七年级数学上册第二章有理数2.6有理数的乘法与除法比较正数、负数的倒数的大小素材苏科版教案
- 格式:doc
- 大小:35.00 KB
- 文档页数:1
七年级上册数学第二单元知识点七年级上册数学第二单元知识点:第二章有理数解读有理数的有关概念一、正数与负数:1.正数:大于0的数叫正数。
像+1.8,+420、+30、+10%等带有理数“+”号的数叫做正数。
为了强调正数,前面加上“+”号,也可以省略不写。
2.负数:小于0的数叫负数。
像-3、-4754、-50、-0.6、-15%等。
※而负数前面带“-”号,而且不能省略。
3.零既不是正数也不是负数,它是正数与负数的分界点。
注意:对于正数与负数,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数。
例如-a不一定是负数,因为字母a代表任何一个有理数,当a是0时,-a是0,当a是负数时,-a是正数。
二、有理数及其分类:有理数:整数与分数统称为有理数。
整数包括三类:正整数、零、负整数。
分数包括两类:正分数和负分数。
注意:小学学过的零表示没有,而引入负数后,就不能把“零”完全当作没有了,如0℃就是一个特定的温度;现在我们学过的数,除p和与p有关的数外,其他的数都是有理数;引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大到整数。
三、数轴:1.数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。
注意:①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度三者缺一不可;③原点的位置、正方向的取向、单位长度的大小的选定,都是根据实际需要而定的。
2.数轴的画法:1一条水平的直线;2直线的适当位置选取一点作为原点,并用0表示这点;3定向右为正方向,用箭头表示出来;4选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次为1,2,3,从原点向左,每隔一个单位长度取一点,依次为-1,-2,-3。
四、相反数:代数意义:只有符号不同的两个数互为相反数。
如-2和2.规定零的相反数是零。
几何意义:位于原点的两侧且与原点的距离相等的点所表示的两个数。
注意:相反数是成对出现的,不能单独存在,如+2与-2互为相反数,说明+2的相反数是-2,-2的相反数是+2,单独一个数不能说相反数;“只有”的含义说明像+5与-3这样的两个数不是互为相反数。
七年级上册数学第二章知识点总结一、有理数1. 有理数的概念-整数和分数统称为有理数。
-有理数可分为正有理数、0、负有理数。
2. 有理数的分类-按定义分类:-有理数分为整数和分数。
-整数包括正整数、0、负整数。
-分数包括正分数、负分数。
-按性质分类:-有理数分为正有理数、0、负有理数。
-正有理数包括正整数和正分数。
-负有理数包括负整数和负分数。
3. 数轴-规定了原点、正方向和单位长度的直线叫做数轴。
-任何一个有理数都可以用数轴上的一个点来表示。
-数轴上两个点表示的数,右边的总比左边的大。
4. 相反数-只有符号不同的两个数叫做互为相反数。
- 0 的相反数是0。
-若a、b 互为相反数,则a+b=0。
5. 绝对值-数轴上表示数a 的点与原点的距离叫做数a 的绝对值。
-一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0。
即:-当a>0 时,|a|=a;-当a=0 时,|a|=0;-当a<0 时,|a|=-a。
二、有理数的加减法1. 有理数的加法法则-同号两数相加,取相同的符号,并把绝对值相加。
-绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
-一个数同0 相加,仍得这个数。
2. 有理数的加法运算律-加法交换律:a+b=b+a。
-加法结合律:(a+b)+c=a+(b+c)。
3. 有理数的减法法则-减去一个数,等于加上这个数的相反数。
即a-b=a+(-b)。
三、有理数的乘除法1. 有理数的乘法法则-两数相乘,同号得正,异号得负,并把绝对值相乘。
-任何数与0 相乘,都得0。
2. 有理数的乘法运算律-乘法交换律:ab=ba。
-乘法结合律:(ab)c=a(bc)。
-乘法分配律:a(b+c)=ab+ac。
3. 有理数的除法法则-除以一个不等于0 的数,等于乘这个数的倒数。
即a÷b=a×1/b(b≠0)。
-两数相除,同号得正,异号得负,并把绝对值相除。
4.1用字母表示数
✓在现实情境中进一步理解用字母表示数的意义,能分析简单问
4.3代数式的值
✓培养学生的探索精神和探索能力
✓通过学习使学生了解求代数式的值在日常生活中的应用
5.2等式的基本性质✓等式的基本性质
✓范例2第2小题需用2次等式的性质将方程变形成
内容
✓重点是正确掌握移项的方法求方程的解
✓难点是采用移项方法解一元一次方程的步骤
内容
)
(为常数
a
a
x=
✓经历从现实世界中抽象出几何图形的过程,感受点、线、面、体之间的关系✓抽象能力的培养,学习热情的激发
内容
✓线段的长度的大小的概念及其比较方法
✓掌握叠合法比较线段长短的正确方法。
苏科版七年级数学上册第二章《有理数》知识点归纳总结第二章《有理数》知识点归纳总结正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
也是偶数,-1,-3,-5…也是奇数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0 正有理数负整数正分数有理数有理数0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
第二章有理数及其运算一、有理数1.用正、负数表示具有相反意义的量2.有理数的分类(1)按定义分类(2)按符号分类二、数轴1.数轴的概念规定了原点、正方向、单位长度的直线叫做数轴.2.用数轴上的点表示有理数任何一个有理数都可以用数轴上的一个点来表示.3.比较有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.(2)正数大于0,0大于负数,正数大于负数.三、绝对值1.相反数的概念及性质(1)只有符号不同的两个数叫做互为相反数(2)互为相反数的两个数到原点的距离相等2.绝对值的概念及性质(1)一个数在数轴上对应的点到原点的距离叫做这个数的绝对值(2)一个正数的绝对值是它本身.(3)一个负数的绝对值是它的相反数.(4)0的绝对值是0.3.比较两个负数的大小两个负数,绝对值大的反而小.三、有理数的运算1.有理数的加法(1)加法法则同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.一个数同0相加,仍得这个数。
(2)加法的运算律加法的交换律加法的结合律2.有理数的减法减法法则:减去一个数,等于加上这个数的相反数.3.有理数的乘法(1)乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.(2)乘法的运算律乘法的交换律乘法的结合律乘法对加法的分配律4.有理数的除法除法法则:除以一个数,等于乘以这个数的倒数.5.有理数的乘方乘方运算规律:(1)正数的任何次幂都是正数.(2)负数的偶次幂是正数,负数的奇次幂是负数.(3)0的任何正整数次幂都是0.(4)a的偶次幂是正数,即a n≥0(其中n为偶数).6.有理数的混合运算有理数混合运算的顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.四、科学记数法1.科学记数法的概念一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法.2.a与n的取法在a×10n形式中,n的值是原数整数位数减1,a 则是将原数保留一位整数得来的.。
知识点解读:有理数的乘法知识点一:有理数的乘法法则有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同零相乘,都得零.温馨点拨:(1)有理数乘法法则中的“同号得正,异号得负”是专指“两数相乘”而言的;(2)有理数的乘法与有理数的加法的运算步骤一样,第一步:确定符号;第二步:确定绝对值.知识点二:有理数的乘法的运算律(掌握)有理数乘法的运算律:算术乘法中适用的交换律、结合律以及乘法对加法的分配律在有理数范围内依然成立.(1)乘法交换律:两个数相乘,交换因数的位置,积不变,即ab ba =.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即()()ab c a bc =.(3)乘法分配律:一个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即()a b c ab ac +=+.例1 应用乘法运算定律把8.5×10.1改成( )式计算简便.A .8.5×10+0.1B .8.5×10+8.5×0.1C .8.5×10×0.1D .8×10×0.1×0.5分析:在计算8.5×10.1时,把10.1看作10+0.1,运用乘法分配律简算. 解答: 8.5×10.1=8.5×(10+0.1)=8.5×10+8.5×0.1,这样计算简便. 故选:B .知识点三:多个有理数相乘的符号法则(掌握)多个有理数相乘的符号法则:(1)几个不为0的数相乘,积的符号由负数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.(2)几个数相乘,如果有一个因数为0,积就为0,反之,如果积为0,那么至少有一个因数为0.例2 计算(134-78-712)×(-117).分析:可以直接利用乘法的分配律计算,即正向运用.解:(134-78-712)×(-117)=74×(-87)+(-78)×(-87)+(-712)×(-87)=-2+1+23=-13.说明:利用乘法的分配律可以使某些特殊结构的有理数乘法运算简化,但要注意灵活运用避免符号、拆项等错误.2。
千里之行,始于足下。
七年级上册数学第二章知识点
第二章:有理数
1. 正数和负数:了解正数和负数的概念及其表示方法,掌握在数轴上表示正数和负数的方法。
2. 有理数:了解有理数的概念,即可以表示成两个整数比的数,包括整数、分数和小数。
3. 绝对值:掌握求一个有理数的绝对值的方法,并了解绝对值的意义。
4. 比较大小:掌握比较两个有理数大小的方法,可以利用数轴进行比较。
5. 加法和减法:掌握有理数的加法和减法运算规则,包括同号相加、异号相减等。
6. 乘法和除法:掌握有理数的乘法和除法运算规则,包括同号相乘得正、异号相乘得负等。
7. 有理数的混合运算:掌握有理数的混合运算方法,能够灵活运用加减乘除进行计算。
8. 有理数的运算性质:掌握有理数的运算性质,包括交换律、结合律、分配律等。
9. 有理数的应用:了解有理数在现实生活中的应用,例如温度计、海拔等。
第1页/共2页
锲而不舍,金石可镂。
10. 小数运算:掌握小数的加减乘除运算方法,包括小数点的对齐和补零等。
以上是七年级上册数学第二章的主要知识点。
在学习过程中,注意理解概念,掌握运算方法,并能够将所学知识与实际生活应用结合起来。
人教版七年级数学上册第二章知识点总
结
本章节主要介绍正数、负数的概念及其四则运算法则,同时也涉及有理数的概念和算术运算。
正数和负数
- 正数:大于零的数,用“+”表示。
- 负数:小于零的数,用“-”表示。
- 相反数:绝对值相等且符号相反的数互为相反数,如$+3$和$-3$、$+5$和$-5$。
- 数轴:用于描述数的一种方式,通常以$0$为起点。
正数和负数的四则运算
- 加法:同号相加,异号相减。
- 减法:用加上相反数的方式进行运算。
- 乘法:同号相乘为正,异号相乘为负。
- 除法:两数相除时,商号与被除数、除数的符号相同。
有理数
有理数是指可以表示为两个整数之比的数,记作$\frac{a}{b}$,其中$a$和$b$是整数,$b≠0$。
有理数的四则运算
- 加法和减法:先通分,然后按分数的加减法则计算。
- 乘法:将两个分数的分子与分母分别相乘,然后将新分子与
新分母约分。
- 除法:两个分数除法可以转化为乘法,即
$\frac{a}{b}÷\frac{c}{d}$等价于$\frac{a}{b}×\frac{d}{c}$,然后按
照乘法的方法进行计算。
本章课后题的重点是通过实际生活中的例子,让学生体会数的
正负和大小的意义,掌握正数、负数的四则运算,了解有理数作为
数的拓展和应用。
以上是本章的知识点总结。
有理数分类按定义实数有理数整数正整数负整数分数正分数负分数无理数无限不循环小数有理数正有理数正整数正分数负有理数负整数负分数2.8有理数的混合运算顺序先乘方,后乘除,再加减,如果有括号,先进行括号内的运算有理数的加减法混合运算可以使用省略加号的形式2.1正数与负数正数和负数像8848.86、100、357、78这样的数是正数像-154、-38.87、-117.3、-1这样的数是负数0既不是正数,也不是负数整数与分数整数正整数、负整数、零统称为整数分数正分数,负分数统称为分数2.2有理数与无理数意义有理数我们把能够写成分数形式m/n(m、m是整数,n≠0)的数叫做有理数无理数无限不循坏小数叫做无理数2.3数轴怎么画1.画一条水平直线,并在这条直线上取一点表示0,我们把这个点称为原点2.规定直线上从原点向右为正方向(画箭头表示),向左为负方向3.取适当长度(如1cm)为单位长度,在直线上,从原点向右每隔一个单位长度取一点,依次表示1,2,3······从原点向左每隔一个单位长度取一点,依次表示-1,-2,-3······三要素原点,正方向,单位长度示例比大小在数轴上表示的两个数,右边的数总比左边的数大正数都大于0,负数都小于0,正数大于负数2.4绝对值与相反数绝对值意义数轴上表示一个数的点与原点的距离叫做这个数的绝对值比大小两个正数,绝对值大的正数大两个负数,绝对值大的负数小相反数意义符号不同、绝对值相同的两个数互为相反数,其中一个数叫做另一个数的相反数易错点0的相反数是0一个数的绝对值与这个数本身或它的相反数有什么关系正数的绝对值是它本身负数的绝对值是它的相反数0的绝对值是0倒数乘积为1的两数互为倒数1的倒数是10没有倒数2.5有理数的加法与减法有理数的加法同号两数相加,取相同的符号,并把绝对值相加异号两数相加绝对值相等时,和为0绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值一个数与0相加,仍得这个数运算律交换律 a+b=b+a结合律 (a+b)+c=a+(b+c))有理数的减法减去一个数,等于加上这个数的相反数 a-b=a+(-b))2.6有理数的乘法与除法有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘,0与任何数相乘都得0运算律交换律 axb=bxa结合律 (axb)xc=ax(bxc)分配律 (a+b)xc=axc+bxc有理数的除法法则除以一个不等于0的数,等于乘这个数的倒数两个不等于0的数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0注意0不能做除数2.7有理数的乘方乘方概念求相同因数的积的运算叫做乘方,相同因数叫做底数,相同因数的个数叫做指数,乘方运算的结果叫幂法则正数的任何次幂都是正数负数的奇数次幂是负数,负数的偶数次幂是正数科学记数法概念一般的,一个大于10的数可以表示成a×的形式10n注意1≤a<10。
初一数学第二章知识点总结一、有理数的基本概念1. 有理数的定义:有理数是可以表示为两个整数的比的数,形式为a/b,其中a和b 是整数,且b≠0。
2. 有理数的分类:- 正有理数:大于0的有理数。
- 负有理数:小于0的有理数。
- 零:既不是正数也不是负数的有理数。
3. 有理数的性质:- 封闭性:加法、减法、乘法和除法(除数不为零)在有理数集内封闭。
- 加法和乘法的交换律、结合律。
- 减法和除法的逆元存在性。
二、有理数的运算1. 加法运算:- 同号相加:取相同的符号,绝对值相加。
- 异号相加:取绝对值较大的数的符号,绝对值相减。
- 任何数与零相加等于原数。
2. 减法运算:- 减去一个数等于加上这个数的相反数。
3. 乘法运算:- 同号得正,异号得负,绝对值相乘。
- 任何数与零相乘等于零。
4. 除法运算:- 除以一个不等于零的数等于乘以这个数的倒数。
- 零除以任何非零数等于零。
5. 混合运算:- 先乘除后加减。
- 同级运算从左到右进行。
三、绝对值与有理数比较1. 绝对值:- 绝对值表示一个数距离零的距离,用符号“| |”表示。
- 一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零。
2. 有理数的比较:- 正数大于零,负数小于零。
- 两个负数比较大小,绝对值大的反而小。
四、有理数的简化1. 简化的概念:- 简化是有理数分数形式的最简表示,即分子和分母没有公因数。
2. 简化的方法:- 找出分子和分母的最大公因数,然后分子分母都除以这个数。
五、分数的加减乘除1. 分数的加法:- 需要找到公共分母,然后按照同分母分数的加法规则进行计算。
2. 分数的减法:- 同样需要找到公共分母,然后按照同分母分数的减法规则进行计算。
3. 分数的乘法:- 分子乘分子,分母乘分母。
4. 分数的除法:- 分子乘分母的倒数。
六、小数与有理数的互化1. 小数转化为有理数:- 根据小数点后的位数,将小数乘以10的相应次方,转化为分数形式。
北师大版初一上册第二章有理数概念及其运算知识点总结一、有理数有理数包括正整数、负整数、0和分数。
其中正整数和负整数统称为整数。
有理数可以用分数的形式表示,即分子、分母都是整数,并且分母不为0。
二、有理数的比较两个有理数的大小关系取决于它们的大小和符号,具体规则如下:- 同号,比大小;- 异号,比绝对值大小,正数大于负数。
三、有理数的加减运算有理数的加减运算遵循以下规则:- 同号相加,不改变符号,绝对值相加;- 异号相加,绝对值相减,符号与绝对值较大的数相同。
例如:- $2-3=-1$- $-2+3=1$- $-2-(-3)=1$- $-2+(-3)=-5$四、有理数的乘法有理数的乘法运算遵循以下规则:- 同号相乘得正,异号相乘得负;- 0乘任何数都得0。
例如:- $2\times 3=6$- $-2\times 3=-6$- $-2\times (-3)=6$- $0\times 5=0$五、有理数的除法有理数的除法其实就是乘以倒数,即$\dfrac{a}{b}\div\dfrac{c}{d}=\dfrac{a}{b}\times \dfrac{d}{c}$。
其中$b\neq 0$,$c\neq 0$。
例如:- $\dfrac{2}{3}\div \dfrac{4}{5}=\dfrac{2}{3}\times\dfrac{5}{4}=\dfrac{5}{6}$- $(-2)\div \dfrac{3}{4}=(-2)\times \dfrac{4}{3}=-\dfrac{8}{3}$六、绝对值一个数的绝对值表示这个数到0点的距离,记作$|a|$。
其中:- 若$a>0$,则$|a|=a$;- 若$a<0$,则$|a|=-a$;- 若$a=0$,则$|a|=0$。
例如:$|-5|=5$,$|6|=6$,$|0|=0$。
七、有理数的混合运算有理数的混合运算是指有理数的加减乘除四则运算的有理数表达式计算。
比较正数、负数的倒数的大小难易度:★★关键词:有理数答案:倒数大小的比较要分清原数的正负及原数与±1的大小关系,即把一个数放在三个取值范围中与其倒数比较大小:小于-1,等于—1,大于—1小于0,大于0小于1,等于1,大于1。
【举一反三】典例:已知a、b为有理数,且它们在数轴表示如下:则下列结论正确的是()A. B. C.D.思路导引:一般来说,此类问题先确定一个数的符号,同时也就确定了它的倒数的符号;再把这个数与±1比较。
本题中a<-1<0,b>—1>0。
所以a小于它的倒数,b也小于它的倒数,但b及b的倒数为正数,所以。
标准答案:B尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be someunsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
第二章七年级数学上册-第二章有理数知识点复习-华东师大版(完整版)资料(可以直接使用,可编辑优秀版资料,欢迎下载)有理数一、有理数的意义复习内容:有理数的意义、数轴、相反数、绝对值等概念,有理数的大小比较.(一)用正、负数表示具有相反意义的量1、如果用正数表示某种意义的量,那么负数就表示其相反意义的量.2、常用的一些符号和数学语言的含义:⑴a>0,表明a是正数.⑵a<0,表明a是负数.⑶a≥0,表明a是非负数,即a是正数或a为0.⑷a≤0,表明a是非正数,即a是负数或a为0.(二)数轴1、规定了原点、正方向和单位长度的直线叫做数轴.2、在数轴上表示的两个数,右边的数总比左边的数大.3、正数都大于零,负数都小于零,正数大于负数.(三)相反数1、只有符号不同的两个数称互为相反数.2、零的相反数是零.3、数a的相反数是-a.说明:要表示一个数的相反数,只在这个数的前面添上一个“—”号就行了.(四)绝对值1、 a (a>0)|a|=0 (a=0)-a (a<0)说明:求一个数的绝对值,就是想办法去掉绝对值符号.因此,在具体求一个数的绝对值时,首先要判断它的正负,然后利用法则求出它的绝对值.二、有理数的运算重点复习有理数的混合运算,并复习近似数和有效数字,并掌握科学记数法.(一)有理数的加法1、法则:⑴同号两数相加,取相同的符号,并把绝对值相加.⑵绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.⑶互为相反数的两个数相加得零.⑷一个数与零相加,仍得这个数.(二)有理数的减法1、法则:减去一个数,等于加上这个数的相反数.(三)有理数的加减混合运算1、方法和步骤:⑴将有理数加减法统一成加法,然后省略括号和加号.⑵运用加法法则、加法运算律进行简便运算.(四)有理数的乘法1、法则:⑴两数相乘,同号得正,异号得负,并把绝对值相乘.⑵任何数与零相乘,都得零.⑶几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.【简记为“奇负偶正”】⑷几个数相乘,有一个因数为零,积为零.(五)有理数的除法1、法则:⑴除以一个数等于乘以这个数的倒数.⑵两数相除,同号得正,异号得负,并把绝对值相除.⑶零除以任何一个不等于零的数,都得零.⑷乘积为1的两个数互为倒数.(六)有理数的乘方1、法则:⑴正数的任何次幂都是正数.⑵负数的奇次幂是负数,负数的偶次幂是正数.(七)有理数的混合运算1、运算顺序:⑴先算乘方,再算乘除,最后算加减.⑵同级运算,按照从左到右的顺序进行.⑶如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的.(八)科学记数法、近似数和有效数字1、科学记数法:把一个大于10的数记成n的形式.a10说明:⑴a是一个只有一位整数的数.⑵10的指数n比原数的整数数位少1.2、⑴近似数的精确度表示:⑴精确到×位⑵保留几个有效数字⑵有效数字:一个近似数从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字.说明:①问精确到哪一位,看最右边的有效数字所在的位置属哪一位.②用科学记数法表示的近似数的有效数字位数只看“×”号前的部分.第三章整式的加减⑴复习内容:主要复习列代数式,求代数式的值.(一)代数式的有关知识1、代数式是用运算符号(加、减、乘、除以及乘方)把数和表示数的字母连结而成的式子.▲ 单独一个数或一个字母也是代数式.2、代数式的书写格式:①若是数字与数字相乘,仍然用“×”号;若是字母与字母相乘,通常省略乘号,且按字母的顺序排列.例如b ×a 应写成ab .②数字与字母相乘,或数字与小括号相乘时,乘号可省略不写,但数字要写在前面.例如4×a 应写成4a ;3×(m+n)应写成3(m+n). ③代数式中出现除法运算时,应写成分数的形式.例如y x 2应写成yx 2 ④代数式中出现带分数与字母相乘时,应把带分数化成假分数. 如b a 225不能写成b a 2212. ⑤代数式的最后运算是加减运算时,如需注明单位的必须用括号把整个式子括起来.如(a-b)元不能写成a-b 元.3、列代数式:一般是根据“先读先写”的原则来列代数式.(二)代数式的值1、方法与步骤:⑴用数值代替代数式中的字母,简称“代入”.⑵按照代数式指定的运算顺序计算出结果,简称“求值”.说明:代数式的值是由代数式中的字母所取的值决定的.因此,在代入前,必须先写“当……时”.第三章整式的加减⑵复习内容:整式、单项式、多项式、同类项的概念,合并同类项,去括号,添括号及整式的加减运算.(一)单项式1、定义:表示数字与字母的积的代数式叫做单项式.单独一个数或一个字母也是单项式.2、单项式中的数字因数叫做单项式的系数.3、一个单项式中所有字母的指数的和,叫做这个单项式的次数.(二)多项式1、定义:几个单项式的和叫做多项式.2、多项式的项:多项式中,每一个单项式叫做多项式的项.不含字母的项叫做常数项.3、多项式的次数:多项式中,次数最高的项的次数,叫做多项式的次数.4、多项式的排列:⑴升幂排列:把一个多项式按某一个字母的指数从小到大的顺序排列.⑵降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列.(三)同类项、合并同类项1、定义:所含字母相同,并且相同字母的次数也相同的项,叫做同类项.▲所有的常数项也是同类项2、判断标准:⑴所含字母相同⑵相同字母的次数相同3、合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的次数保持不变.(四)去括号与添括号1、去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变号.括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都要变号.2、添括号法则:所添括号前面是“+”号,括到括号里的各项都不变号.所添括号前面是“-”号,括到括号里的各项都要变号.(五)整式的加减1、步骤:①若有括号,则先去括号②如有同类项,再合并同类项第四章图形的初步认识复习内容:立体图形的三视图、展开图, 最基本的图形——点和线,角,相交线,平行线.(一)立体图形的三视图:正视图、左视图、俯视图(二)立体图形的展开图(三)最基本的图形——点和线1、两点之间,线段最短.2、连结两点的线段的长度,叫做这两点的距离.3、经过两点有一条直线,并且只有一条直线.(两点确定一条直线)4、把一条线段分成两条相等线段的点叫做线段的中点.(四)角1、一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.2、⑴如果两个角的和是90º,这两个角叫做互为余角. ⑵如果两个角的和是180º,这两个角叫做互为补角. 说明:①若∠1与∠2互余,则∠1+∠2=90º.②若∠1与∠2互补,则∠1+∠2=180º.3、⑴同角(或等角)的余角相等.⑵同角(或等角)的补角相等.4、用角度表示方向:旋转的角度表示方向.如图,OA示为北偏西60º.5、对顶角相等.(五)相交线1、在同一平面内,经过直线上(或外)一点,有且只有一条直线与已知直线垂直.2、垂线段最短。
七上数学第二章知识点
七年级上册数学第二章的知识点主要包括有理数的定义、分类、运算以及数轴的使用。
有理数包括整数和分数,其中整数包括正整数、0和负整数,分数包括正分数和负分数。
在进行有理数的运算时,需要注意运算的顺序和法则,例如先乘方后乘除,先算括号内的数等。
此外,数轴是用来表示有理数的工具,通过将数轴分成若干段,可以表示不同的有理数。
在数轴上,右边的数总比左边的数大。
具体来说,七年级上册数学第二章的知识点包括:
1.有理数的定义:有理数是可以用有限个数位来表示的数,其定义包括整数和分数。
2.有理数的分类:有理数可以分为正有理数、0和负有理数。
其中,正有理数包括正整
数和正分数,负有理数包括负整数和负分数。
3.有理数的运算:有理数的运算包括加法、减法、乘法和除法,需要注意运算的顺序
和法则。
例如,先乘方后乘除,先算括号内的数等。
4.数轴的使用:数轴是用来表示有理数的工具,通过将数轴分成若干段,可以表示不
同的有理数。
在数轴上,右边的数总比左边的数大。
除了以上知识点外,七年级上册数学第二章还涉及了绝对值、相反数、倒数的概念和化简方法,以及有理数大小的比较方法等。
七年级数学上册第二章有理数2.6有理数的乘法与除法怎样求一个数的倒数素材(新版)苏科版
难易度:★★
关键词:有理数
答案:
答案:乘积是1的两个数互为倒数,其中一个数是另一个数的倒数,0没有倒数.
倒数的求法:
(1)求一个整数的倒数,直接可写成这个数分之一,即a 的倒数为.
(2)求一个分数的倒数,只要将分子、分母颠倒一下即可,即的倒数为.
(3)求一个带分数的倒数,应先将带分数化成假分数,再求倒数.
(4)求一个小数的倒数,应先将小数化成分数,再求倒数.
【举一反三】
(1)一个数的相反数的倒数是-4,这个数是__________.
(2)一个有理数的倒数等于它本身,则这个数是________
思路导引:一般来说,此类问题要从已知数入手。
如果两个数互为倒数,那么它们符号相
同,即正数的倒数是正数,负数的倒数是负数,0没有倒数,本题目中-4的倒数为-,倒数等于本身的数是±1.
标准答案:(1)-(2)±1.
1。
比较正数、负数的倒数的大小
难易度:★★
关键词:有理数
答案:
倒数大小的比较要分清原数的正负及原数与±1的大小关系,即把一个数放在三个取值范围中与其倒数比较大小:小于-1,等于-1,大于-1小于0,大于0小于1,等于1,大于1。
【举一反三】
典例:已知a、b为有理数,且它们在数轴表示如下:
则下列结论正确的是()
A
. B
. C
.
D .
思路导引:一般来说,此类问题先确定一个数的符号,同时也就确定了它的倒数的符号;再把这个数与±1比较。
本题中a<-1<0,b>-1>0。
所以a小于它的倒数,b也小于它
的倒数,但b及b 的倒数为正数,所以。
标准答案:B
1。