围】 (15)【题型7构造一元二次方程求代数式的值】 (19)【题型8已知方程根的情况判断另一个方程】 (21)【题型9根与系数关系中的新定义问题】 (25)【题型10根与系数的关系和根的判别式的综合应用】......................................................错误!未定义书签。
【知识点一元二次方程的根与系数的关系】若一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的两根为x1,x2,则x1+x2=−b a,x1⋅x2=c a.注意它的使用条件为,a≠0,Δ≥0.【题型1由根与系数的关系直接求代数式的值】【例1】(2023春·广东广州·八年级统考期末)若1,2是一元二次方程2−2−3=0的两个根,则12+22+12的值是()A.−7B.−1C.1D.7【答案】D【分析】利用两根之和为1+2=−,两根之积为12=,计算即可.【详解】解:∵1、2是一元二次方程2−2−3=0的两个根,∴1+2=2,12=−3,∴12+22+12=1+22−12=4−−3=7,故选:D.【点睛】本题主要考查了根与系数的关系,解题的关键是掌握根与系数的关系的公式.【变式1-1】(2023·湖北武汉·统考模拟预测)已知m,n是一元二次方程2+3−2=0的两根,则2K−r32−2的值是()A.−3B.−2C.−13D.−12【答案】C【分析】根据一元二次方程根与系数的关系得出+=−3,然后将分式化简,代入+=−3即可求解.【详解】解:∵,是一元二次方程2+3−2=0的两根,∴+=−3,∴2r322===+=1+=−13,故选:C.【点睛】本题考查了一元二次方程根与系数的关系,分式的化简求值,熟练掌握以上知识是解题的关键.【变式1-2】(2023·上海·八年级假期作业)已知a,b是方程2+6+4=0的两个根,则+的值.【答案】−14【分析】由根与系数关系知+=−6,B=4,即知a<0,b<0,化简原式+=−B((rp2−2B B),所以原式=−14故答案为:﹣14.【详解】解:∵a,b是方程2+6+4=0的两个根,∴+=−6,B=4,∴a<0,b<0,∴=−B =−B(+) =−B(2+2B) =−B((rp2−2B B)∴原式=−4×(−6)2−2×44=−2×7=−14故答案为:﹣14.【点睛】本题主要考查根与系数关系、完全平方公式变形及二次根式的运算及化简;能够根据a,b的关系式确定其取值范围,进而准确处理二次根式的运算及化简是解题的关键.【变式1-3】(2023春·八年级单元测试)已知1、2是方程2−7+8=0的两根,且1>2,则21+32的值为.【分析】由题意可得1+2=7,2=.【详解】解:∵1、2是方程2−7+8=0的两根,∴1+2=7,==∵1>,∴2=∴21+32=2===【点睛】本题考查了一元二次方程的求解、根与系数的关系以及二次根式的混合运算,熟练掌握一元二次方程的相关知识、正确计算是解题的关键.【题型2由根与系数的关系和方程的解通过代换求代数式的值】【例2】(2023春·浙江·八年级专题练习)设α、β是方程2++2012=0的两个实数根,则2+2+的值为()A.-2014B.2014C.2013D.-2013【答案】D【分析】先根据一元二次方程的解的定义得到x2+x+2012=0,即α2+α=-2012,则α2+2α+可化为α2+α+α+β=-2012+α+β,然后利用根与系数的关系得到α+β=-1,再利用整体代入的方法计算即可.【详解】∵α是方程x2+x+2012=0的根,∴α2+α+2012=0,即α2+α=-2012,∴α2+2α+β=α2+α+α+β=-2012+α+β,∵α,β是方程x2+x+2012=0的两个实数根,∴α+β=-1,∴α2+2α+β=-2012-1=-2013.故选D.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−,x1x2=.【变式2-1】(2023春·湖北恩施·八年级统考期中)已知,是关于x的一元二次方程2+3−1=0的两个实数根,则+22+的值为()A.32B.5C.2D.−2【答案】C【分析】根据一元二次方程的根的定义可得2+3=1,根据一元二次方程根与系数的关系可得B=−1,代入代数式即可求解.【详解】解:∵,是关于x的一元二次方程2+3−1=0的两个实数根,∴2+3=1,+=−3∴+22+=2+4+4+=2+3+++4=1−3+4=2,故选:C.【点睛】本题考查了一元二次方程的根的定义,一元二次方程根与系数的关系,得出2+3=1,+=−3是解题的关键.【变式2-2】(2023·江西萍乡·校考模拟预测)若、是一元二次方程2−3−9=0的两个根,则2−4−的值是.【答案】6【分析】根据一元二次方程根与系数的关系可得+=3,由根的定义可得2−3=9,代入即可得答案.【详解】∵2−3=9,+=3,∴2−4−=2−3−−=2−3−+=6.故答案为:6【点睛】本题考查一元二次方程根与系数的关系,解题的关键是掌握根与系数的关系及方程根的概念.【变式2-3】(2023春·安徽池州·八年级统考期末)已知和是方程2+2023+1=0的两个根,则2+2024+22+2024+2的值为()A.−2021B.2021C.−2023D.2023【答案】A【分析】由和是方程2+2023+1=0的两个根,根据根于系数关系可得,⋅=1,+=−2023,由一元二次方程根的定义可得2+2023+1=0,2+2023+1=0,即可求解;【详解】∵和是方程2+2023+1=0的两个根,∴2+2023+1=0,2+2023+1=0,⋅=1,+=−2023,∴2+2024+22+2024+2=2+2023+1++12+2023+1++1=+1+1=⋅+++1=1−2023+1=−2021故选A.【点睛】该题考查了根与系数的关系以及一元二次方程的解,熟记一元二次方程根与系数关系公式是解答该题的关键.【题型3由根与系数的关系和方程的解通过降次求代数式的值】【例3】(2023春·广东广州·八年级广州市第二中学校考阶段练习)若p、q是方程2−3−1=0的两个不相等的实数根,则代数式3−42−2+5的值为.【答案】−2【分析】根据一元二次方程的解的定义得到2−3−1=0,再根据根与系数的关系得到+=3,然后利用整体思想计算即可.【详解】∵若p、q是方程2−3−1=0的两个不相等的实数根,∴2−3−1=0,+=3,∴2=3+1,∴3−42−2+5=2−3−1−2+−2+5=−2+−2+5=−3−1+−2+5=−2−2+4=−2++4=−2×3+4=−2,故答案为:−2.【点睛】本题考查了一元二次方程B2+B+=0的根与系数的关系,一元二次方程的解,利用整体思想降次消元是解题的关键.【变式3-1】(2023春·山东日照·八年级统考期末)已知,是方程2−−3=0的两个根,则代数2+22+ +B的值为.【答案】8【分析】根据一元二次方程根与系数的关系以及解的定义,得+=1,B=−3,2−−3=0,2−−3=0,再代入降次求值即可.【详解】解:由题意,得+=1,B=−3,2−−3=0,2−−3=0,2=+3,2=+3,原式=+3+2+6+−3,=2(+p+6,=2×1+6,=8.故答案为:8.【点睛】本题考查了一元二次方程根与系数的关系,整式的化简求值,本题的关键是熟练掌握一元二次方程根与系数的关系.(2023春·浙江温州·八年级校考阶段练习)已知、是方程2+−1=0的两根,则4−3+5【变式3-2】的值是()A.7B.8C.9D.10【答案】C【分析】根据一元二次方程解的定义和根与系数的关系得出+=−1,B=−1,2=1−,2=1−,再对所求式子变形整理,求出答案即可.【详解】解:∵、是方程2+−1=0的两根,∴+=−1,B=−1,2=1−,2=1−,∴4−3+5=3×−1−3+5=−1−−1−+5=−+2−+2+5=−+1−−+1−+5=−2++7=−2×−1+7=9,故选:C.【点睛】本题考查了一元二次方程解的定义和根与系数的关系,若一元二次方程B2+B+=0(a、b、c 为常数,≠0)的两根为1,2,则1+2=−,1⋅2=.【变式3-3】(2023春·八年级课时练习)已知,是方程2−−1=0的两根,则代数式23+5+33+ 3+1的值是()A.19B.20C.14D.15【答案】D【分析】由根与系数的关系可得:a+b=1,再由a与b是方程的两根可得a2=a+1,b2=b+1,把a3与b3采用降次的方法即可求得结果的值.【详解】∵a与b是方程2−−1=0的两根∴a+b=1,a2-a-1=0,b2-b-1=0∴a2=a+1,b2=b+1∵3=2·=(+1)=2+=+1+=2+1,同理:3=2+1∴23+5+33+3+1=2(2+1)+5+3(2+1)+3+1=9+9+6=9(+p+6=9×1+6=15故选:D.【点睛】本题考查了一元二次方程的解的概论、一元二次方程根与系数的关系,求代数式的值,灵活进行整式的运算是解题的关键.【题型4由方程两根满足关系求字母的值】(2023·四川乐山·统考中考真题)若关于x的一元二次方程2−8+=0两根为1、2,且1=32,【例4】则m的值为()A.4B.8C.12D.16【答案】C【分析】根据一元二次方程根与系数的关系得出1+2=8,然后即可确定两个根,再由根与系数的关系求解即可.【详解】解:∵关于x的一元二次方程2−8+=0两根为1、2,∴1+2=8,∵1=32,∴2=2,1=6,∴=12=12,故选:C.【点睛】题目主要考查一元二次方程根与系数的关系,熟练掌握此关系是解题关键.【变式4-1】(2023·上海·八年级校考期中)已知关于x的方程2+(2−1)+2−1=0的两根为1,2满足:12+22=16+12,求实数k的值【答案】=−2【分析】利用根的判别式求出k的取值范围,利用根与系数的关系求出1+2=1−2,12=2−1,代入12+22=16+12,即可求得k的值.【详解】解:∵关于x的方程2+2−1+2−1=0的两根为1,2∴=2−4B=(2−1)2−4×1×(2−1)≥0解得:≤541+2=1−2,12=2−1∵12+22=16+12∴12+22−12=16(1+2)2−312=16代入1+2=1−2,12=2−1得:(1−2p2−3(2−1)=16解得:1=6,2=−2∵≤54∴=−2【点睛】本题考查一元二次方程根的判别式、根与系数的关系以及一元二次方程求解,熟练掌握相关知识点是解题关键.【变式4-2】(2023春·广东佛山·八年级校考阶段练习)方程2−2−4++1=0的两个实数根互为相反数,则的值是.【答案】−2【分析】设方程的两根分别为1,2,根据根与系数的关系得到1+2=2−4=0,解得=±2,然后分别计算Δ,最后确定=−2.【详解】解:设方程的两根分别为1,2,∵方程2−2−4++1=0的两个实数根互为相反数,,∴1+2=2−4=0,解得=±2,当=2,方程变为:2+3=0,Δ=−12<0,方程没有实数根,所以=2舍去;当=−2,方程变为:2−1=0,Δ=4>0,方程有两个不相等的实数根;∴=−2.故答案为:−2.【点睛】本题考查了一元二次方程B2+B+=0(≠0,,,为常数)根与系数的关系:若方程的两根分别为1,2,则1+2=−;1⋅2=.也考查了一元二次方程的根的判别式Δ=2−4B:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.【变式4-3】(2023春·安徽马鞍山·八年级安徽省马鞍山市第七中学校考期末)若、是关于的方程2+ 2+3+2=0的两个不相等的实数根,且1+1=−1,则的值为.【答案】3【分析】根据根与系数的关系得到+=−2−3,B=2,再根据1+1=−1得到2−2−3=0,解方程求出k的值,最后用根的判别式验证是否符合题意即可.【详解】解:∵、是关于的方程2+2+3+2=0的两个不相等的实数根,∴+=−2−3,B=2,∵1+1=−1,∴r B=−1,即+=−B,∴−−2−3=2,∴2−2−3=0,解得=3或=−1,又∵方程有两个不相等的实数根,∴Δ=2+32−42>0,∴>−34,∴=3,故答案为:3.【点睛】本题主要考查了一元二次方程根与系数的关系,根的判别式,解一元二次方程,熟知一元二次方程的相关知识是解题的关键.【题型5不解方程由根与系数的关系判断根的正负】【例5】(2023春·江苏南京·八年级专题练习)关于的方程−2+1=2(为常数)根的情况,下列结论中正确的是()A.有两个相异正根B.有两个相异负根C.有一个正根和一个负根D.无实数根【答案】C【分析】先对方程进行化简,然后再根据一元二次方程根的判别式可进行求解.【详解】解:由题意得:方程可化为2−−2−2=0,∴Δ=−12−4−2−2=1+8+42=42+9>0,∴该方程有两个不相等的实数根,设该方程的两个根为1,2,则根据根与系数的关系可知:1⋅2=−2−2<0,∴该方程的两个根为一正一负,故选C.【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.【变式5-1】(2023春·安徽合肥·八年级统考期末)方程22−3+1=0根的符号是()A.两根一正一负B.两根都是负数C.两根都是正数D.无法确定【答案】C【分析】利用一元二次方程根与系数的关系分析求解.【详解】解:22−3+1=0的两根分别为1,2,则1+2=32>0,1⋅2=12>0,∴方程的两根同号,且两根都是正数,故选:C.【点睛】本题考查一元二次方程根与系数的关系,理解一元二次方程B2+B+=0≠0的两根1,2满足1+2=−,1⋅2=是解题关键.【变式5-2】(2023春·江苏南通·八年级南通田家炳中学校考阶段练习)已知a、b、c是△A的三条边的长,那么方程B2+++4=0的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的负实根D.只有一个实数根【答案】C【分析】首先根据根的判别式Δ=2−4B,结合三角形三边关系,得出方程有两个不相等的实数根,再根据根与系数的关系,判断出两根之和和两根之积的符号,即可作出判断.【详解】解:在方程B2+++4=0中,可得:Δ=+2−4⋅4=+2−2,∵a、b、c是△A的三条边的长,∴>0,>0,>0.+>,即+2>2,∴+2−2>0,∴Δ>0,∴方程有两个不相等的实数根,又∵两根的和是−r<0,两根的积是4=14>0,∴方程有两个不等的负实根.故选:C【点睛】本题考查了一元二次方程根与系数的关系、一元二次方程根的判别式、三角形的三边关系,解本题的关键在熟练掌握根据一元二次方程根与系数的关系,判断出方程有两个不等的负实根.【变式5-3】(2023·八年级统考课时练习)已知<0,>0,<0,则方程B2−B−=0的根的情况是().A.有两个负根B.两根异号且正根绝对值较大C.有两个正根D.两根异号且负根绝对值较大【答案】D【分析】先计算△=b2+4ac,由a<0,b>0,c<0,得到△>0,然后根据判别式的意义得到方程有两个实数根.设方程两根为x1,x2.由12=−<0得到方程有异号两实数根,再由1+2=<0得到负根的绝对值大.【详解】△=(﹣b)2﹣4•a•(﹣c)=b2+4ac.∵a<0,b>0,c<0,∴b2>0,ac>0,∴△>0,∴方程有两个不相等的实数根.设方程两根为x1,x2.∵12=−<0,∴方程有异号两实数根.∵1+2=<0,∴负根的绝对值大.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式和根与系数的关系.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.【题型6由方程两根的不等关系确定字母系数的取值范围】【例6】(2023·四川成都·三模)若方程x2+(m﹣4)x+134﹣m=0有两个不相等的实数根x1和x2,且x1+x2>﹣3,x1x2<214,则m的取值范围为多少?【答案】﹣2<m<1或3<m<7【分析】由方程有两个不相等实数根结合根的判别式即可得出关于m的不等式,解不等式即可得出m的取值范围,结合根与系数的关系可得出关于m的不等式,解不等式可得出答案.【详解】解:∵方程x2+(m﹣4)x+134﹣m=0有两个不相等的实数根,∴b2﹣4ac=(﹣4)2﹣−>0,整理得:2−4+3>0,即(−3)(−1)>0,根据乘法法则得:−3>0−1>0或−3<0−1<0,解前一不等式组得:m>3;解后一不等式组得:m>1,∴原不等式的解集为:m>3或m<1;由题意得x1+x8=−=(4﹣m)>﹣3,解得m<7;∵x1x2==134−<214,解得m>﹣2.综上所述,﹣2<m<1或3<m<7.【点睛】本题考查了根与系数的关系、根的判别式,根据题意得出关于m的不等式是解题的关键【变式6-1】(2023·山东日照·日照港中学统考二模)已知关于x的一元二次方程2−4+−1=0的实数根1,2,满足312−1−2>5,则m的取值范围是.【答案】4<≤5【分析】根据根的判别式Δ≥0、根与系数的关系列出关于m的不等式组,通过解该不等式组,求得m的取值范围.【详解】解:由题意得:1+2=4,12=−1,所以312−1−2=3×(−1)−4,依题意得:(−4)2−4(−1)≥03×(−1)−4>5,解得4<m≤5.故答案是:4<m≤5.【点睛】本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2-4ac>0时,一元二次方程有两个不相等的实数根,②当b2-4ac=0时,一元二次方程有两个相等的实数根,③当b2-4ac<0时,一元二次方程没有实数根.(2023春·江苏南通·八年级南通田家炳中学校考阶段练习)已知关于x的方程42−+5−−【变式6-2】9=0有两个不相等的实数根1,2,且1=−1,0<2<1,则k的取值范围是()A.−18<<−10B.0<<8C.−9<<−5D.−18<<−10且≠−13【答案】C【分析】根据一元二次方程的根的判别式,建立关于的不等式,求出的取值范围.根据12=−K94,1=−1,可得2=r94,结合0<2<1,从而最后确定的取值范围.【详解】解:∵方程42−+5−−9=0有两个不相等的实数根,∴Δ=−+52−4×4×−−9=+132>0,解得:≠−13,∵12=−K94,1=−1,∴2=r94又∵0<2<1,∴0<r94<1,解得:−9<<−5,综上,的取值范围为:−9<<−5.故选:C.【点睛】此题考查了一元二次方程根的判别式及根与系数的关系,关键是得到2=r94.【变式6-3】(2023春·八年级单元测试)设关于的方程B2+(+2)+9=0有两个不相等的实数根1,2,且1<−1<2,那么实数的取值范围是.【答案】0<<29【分析】由方程有两个不相等的实数根利用根的判别式Δ>0,可得出a的取值范围,利用根与系数的关系可得出1+2=−r2,12=9,由1<−1<2可得出(1+1)(2+1)<0,展开代入后可得出a的不等式,解之即可求出a取值范围.【详解】解:∵方程有两个不相等的实数根,∴△=(+2)2−4×9=−352+4+4>0,解得:−27<<25,∵1+2=−r2,12=9,1<−1<2,∴1+1<0,2+1>0,∴(1+1)(2+1)<0,∴12+(1+2)+1<0,即9−r2+1<0,当I0时,解得>29(舍去);当>0时,解得0<<29,又∵−27<<25,∴的取值范围为0<<29.故答案为:0<<29.【点睛】本题考查了根的判别式以及根与系数的关系,由根与系数的关系结合(1+1)(2+1)<0,找出关于a的不等式是解题的关键.【题型7构造一元二次方程求代数式的值】【例7】(2023·陕西西安·校考二模)已知mn≠1,且5m2+2010m+9=0,9n2+2010n+5=0,则的值为()A.﹣402B.59C.95D.6703【答案】C【详解】将9n2+2010n+5=0方程两边同除以n2,变形得:5×(1)2+2010×1+9=0,又5m2+2010m+9=0,∴m与1为方程5x2+2010x+9=0的两个解,则根据一元二次方程的根与系数的关系可得m•1==95.故选:C.【变式7-1】(2023春·广东梅州·八年级校考阶段练习)已知≥2,2−2B+2=0,2−2B+2=0,则(−1)2+(−1)2的最小值是().A.6B.3C.-3D.0【答案】A【分析】由已知得m,n是关于x的一元二次方程x2-2ax+2=0的两个根,根据根与系数的关系得到m+n =2a,mn=2,再根据完全平方公式展开化简,利用二次函数的性质解决问题.【详解】解:∵m2-2am+2=0,n2-2an+2=0,∴m,n是关于x的一元二次方程x2-2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m-1)2+(n-1)2=m2-2m+1+n2-2n+1=(m+n)2-2mn-2(m+n)+2=4a2-4-4a+2=4(a-12)2-3,∵a≥2,∴当a=2时,(m-1)2+(n-1)2有最小值,∴(m-1)2+(n-1)2的最小值=4(2-12)2-3=6,故选A.【点睛】本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.【变式7-2】(2023·山东德州·统考一模)已知互不相等的三个实数a、b、c满足=−−3,=−−3,求2+2−9的值.【答案】﹣2【分析】将已知的两等式去分母得到关系式a2+3a+c=0和b2+3b+c=0,把a、b看成方程x2+3x+c=0的两根,由根与系数的关系得到a+b=﹣3,ab=c,所求式子变形后,把a+b=﹣3,ab=c代入,即可求出值.【详解】由=﹣a﹣3得:a2+3a+c=0①;由=﹣b﹣3得:b2+3b+c=0②;∵a≠b,∴a、b可以看成方程x2+3x+c=0的两根,∴a+b=﹣3,ab=c;∴2+2﹣9=2+2−9=(rp2−2B−9=9−2K9=−2=﹣2.故答案为﹣2.【点睛】本题考查了根与系数的关系以及分式的加减运算,灵活变换已知等式是解答本题的关键.【变式7-3】(2023春·江苏·八年级专题练习)设,,,为互不相等的实数,且(2−2)(2−2)=1,(2−2)(2−2)=1,则22−22的值为()A.-1B.1C.0D.0.5【答案】A【分析】把2,2看作以上方程的两个不同的根,可得4−2+22−22−1=0,根据一元二次方程根与系数的关系求解即可【详解】解:∵(2−2)(2−2)=1,(2−2)(2−2)=1,∴2,2看作以上方程的两个不同的根,即2,2是方程4−2+22−22−1=0的两根,故22=−22−1,即22−22=−1故选A【点睛】本题考查了一元二次方程的根的定义,一元二次方程根与系数的关系,整体代入是解题的关键.【题型8已知方程根的情况判断另一个方程】【例8】(2023春·浙江·八年级期中)若关于x的一元二次方程B2+2B+=0(≠0)的一个根为m,则方程(−1)2+2(−1)+=0的两根分别是().A.+1,−−1B.+1,−+1C.+1,+2D.−1,−+1【答案】A【分析】根据一元二次方程的根与系数的关系求出方程B2+2B+=0的另一个根,设−1=,根据方程B2+2B+=0的根代入求值即可得到答案;【详解】解:∵一元二次方程B2+2B+=0(≠0)的一个根为m,设方程另一根为n,∴+=−2=−2,解得:=−2−,设−1=,方程(−1)2+2(−1)+=0变形为B2+2B+=0,由一元二次方程B2+2B+=0(≠0)的根可得,1=,2=−2−,∴−1=−2−,−1=,∴1=−−1,2=1+,故答案为:A.【点睛】本题考查一元二次方程的根与系数的关系及换元法解一元二次方程,解题的关键是用换元法变形方程代入求解.【变式8-1】(2023春·江西萍乡·八年级统考期中)有两个一元二次方程::B2+B+=0;:B2+B+ =0,其中−≠0,以下四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么15是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是=1【答案】D【分析】求出方程:B2+B+=0的判别式△=2−4B,方程:B2+B+=0的判别式△=2−4B,再根据判别式的意义、根与系数的关系以及方程的解的意义求解即可.【详解】解:A、∵M有两个不相等的实数根,∴△>0即2−4B>0,∴此时N的判别式△=2−4B>0,∴N也有两个不相等的实数根,故此选项正确,不符合题意;B、∵M的两根符号相同:即1⋅2=>0,∴N的两根之积也大于0,∴N的两个根也是同号的,故此选项正确,不符合题意;C、如果5是M的一个根,则:25+5+=0①,我们只需要考虑将15代入N方程看是否成立,代入得:125+15+=0②,比较①与②,可知②式是由①式两边同时除以25得到,故②式成立,故此选项正确,不符合题意;D、比较方程M与N可得:B2+B+−B2−B−=0,∴−2=−,∵−≠0,∴2=1,∴=±1,∴它们如果有根相同的根可能是1或−1,故此选项错误,符合题意.故选:D.【点睛】本题主要考查了根的判别式,根与系数的关系以及一元二次方程的解的意义,解题的关键是熟练掌握一元二次方程,根的判别式△=2−4B,根与系数的关系1+2=−,1⋅2=.【变式8-2】(2023春·安徽合肥·八年级校考期末)关于x的一元二次方程2+B+=0有两个同号非零整数根,关于y的一元二次方程2+B+=0也有两个同号非零整数根,则下列说法正确的是()A.p是正数,q是负数B.(−2)2+(−2)2<8C.q是正数,p是负数D.(−2)2+(−2)2>8【答案】D【分析】设方程x2+px+q=0的两根为x1、x2,方程y2+qy+p=0的两根为y1、y2.根据方程解的情况,结合根与系数的关系可得出x1•x2=q>0,y1•y2=p>0,即可判断A与C;②由方程有两个实数根结合根的判别式得出p2﹣4q≥0,q2﹣4p≥0,利用不等式的性质以及完全平方公式得出(p﹣2)2+(q﹣2)2>8,即可判断B 与D.【详解】解:设方程x2+px+q=0的两根为x1、x2,方程y2+qy+p=0的两根为y1、y2.∵关于x的一元二次方程x2+px+q=0有两个同号非零整数根,关于y的一元二次方程y2+qy+p=0也有两个同号非零整数根,∴x1•x2=q>0,y1•y2=p>0,故选项A与C说法均错误,不符合题意;∵关于x的一元二次方程x2+px+q=0有两个同号非零整数根,关于y的一元二次方程y2+qy+p=0也有两个同号非零整数根,∴p2﹣4q≥0,q2﹣4p≥0,∴(p﹣2)2+(q﹣2)2=p2﹣4q+4+q2﹣4p+4>8(p、q不能同时为2,否则两个方程均无实数根),故选项B说法错误,不符合题意;选项D说法正确,符合题意;故选:D.【点睛】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项说法的正误是解题的关键.【变式8-3】(2023春·八年级单元测试)一元二次方程G B2+B+=0;G B2+B+=0,其中B≠0,≠,给出以下四个结论:①若方程M有两个不相等的实数根,则方程N也有两个不相等的实数根;②若方程M的两根符号相同,则方程N的两根符号也相同;③若m是方程M的一个根,则1是方程N的一个根;④若方程M和方程N有一个相同的根,则这个根必是=1,其中正确的结论是()A.①③B.①②③C.①②④D.①③④【答案】B【分析】根据根的判别式,根的定义,计算判断即可.【详解】∵G B2+B+=0有两个不相等的实数根,∴Δ=2−4B>0,∵G B2+B+=0的判别式为Δ=2−4B=2−4B>0,∴方程N也有两个不相等的实数根,故①正确;∵G B2+B+=0两根符号相同,∴Δ=2−4B≥0,>0,∴Δ=2−4B≥0,>0,∴方程N的两根符号也相同,故②正确;∵m是方程G B2+B+=0的一个根,∴B2+B+=0,∵2+×1+=rB+B22=0∴1是方程N的一个根;故③正确;设方程M和方程N相同的根为0,根据题意,得B02+B0+=0,B02+B0+=0,∴−02=−,∵B≠0,≠,∴02=1,解得0=±1,故这个根是=±1,故④错误;故选B.【点睛】本题考查了一元二次方程的根的判别式,公共根,方程根的定义即使方程左右两边相等的未知数的值,熟练掌握根的判别式是解题的关键.【题型9根与系数关系中的新定义问题】【例9】(2023春·山东日照·八年级日照市田家炳实验中学校考阶段练习)定义:如果实数a、b、c满足a²+b²=c²,那么我们称一元二次方程ax²+bx+c=0(a≠0)为“勾股”方程;二次函数y=ax²+bx+c(a≠0)为“勾股”函数.(1)理解:下列方程是“勾股”方程的有.①x²-1=0;②2-r2=0;③132+14r15=0;④4x²+3x=5(2)探究:若m、n是“勾股”方程ax²+bx+c=0的两个实数根,试探究m、n之间的数量关系.【答案】(1)①②④;(2)22-(rp2=1;【分析】(1)运用“勾股”方程的定义,即可得出答案;(2)利用根与系数关系可得:m+n=-,mn=,再结合2+2=2,即可得出答案;另解:根据题意可得:B2+B+J0①,B2+B+J0②,再结合2+2=2,即可得出答案;【详解】(1)根据“勾股”方程的定义,在方程2-1=0中,J1,J0,J-1,∵2+2=1,2=1,∴2+2=2,∴一元二次方程2-1=0为“勾股”方程;在方程2-r2=0中,J1,J-1,J2,∵2+2=12+(-1)2=2,2=(2)2=2,∴2+2=2,∴一元二次方程2-r2=0为“勾股”方程;在方程132+14r15=0中,J13,J14,J15,∵2+2=(13)2+(14)2=25144,2=(15)2=125,∴2+2≠2,∴一元二次方程132+14r15=0不是“勾股”方程;在方程42+3J5中,J4,J3,J-5,∵2+2=42+32=25,2=(-5)2=25,∴2+2=2,∴一元二次方程42+3J5为“勾股”方程;故答案为:①②④;(2)22-(rp2=1;理由如下:∵、是“勾股”方程B2+B+J0的两个实数根,。
初中数学一元二次方程根与系数关系专项复习题4(附答案详解)1.若一元二次方程x 2+2x+m=0没有实数根,则m 的取值范围是( )A .m≤12B .m >1C .m≤1D .m <12.下列关于一元二次方程x 2+bx +c =0的四个命题①当c =0,b≠0时,这个方程一定有两个不相等的实数根;②当c≠0时,若p 是方程x 2+bx +c =0的一个根,则1p是方程cx 2+bx +1=0的一个根; ③若c <0,则一定存在两个实数m <n ,使得m 2+mb +c <0<n 2+nb +c ;④若p ,q 是方程的两个实数根,则p ﹣q其中是假命题的序号是( )A .①B .②C .③D .④3.设a ,b 是方程x 2+x ﹣2019=0的两个实数根,则a+b+ab 的值为( )A .2018B .-2018C .2020D .-20204.若一元二次方程220x x --=的两根为1x ,2x ,则()()12111x x x ++-的值是( )A .4B .2C .1D .﹣2 5.已知关于x 的一元二次方程2304x x a --+= 有两个不相等的实数根,则满足条件的最小整数a 的值为( )A .-1B .0C .2D .16.已知α,β是一元二次方程2x 4x 30--=的两实数根,则代数式()()α3β3--的值是( )A .7B .1C .5D .6-7.已知一元二次方程2()0a x m n ++=(a≠0)的两根分别为-3,1,则方程2(2)0a x m n +-+=(a≠0)的两根分别为( )A .1,5B .-1,3C .-3,1D .-1,58.若关于x 的方程x 2+(a 2﹣1)x +a =0的两根互为相反数,则a 的值为( ) A .1 B .﹣1 C .0 D .±19.若x 1、x 2是方程2x 2﹣4x ﹣1=0的两个根,则x 1+x 2=( )A .1B .﹣2C .1或﹣1D .210.已知一元二次方程22410x x +-=的两个根为1x ,2x ,且12x x <,下列结论正确的是( )A .122x x +=B .121x x =-C .12x x <D .211122x x += 11.关于x 的方程x 2﹣5x+p 2﹣2p+5=0的一个根为1,则实数p 的值是_____,另一根为_____12.已知一元二次方程x 2+2x ﹣1=0的两实数根为x 1,x 2,则x 1x 2的值为_____. 13.关于x 的方程kx 2+3x -1=0有实数根,则k 的取值范围是__________.14.如果关于x 的二次三项式26x x m -+在实数范围内不能分解因式,那么m 的取值范围是______.15.若x 1=﹣3是关于x 的方程x 2+kx ﹣3=0的一个根,x 2是另一个根,则x 1+x 2=________ . 16.方程2230x ax -+=有一个根是1,则另一根为______,a 的值是______.17.阅读材料:如果a ,b 分别是一元二次方程210x x +-=的两个实数根,则有210a a +-=,210b b +-=;创新应用:如果m ,n 是两个不相等的实数,且满足23m m -=,23n n -=,那么代数式2222008n mn m -++的值是_______ .18.关于x 的一元二次方程x 2+ax ﹣2a =0的一个根是3,则它的另一根是_____. 19.已知α,β是方程x 2+2017x +1=0的两个根,则(α2+2018α+1)(β2+2018β+1)的值_____.20.关于x 的一元二次方程x 2+5x +2=0的两个实数根为x 1,x 2,则x 1+x 2=_____. 21.已知关于x 的一元二次方程2x 2x m 10-+-=()1当m 取何值时,这个方程有两个不相等的实根?()2若方程的两根都是正数,求m 的取值范围;()3设1x ,2x 是这个方程的两个实数根,且2212121x x x x -=+,求m 的值.22.己知关于x 的方程2210x x a +-+=没有实数根,试判断关于x 的方程20x ax a ++=的根的情况.23.已知关于x 的一元二次方程22(21)10x k x k -+++=有两个不相等的实数根12,x x .(1)求k 的取值范围;(2)若123x x +=,求k 的值及方程的根.24.已知关于x 的方程()22210x k x k --+=有两个实数根12,x x . (1)求k 的取值范围;(2)若12121x x x x +=-,求k 的值;25.已知x 1,x 2是一元二次方程kx 2﹣2kx +k +1=0的两个实数根.(1)若x 1,x 2满足(2x 1﹣x 2)(x 1﹣2x 2)=2,求出此时k 的值;(2)是否存在k 的整数值,使得1221x x x x +的值为整数,若存在,求出k 的值;若不存在,请说明理由.26.已知x 1、x 2是关于x 的一元二次方程x 2+(3a-1)x+2a 2-1=0的两个实数根,使得(3x 1-x 2)(x 1-3x 2)=-80成立,求其实数a 的可能值27.已知关于x 的方程x 2+ax +a -2=0.(1)若该方程的一个根为1,求a 的值;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.28.已知关于x 的一元二次方程x 2+(2m +1)x +m 2 + 1=0.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1,x 2,且满足221215x x +=,求实数m 的值.29.已知关于的一元二次方程: 2(5)40x k x k +-+-=;(1)求证:无论k 为何值,方程总有实数根;(2)若方程的一个根是2,求另一个根及k 的值.30.已知关于x 的一元二次方程2210.x x m -+-=(1)当m 取何值时,这个方程有两个不相等的实根?(2)若方程的两根都是正数,求m 的取值范围;(3)设12,x x 是这个方程的两个实根,且2212121-=+x x x x ,求m 的值.参考答案1.B【解析】【分析】根据方程的系数结合根的判别式即可得出△=4-4m <0,解之即可得出结论.【详解】∵方程x 2+2x+m=0没有实数根,∴△=22-4m=4-4m <0,解得:m >1.故选B .【点睛】本题考查了根的判别式以及解一元一次不等式,熟练掌握“当△<0时,方程无实数根”是解题的关键.2.D【解析】【分析】根据一元二次方程根的判别式、方程的解的定义、二次函数与一元二次方程的关系、根与系数的关系判断即可.【详解】当c =0,b≠0时,△=b 2>0,∴方程一定有两个不相等的实数根,①是真命题;∵p 是方程x 2+bx+c =0的一个根,∴p 2+bp+c =0,∴1+b p +2c p=0, ∴1p是方程cx 2+bx+1=0的一个根,②是真命题; 当c <0时,抛物线y =x 2+bx+c 开口向上,与y 轴交于负半轴, 则当﹣2b <m <0<n 时,m 2+mb+c <0<n 2+nb+c ,③是真命题; p+q =﹣b ,pq =c ,(p ﹣q )2=(p+q )2﹣4pq =b 2﹣4c ,则|p ﹣q|④是假命题,故选:D .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.D【解析】【分析】根据根与系数的关系得到a+b=-1,ab=-2019,然后利用整体代入的方法计算代数式的值.【详解】解:根据题意得a+b=-1,ab=-2019,所以a+b+ab=-1-2019=-2020.故选:D .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,1212,b c x x x x a a+=-=. 4.A【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】根据题意得121x x =+,122x x =-,所以()()12111x x x ++-=12121x x x x ++-11(2)4=+--=.故选:A .【点睛】此题主要考查根与系数的关系,解题的关键是熟知根与系数的性质.5.D【分析】根据根的判别式即可求出a 的范围.【详解】由题意可知:△>0,∴1﹣4(﹣a +34)>0, 解得:a >12故满足条件的最小整数a 的值是1,故选D .【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式.6.D【解析】【分析】先根据根与系数的关系得到α+β=4,αβ=﹣3,再把α﹣3)(β﹣3)展开,变形为αβ﹣3(α+β)+9,然后利用整体代入的方法计算即可.【详解】根据题意得:α+β=4,αβ=﹣3,所以α﹣3)(β﹣3)=αβ﹣3(α+β)+9=﹣3﹣3×4+9=﹣6. 故选D .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2b a =-,x 1x 2c a=. 7.B【解析】【分析】利用换元法令2y x =-,可得到y 的值,即可算出x 的值,即方程()220a x m n +-+=(a≠0)的两根.记2y x =-,则()220a x m n +-+=即()20a y m n ++=的两根为-3,1故2x y =+=-1,3.故选B.【点睛】本题主要考查换元法和解一元二次方程.8.B【解析】【分析】利用根与系数的关系得到−(a 2−1)=0,解方程得到a =1或a =−1,然后利用方程有无实数解确定a 的值.【详解】解:根据题意得﹣(a 2﹣1)=0,解得a =1或a =﹣1,而a =1时,原方程化为x 2+1=0,方程没有实数解,所以a 的值为﹣1.故选:B .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=b a -,x 1·x 2=c a . 9.D【解析】【分析】直接利用根与系数的关系得出,x 1+x 2=-b a,代入数值即可. 【详解】∵x 1,x 2是方程2x 2−4x−1=0的两个根,x 1+x 2=2,故答案选:D.【点睛】本题考查的知识点是根与系数的关系,解题的关键是熟练的掌握根与系数的关系.【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【详解】根据题意得x1+x2=-42=-2,x1x2=-12,所以A、B选项错误;∵x1+x2<0,x1x2<0,∴x1、x2异号,且负数的绝对值大,所以C选项错误;∵x1为一元二次方程2x2+4x-1=0的根,∴2x12+4x1-1=0,∴x12+2x1=12,所以D选项正确.故选D.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.11.1 4【解析】【分析】根据一元二次方程的根的定义、一元二次方程的定义求解.【详解】解:∵x=1是方程的根,由一元二次方程的根的定义,可得1﹣5+p2﹣2p+5=0,解此方程得到p=1.设方程的另一根为α,∴1+α=5,∴α=4,∴另一根为4,故答案为1,4.【点睛】本题主要考查了一元二次方程的解,解题的关键是得出关于p的一元二次方程.12.﹣1.【解析】【分析】根据一元二次方程的根与系数的关系,即可得出答案.【详解】解:∵一元二次方程x2+2x﹣1=0的两实数根为x1、x2,∴x1•x2=11-=﹣1.故答案为:﹣1.【点睛】本题考查的一元二次方程根与系数的关系,比较简单,需要熟练掌握韦达定理.13.k≥9 4 -【解析】【分析】关于x的方程可以是一元一次方程,也可以是一元二次方程;当方程为一元一次方程时,k =0;当方程是一元二次方程时,必须满足下列条件:①二次项系数不为零;②△=b2−4ac≥0.【详解】解:当k=0时,方程为3x−1=0,有实数根;当k≠0时,△=b2−4ac=9+4k≥0,解得:k≥94 -,综上可知,当k≥94-时,方程有实数根;故答案为:k≥9 4 -.【点睛】本题考查了方程有实数根的含义,一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.注意到分两种情况讨论是解题的关键.14.9m>【解析】 【分析】因二次三项式26x x m -+在实数范围内不能分解因式,所以26x x m -+=0无实数根,据此求解即可. 【详解】∵二次三项式26x x m -+在实数范围内不能分解因式, ∴26x x m -+=0无实数根, ∴∆=36-4m<0, ∴9m >. 故答案为:9m >. 【点睛】本题考查了一元二次方程根的判别式,以及因式分解法解一元二次方程:若一元二次方程ax 2+bx+c=0的两根为x 1,x 2,那么一元二次方程可整理为a(x -x 1)(x -x 2)=0. 15.﹣2 【解析】 【分析】根据根与系数的关系得到x 1• x 2 = -3,再解一次方程求出x 2,进而求出x 1+x 2的值. 【详解】解:∵x 1=-3是关于x 的方程x 2+kx ﹣3=0的一个根,x 2是另一个根, ∴x 1•x 2=-3, ∴x 2=1,∴x 1+ x 2=-3+1=-2, 故本题答案为-2. 【点睛】本题主要考查了根与系数的关系以及一元二次方程的解的知识,解答本题的关键是掌握根与系数的关系,此题难度不大. 16.3, 2. 【解析】 【分析】设方程的另一根为x 2,根据根与系数的关系得到−1•x 2=3,求出x 2,再根据1+x 2=2a ,得出1+3=2a ,再解方程即可. 【详解】解:设方程的另一根为x 2, 根据题意得1•x 2=3, 则x 2=3; ∵1+x 2=2a , ∴1+3=2a , ∴a =2; 故答案为3,2. 【点睛】本题考查了一元二次方程根与系数的关系,若方程的两根为x 1,x 2,则x 1+x 2=−ba,x 1x 2=c a. 17.2019 【解析】 【分析】由题意,m ,n 是两个不相等的实数,且满足23m m -=,23n n -=,则可将m ,n 看作是一元二次方程23-=x x 的两个实数根,然后可利用根与系数的关系求出代数式的值. 【详解】由题意,可将m ,n 看作是一元二次方程23-=x x 的两个实数根,则1m n +=,3=-mn , 所以原式=()2322008+-++n mn m =2622008+-++n mn m =()22014+-+m n mn =()2132014⨯--+ =2019 【点睛】本题考查一元二次方程根与系数的关系,将m ,n 看作是一元二次方程23-=x x 的两个实数根是本题的关键.18.6.【解析】【分析】把x=3代入方程x2+ax﹣2a=0得出9+3a﹣2a=0,求出a=﹣9,方程为x2﹣9x+18=0,设方程的另一个根为b,得出b+3=9,求出即可.【详解】解:把x=3代入方程x2+ax﹣2a=0得:9+3a﹣2a=0,解得:a=﹣9,即方程为x2﹣9x+18=0,设方程的另一个根为b,则b+3=9,解得:b=6,故答案为6.【点睛】本题考查了一元二次方程的解,根与系数的关系的应用,解此题的关键是求出a的值和得出b+3=9.19.1.【解析】【分析】根据一元二次方程的解以及根与系数的关系即可得出α2+2017α=﹣1、β2+2017β=﹣1、αβ=1,将(α2+2018α+1)(β2+2018β+1)转化为αβ代入数据即可得出结论.【详解】∵α、β是方程x2+2017x+1=0的两根,∴α2+2017α=﹣1,β2+2017β=﹣1,αβ=1,∴(α2+2018α+1)(β2+2018β+1)=αβ=1.故答案为:1.【点睛】此题主要考查根与系数的关系,解题的关键是根据题意得到两根之积的值.20.﹣5.【分析】根据根与系数的关系求解即可. 【详解】∵x 1、x 2是一元二次方程x 2+5x +2=0的两个实数根, ∴x 1+x 2=﹣5; 故答案为:﹣5. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12bx x a +=-,12c x x a⋅= . 21.(1)m <2;(2)m >1;(3)m=4. 【解析】 【分析】(1)令∆>0列式求解即可;(2)令x 1x 2>0,结合(1)的结论求解即可;(3)用含m 的式子表示出x 1x 2与x 12+x 22的值,把所给代数式变形为1+x 1x 2=(x 1+x 2)2,代入x 1x 2与x 12+x 22的值即可求出m 的值. 【详解】解:(1)∵△=(-2)2-4(m-1)=-4m+8>0, ∴m <2时,方程有两个不相等的实数根;(2)设x 1,x 2是这个方程的两个实根,则x 1>0,x 2>0, ∴x 1x 2=m-1>0, ∴m >1,∴方程的两根都是正数,m 的取值范围是:1<m≤2; (3)∵x 1+x 2=2,x 1x 2=m-1, ∴1-x 1x 2=x 12+x 22, ∴1+x 1x 2=(x 1+x 2)2, ∴1+m-1=22, ∴m=4.本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12bx x a +=-,12c x x a⋅= . 当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.22.有两个不相等的实数根. 【解析】 【分析】根据关于x 的方程2210x x a +-+=没有实数根,求出a 的求值范围;再表示关于x 的方程20x ax a ++=,24(4)a a a a ∆=-=-,即可判断该方程根的情况.【详解】解:∵方程2210x x a +-+=没有实数根 ∴240b ac ∆=-< ∴2241(1)0a -⨯⨯-+< 解得:0a <关于x 的方程20x ax a ++=,24(4)a a a a ∆=-=- ∵0a < ∴(4)0a a ->∴关于x 的方程20x ax a ++=有两个不相等的实数根. 【点睛】本题考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式与根的情况之间的关系是解题关键. 23.(1)34k >;(2)11x =,22x = 【解析】 【分析】(1)由方程有两个不相等的实数根,可知△>0,据此可得关于k 的不等式,解不等式即可求(2)由根与系数的关系结合已知可求得k 的值,进而可求得原方程的根. 【详解】(1)∵关于x 的一元二次方程22(21)10x k x k -+++=有两个不相等的实数根, ∴△>0,即[]()22(21)4110k k -+-⨯⨯+>,整理得,430k ->, 解得:34k >, 故实数k 的取值范围为34k >; (2)∵方程的两个根分别为12x x 、, ∴12213x x k +=+=, 解得:1k =,∴原方程为2320x x -+=, ∴11x =,22x =. 【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,解一元二次方程等,熟练掌握相关知识是解题的关键. 24.(1)12k ≤;(2)k =-3 【解析】 【分析】(1)依题意得△≥0,即[-2(k -1)]2-4k 2≥0;(2)依题意x 1+x 2=2(k -1),x 1·x 2=k 2 以下分两种情况讨论:①当x 1+x 2≥0时,则有x 1+x 2=x 1·x 2-1,即2(k -1)=k 2-1;②当x 1+x 2<0时,则有x 1+x 2=-(x 1·x 2-1),即2(k -1)=-(k 2-1); 【详解】解:(1)依题意得△≥0,即[-2(k -1)]2-4k 2≥0 解得12k ≤(2)依题意x 1+x 2=2(k -1),x 1·x 2=k 2 以下分两种情况讨论:①当x 1+x 2≥0时,则有x 1+x 2=x 1·x 2-1,即2(k -1)=k 2-1 解得k 1=k 2=1 ∵12k ≤∴k 1=k 2=1不合题意,舍去②当x 1+x 2<0时,则有x 1+x 2=-(x 1·x 2-1),即2(k -1)=-(k 2-1) 解得k 1=1,k 2=-3 ∵12k ≤∴k =-3综合①、②可知k =-3 【点睛】一元二次方程根与系数关系,根判别式. 25.(1)k =﹣3;(2)存在,k =0,﹣2. 【解析】 【分析】(1)根据根与系数的关系得到x 1+x 2=2,x 1x 2=1k k+,代入代数式解方程即可得到结论; (2)根据根与系数的关系得到x 1+x 2=2,x 1x 2=1k k +,求得1221x x x x +=221212x x x x +=2121212()2x x x x x x +-=1421k k k k+-⨯+=11k k -+于是得到结论. 【详解】(1)根据题意得k ≠0且△=(﹣2k )2﹣4k (k +1)≥0, 解得k ≤0; ∵x 1+x 2=2,x 1x 2=1k k+, ∵x 1,x 2满足(2x 1﹣x 2)(x 1﹣2x 2)=2, ∴2(x 1+x 2)2﹣9x 1x 2=8﹣9(1)k k+=2,∴k =﹣3; (2)存在,理由:∵x 1+x 2=2,x 1x 2=1k k+, ∴1221x x x x +=221212x x x x +=2121212()2x x x x x x +-=1421k k k k+-⨯+=2×11k k -+的为整数, ∴k =0,﹣2时,1221x x x x +的值为整数. 【点睛】本题考查了根的判别式、根与系数的关系,掌握根的判别式、根与系数的关系是解决问题的关键. 26.a=-335. 【解析】 【分析】利用一元二次方程根与系数的关系可得x 1+x 2=-(3a-1),x 1•x 2=2a 2-1,根据(3x 1- x 2)(x 1-3 x 2)=-80,可得关于a 的方程,即可求出a 的值,利用判别式检验即可得答案. 【详解】∵x 1、x 2是关于x 的一元二次方程x 2+(3a-1)x+2a 2-1=0的两个实数根,a=1,b=(3a-1),c=2a 2-1, ∴x 1+x 2=-b a =-(3a-1),x 1•x 2=ca=2a 2-1, ∵(3x 1-x 2)(x 1-3x 2)=-80,∴3x 12-10x 1x 2+3x 22=-80,即3(x 1+x 2)2-16x 1x 2=-80, ∴3[-(3a-1)]2-16(2a 2-1)=-80, ∴5a 2+18a-99=0, ∴a=3或-335, 当a=3时,方程x 2+(3a-1)x+2a 2-1=0的△<0, ∴不合题意,舍去 ∴a=-335【点睛】本题综合考查了根的判别式和根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法27.(1)a=12;(2)详见解析.【解析】【分析】(1)将x=1带入方程中即可求出a的值(2)两个不相等的实根,用判别式求出a的值即可. 【详解】解:(1)将x=1代入x2+ax+a-2=0中,得1+a+a-2=0.解得a=1 2(2)证明:∵Δ=a2-4(a-2)=(a-2)2+4.∵(a-2)2≥0,∴(a-2)2+4>0.∴不论a取何实数,方程都有两个不相等的实数根.【点睛】此题重点考察学生对一元二次方程的解的应用,熟练掌握一元二次方程的解法是解题的关键.28.(1)m≥34;(2)m=2.【解析】【分析】(1)令△≥0即可求出m的取值范围;(2)将x12+x22=15转化为(x1+x2)2-2x1x2=15,再代入计算即可解答.【详解】解:(1)由题意有△=(2m+1)2-4(m2+1)≥0,解得m≥34.即实数m的取值范围是m≥34.(2)由x 12+x 22=15得(x 1+x 2)2-2x 1x 2=15, ∵x 1+x 2=-(2m+1),x 1x 2=m 2+1, ∴[-(2m+1)]2-2(m 2+1)=15, 即m 2+2m-8=0, 解得m=-4或m=2. ∵m≥34, ∴m=2.故实数m 的值为2. 【点睛】本题考查根的判别式与根与系数的关系,熟悉完全平方公式是解题的关键. 29.(1)详见解析;(2)2k =,21x = 【解析】 【分析】(1)根据根的判别式得出△=(k ﹣3)2≥0,从而证出无论k 取任何值,方程总有实数根. (2)先把x =2代入原方程,求出k 的值,再解这个方程求出方程的另一个根. 【详解】(1)证明:(方法一)222(5)4(4)69(3)0k k k k k ∆=---=-+=-Q …. ∴无论k 为何值时,方程总有实数根.(方法二)将1x =代人方程,等式成立,即1x =是原方程的解, 因此,无论k 为何值时,方程总有实数根, (2)把2x =代人方程解得2k =, 解方程2320x x -+=得21x = 【点睛】本题主要考查了一元二次方程的根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.30.(1)2m <;(2)12m <<;(3)m 无解.. 【解析】【分析】(1)由根的判别式得出不等式,求出不等式的解集即可;(2)由根与系数的关系得出不等式,求出不等式的解集即可;(3)由根与系数的关系得出x 1+x 2=2,x 1x 2=m-1,将2212121-=+x x x x 变形后代入,即可求出答案.【详解】解:(1)∵这个方程有两个不相等的实根∴>0∆,即()()224110--⨯⨯->m解得2m <.(2)由一元二次方程根与系数的关系可得: 122x x +=,121⋅=-x x m ,∵方程的两根都是正数∴120x x ⋅>,即10m ->∴1m >又∵2m <∴m 的取值范围为12m <<(3)∵2212121-=+x x x x∴2212121212122+-=++x x x x x x x x即()212121+=+x x x x ,将122x x +=,121⋅=-x x m 代入可得: 2112+-=m ,解得4m =.而2m <,所以m=4不符合题意,故m 无解.【点睛】本题考查了由一元二次方程根的情况求参数,根与系数的关系,熟练掌握根的情况与△之间的关系与韦达定理是关键.。
八年级下册数学 一元二次方程根与系数的关系复习专题(附答案)
一、单选题
1.已知关于x 的一元二次方程ax 2+bx+c=0的根为2和3,则关于x 的一元二次方程ax 2-bx-c=0的根为( )
. A. -2,-3 B. -6,1 C. 2,-3 D. -1,6
2.一元二次方程ax 2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是( )
A. 有两个正根
B. 有两个负根
C. 有一正根一负根且正根绝对值大
D. 有一正根一负根且负根绝对值大
3.已知一元二次方程a(x-x 1)(x-x 2)=0(a≠0,x 1≠x 2)与一元一次方程dx+e=0有一个公共解x=x 1 , 若一元二次方程a(x-x 1)(x-x 2)+(dx+e)=0有两个相等的实数根,则( )
A. a(x 1-x 2)=d
B. a(x 2-x 1)=d
C. a(x 1-x 2)²=d
D. a(x 2-x 1)=d
4.已知方程x 2-2x-5=0,有下列判断:①x 1+x 2=-2;②x 1•x 2=-5;③方程有实数根;④方程没有实数根;则下列选项正确的是( )
A. ①②
B. ①②③
C. ②③
D. ①②④ 5.若x 1 , x 2是一元二次方程x 2﹣2x ﹣3=0的两个根,则x 1x 2的值是( )
A. -2
B. -3
C. 2
D. 3
6.已知A ,B 是两个锐角,且满足 sin 2A +cos 2B =54
t , cos 2A +sin 2B =34t 2 ,则实数t 所有可能值的和为( ) A. - 83 B. - 53 C. 1 D. 113 7.下列各式计算正确的是( )
A. a 3⋅a 2=a 6
B. a 5+a 5=a 10
C. (−2a 3)3=−8a 9
D. (a −1)2=a 2−1 8.若多项式2x 2+3y+3的值为8,则多项式6x 2+9y+8的值为( )
A. 1
B. 11
C. 15
D. 23
9.已知实数a ,b 分别满足a 2−6a +4=0,b 2−6b +4=0 , 且a≠b ,则b a +a b 的值是( )
A. 7
B. -7
C. 11
D. -11
10.已知实数 m 、n 满足 x 2−7x +2=0 ,则 n m +m n 的值是( )
A. 452
B. 152
C. 152 或2
D. 452 或2 二、填空题
11.已知关于x 的方程x²-mx+2m-1=0的两个实数根的平方和为7,那么m 的值是________
12.设m 、n 是方程x 2+x-1001=0的两个实数根,则m 2+2m+n 的值为________。
13.已知a ,b 是一元二次方程x 2+x -3=0的两个实数根,则a 2-b+2020=________.
14.已知x 1 , x 2是方程x 2+6x+3=0的两实数根,则 x 2x 1 + x 1
x 2
的值为________. 15.一元二次方程x 2﹣3x ﹣4=0与x 2+4x-5=0的所有实数根之和等于________
三、解答题
16.已知x 1、x 2是方程x 2+2x ﹣3=0的两个根,
(1)求x 1+x 2;x 1x 2的值;
(2)求x 12+x 22的值.
17.已知x 1 , x 2是方程2x 2+4x ﹣3=0的两个根,利用根与系数的关系,求下列各式的值: (x 1+1)(x 2+1);
18.先化简,再求值: (1+1m 2−1)÷(m −1m+1) ,其中实数m 使关于x 的一元二次方程x 2﹣4x ﹣m =0有两个相等的实数根.
19.已知关于x 的一元二次方程 x 2+2(k +1)x +k 2+2=0 有两个实根 x 1、x 2 . (1)求实数 k 的取值范围;
(2)若 |x 1|−|x 2|=2√5 ,求 k 的值.
20.已知方程5x 2+kx ﹣6=0的一根是2,求它的另一根及k 的值.
21.已知关于x 的一元二次方程x 2﹣2x +k +1=0.
(1)若方程没有实数根,求k 的取值范围;
(2)若方程有两实数根为x 1和x 2 , 且x 12﹣x 1x 2=0,求k 的值.
答 案
一、单选题
1. B
2. C
3. B
4. C
5. B
6.C
7. C
8. D
9. A 10. D
二、填空题
11. ﹣1 12. 1000 13. 2024 14. 10 15. -1
三、解答题
16. (1)x 1+x 2=﹣2,x 1x 2=﹣3;
(2)x 12+x 22=(x 1+x 2)2﹣2x 1x 2=(﹣2)2﹣2×(﹣3)=10. 17.解:∵x 1 , x 2是方程2x 2+4x ﹣3=0的两个根, ∴x 1+x 2=﹣2,x 1x 2=﹣ . 原式=x 1x 2+x 1+x 2+1=﹣
18. 解:原式= m 2(m+1)(m−1)⋅m+1
m 2 = 1m−1 ,
∵实数m 使关于x 的一元二次方程x 2﹣4x ﹣m =0有两个相等的实数根, ∴△=16+4m =0,
∴m =﹣4,∴原式= 1−4−1 =﹣ 15 .
19. (1)解:∵方程由两个实数根,
∴△=4(k+1)2-4(k 2+2)≥0,解得:k≥ 12 ;
(2)解:∵x 1+x 2=-2(k+1)<0,x 1x 2=k 2+2>0,
∴x 1<0,x 2<0,
∴由|x 1|+|x 2|=2 √5 可得-(x 1+x 2)=2 √5 ,即2(k+1)=2 √5 , 解得:k= √5 -1.
20.解:设它的另一根为x 1 , 根据题意得x 1+2=﹣ ,x 1×2=﹣ , 解得x 1=﹣ ,k=﹣7 21. (1)∵方程没有实数根,∴△=(﹣2)2﹣4(k+1)<0,∴k >0; (2)∵原方程的两实数根为x 1和x 2 ,
∴ x 1x 2=k +1 . x 12=2x 1−k −1
∵ x 12﹣x 1x 2=0 ,∴ x 1(x 1−x)2=0 , ∴ x 1=0 或 x 1=x 2 . 当 x 1=0 ,代入方程可得0+0+k+1=0,k=﹣1.
当 x 1=x 2 时, Δ=4−4(k +1)=0 ,k=0.
故k 的值为-1或0.。